Lost at See

Using Random Walks for Scale Spaces in Sea Surface Satellite Image Analysis

Florian Sobieczky

Data Science Association Saturday, 28th of February, 2015

Satellite Imagery used for Sea Surface observation

Figure : 239 + 162 victims of airplane accident overseas

Satellite Imagery used for Sea Surface observation

Figure : Satellite image shown in the News Media in the course of the search for flight MH370

Satellite sea surface imagery: Clouds, wavecrests, and ... objects?

Satellite Imagery used for Sea Surface observation

Figure: Image from sample gallery of Skytruth (Copyright Google 2007).

What are the statistical properties of 'natural ocean pictures'? How do objects appear 'untypical' in these statistics?

Amount of Data

Figure: Image from Texas Equusearch (found Sep. 2013): Possibly the 'Niña', lost at sea since June 2013

the 'Niña', lost at sea since June 2013

► Typical GEO-TIFF file size (e.g. samples from DIGITAL Globe): 10000x10000 pixels, corresponding to (3km)².

Amount of Data

Figure: Image from Texas Equusearch (found Sep. 2013): Possibly the 'Niña', lost at sea since June 2013

- the 'Niña', lost at sea since June 2013

 ► Typical GEO-TIFF file size (e.g. samples from DIGITAL Globe): 10000x10000 pixels, corresponding to (3km)².
- ▶ Search area above $\simeq 555.000(km)^2 \simeq 61.000$ GEOTiffs

Amount of Data

Figure: Image from Texas Equusearch (found Sep. 2013): Possibly the 'Niña', lost at sea since June 2013

- the 'Niña', lost at sea since June 2013

 ► Typical GEO-TIFF file size (e.g. samples from DIGITAL Globe): 10000x10000 pixels, corresponding to (3km)².
- ▶ Search area above $\simeq 555.000(km)^2 \simeq 61.000$ GEOTiffs
- ▶ about 2.5 Million 500×500 Pixel images $\simeq 1$ month (1 sec/pic of size 500×500 pixels)

LScale Spaces

Scale Spaces

▶ Space of images $S: D \to \mathbb{R}$ (e.g. $D = (\epsilon \mathbb{Z})^2 \bigcap [0,1]^2$, and $R = \{0,\dots,255\}$ or $D = \mathbb{R}^2$, and $R = \mathbb{R}$) └─ Scale Spaces

- ▶ Space of images $S: D \to \mathbb{R}$ (e.g. $D = (\epsilon \mathbb{Z})^2 \bigcap [0,1]^2$, and $R = \{0,\dots,255\}$ or $D = \mathbb{R}^2$, and $R = \mathbb{R}$)
- ▶ A scale space is an indexed family of images (Index: Scale-Parameter; e.g. $\epsilon > 0$) relative to some (inital) image
- $lacktriangledown \Phi_t: \mathcal{S} imes \mathcal{S} o \mathcal{S}$, with $t \in (0, \infty) =:$ 'Scale parameter'

- ▶ Space of images $S: D \to \mathbb{R}$ (e.g. $D = (\epsilon \mathbb{Z})^2 \bigcap [0,1]^2$, and $R = \{0,\dots,255\}$ or $D = \mathbb{R}^2$, and $R = \mathbb{R}$)
- ▶ A scale space is an indexed family of images (Index: Scale-Parameter; e.g. $\epsilon > 0$) relative to some (inital) image
- $lacktriangledown \Phi_t: \mathcal{S} imes \mathcal{S} o \mathcal{S}$, with $t \in (0, \infty) =:$ 'Scale parameter'
- V discrete (Lindeberg 94) or continuous (lijima '62, Otsu '81, Witkin 83, Koenderink 84)

- ▶ Space of images $S: D \to \mathbb{R}$ (e.g. $D = (\epsilon \mathbb{Z})^2 \bigcap [0,1]^2$, and $R = \{0,\dots,255\}$ or $D = \mathbb{R}^2$, and $R = \mathbb{R}$)
- ▶ A scale space is an indexed family of images (Index: Scale-Parameter; e.g. $\epsilon > 0$) relative to some (inital) image
- $lacktriangledown \Phi_t: \mathcal{S} imes \mathcal{S} o \mathcal{S}$, with $t \in (0, \infty) =:$ 'Scale parameter'
- V discrete (Lindeberg 94) or continuous (lijima '62, Otsu '81, Witkin 83, Koenderink 84)
- ▶ Idea: Splitting up information of image into different scales which label different 'derived images' according to different degree of detail (Burt 81, Crowley 81, Witkin 83)

- ▶ Space of images $S: D \to \mathbb{R}$ (e.g. $D = (\epsilon \mathbb{Z})^2 \bigcap [0,1]^2$, and $R = \{0,\dots,255\}$ or $D = \mathbb{R}^2$, and $R = \mathbb{R}$)
- ▶ A scale space is an indexed family of images (Index: Scale-Parameter; e.g. $\epsilon > 0$) relative to some (inital) image
- $lacktriangledown \Phi_t: \mathcal{S} imes \mathcal{S} o \mathcal{S}$, with $t \in (0, \infty) =:$ 'Scale parameter'
- V discrete (Lindeberg 94) or continuous (lijima '62, Otsu '81, Witkin 83, Koenderink 84)
- ▶ Idea: Splitting up information of image into different scales which label different 'derived images' according to different degree of detail (Burt 81, Crowley 81, Witkin 83)
- ► Typical Applications: Scale-Detection, Feature-Recognition, Edge-Detection, Image-Registration, Object-Classification

Lost at See

LScale Spaces

Scale Spaces: Examples

► Gaussian Scale Space: $\Phi_t[g] = \phi_t * g(x)$ with $\phi_t(x) = \exp(-x^2/t)/(2\pi t^2)$.

- ► Gaussian Scale Space: $\Phi_t[g] = \phi_t * g(x)$ with $\phi_t(x) = \exp(-x^2/t)/(2\pi t^2)$.
- $ightharpoonup \Phi_t[g](x) = \mathbb{E}_x[g(B_t)]$ with B_t Brownian Motion

- ► Gaussian Scale Space: $\Phi_t[g] = \phi_t * g(x)$ with $\phi_t(x) = \exp(-x^2/t)/(2\pi t^2)$.
- $ightharpoonup \Phi_t[g](x) = \mathbb{E}_x[g(B_t)]$ with B_t Brownian Motion
- $lacktriangledown \Phi_t[g](x) = \mathbb{E}_x[g(X_t)]$ where X_t is a diffusion, so

$$\Phi_t[g](x) = \int_{\Omega} g(y)K(x,y,t)dy$$

where $K(x, y, t) \neq K(x - y, 0, t)$, so this Scale Space **doesn't** have translational invariance (not a convolution). (see Leo Grady: 'Random Walks for Image Segmentation', IEEE Tr. PAMI, 2006)

- ► Gaussian Scale Space: $\Phi_t[g] = \phi_t * g(x)$ with $\phi_t(x) = \exp(-x^2/t)/(2\pi t^2)$.
- $ightharpoonup \Phi_t[g](x) = \mathbb{E}_x[g(B_t)]$ with B_t Brownian Motion
- $lacktriangledown \Phi_t[g](x) = \mathbb{E}_x[g(X_t)]$ where X_t is a diffusion, so

$$\Phi_t[g](x) = \int_{\Omega} g(y)K(x,y,t)dy$$

where $K(x, y, t) \neq K(x - y, 0, t)$, so this Scale Space **doesn't** have translational invariance (not a convolution). (see Leo Grady: 'Random Walks for Image Segmentation', IEEE Tr. PAMI, 2006)

- ► Gaussian Scale Space: $\Phi_t[g] = \phi_t * g(x)$ with $\phi_t(x) = \exp(-x^2/t)/(2\pi t^2)$.
- $ightharpoonup \Phi_t[g](x) = \mathbb{E}_x[g(B_t)]$ with B_t Brownian Motion
- $lacktriangledown \Phi_t[g](x) = \mathbb{E}_x[g(X_t)]$ where X_t is a diffusion, so

$$\Phi_t[g](x) = \int_{\Omega} g(y)K(x,y,t)dy$$

where $K(x, y, t) \neq K(x - y, 0, t)$, so this Scale Space **doesn't** have translational invariance (not a convolution). (see Leo Grady: 'Random Walks for Image Segmentation', IEEE Tr. PAMI, 2006)

► This is a *linear* Scale-Space. Advantage over Non-linear: Fast and Predictable

Properties of Scale Spaces

Figure : San Francisco at Golden Gate Bridge (Sample of Digital Globe): Power of the Random Walk Smoothing Filter

Smoothing removes clouds and 'homogeneous texture'

Properties of Scale Spaces

Figure : San Francisco at Golden Gate Bridge (Sample of Digital Globe): Power of the Random Walk Smoothing Filter

- Smoothing removes clouds and 'homogeneous texture'
- ► However: Parameters chosen carefully will not work for other parts of image

Two scale spaces for edge-preserving smoothing

Figure: GIMP's 'Selective Gaussian Blurr' (top row) and Random Walk Smoothing (bottom row). Original: Left Column. Random Walk is the 'Delayed Random Walk' after 2, 3 and 4 steps, with threshold of 20 greyvalues out of 256. Gaussian blurr with comparable removal of noise sooner deteriorates fine detail.

Wavelet-coefficients

Figure : **Left:** From Buccigrossi, Simoncelli: 'Image Compression via Joint Statistical Characterization in the Wavelet Domain': Measured Distribution of discrete Gradient (= coefficient of First Sub-band) g(x+1) - g(x): Natural Images have usually a wider Peak... **Right:** The Images 'Bark', 'Boats', 'CTScan', and 'Toys'

Quantization of picture: Work on Bitplanes alone

Figure: Solution: Look at quantized picture, and take gradient then. This increases the focus on parts in which the large gradients belong to object0-boundaries (due to repetition)

Example for an object to be reviewed by naked eye

Figure : If also blurring of Random Walk Scale Space is applied, then weight of least significant bits is reduced in smoothed areas.

Flight MH370

Figure: This Picture released in the course of search for flight MH370: Quantization and smoothing allow detecting 'unusual' spots as regions of high gradients.

Fast detectors of Sea Surface Objects

The Niña

Figure: On Oct 15, 2013, Media (e.g.Dayly Mail.com) reported Texas EquuSearch found satellite image well fitting the 'Nina' at -28.784317, 164.45064., a boat and its crew of 7 lossed at sea since June 2013.

Fast detectors of Sea Surface Objects

The Nina

Figure : We will continue to scan the satellite data to find more evidence of what happened to the Crew of the Niña!