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In reasoning about situations in which several causes lead to a common effect, a much
studied and yet still not well-understood inference is that of explaining away. Assuming
that the causes contribute independently to the effect, if we learn that the effect is
present, then this increases the probability that one or more of the causes are present.
But if we then learn that a particular cause is present, this cause “explains” the presence
of the effect, and the probabilities of the other causes decrease again. People tend to
show this explaining away effect in their probability judgments, but to a lesser extent than
predicted by the causal structure of the situation. We investigated further the conditions
under which explaining away is observed. Participants estimated the probability of a
cause, given the presence or the absence of another cause, for situations in which
the effect was either present or absent, and the evidence about the effect was either
certain or uncertain. Responses were compared to predictions obtained using Bayesian
network modeling as well as a sensitivity analysis of the size of normative changes
in probability under different information conditions. One of the conditions investigated:
when there is certainty that the effect is absent, is special because under the assumption
of causal independence, the probabilities of the causes remain invariant, that is, there
is no normative explaining away or augmentation. This condition is therefore especially
diagnostic of people’s reasoning about common-effect structures. The findings suggest
that, alongside earlier explanations brought forward in the literature, explaining away
may occur less often when the causes are assumed to interact in their contribution to
the effect, and when the normative size of the probability change is not large enough
to be subjectively meaningful. Further, people struggled when given evidence against
negative evidence, resembling a double negation effect.

Keywords: intercausal reasoning, explaining away, noisy-or, uncertain evidence, negative evidence

INTRODUCTION

Imagine you are on a tropical island in which there are three types of mosquito (Reb, Mar, and
Murb) that carry a disease, called Ling fever. For each mosquito type, there is a risk of being bitten
by an infected mosquito, and a risk of contracting the disease when bitten. One day during a routine
health check, it turns out that you have Ling fever, prompting you to increase your degree of belief
that you were bitten by an infected mosquito. Further tests show that you were bitten by an infected
mosquito of the Reb type. How does this additional information affect your degree of belief that you
were bitten by an infected mosquito of the Mar type? In this situation, the presence of a bite from

Frontiers in Psychology | www.frontiersin.org 1 November 2020 | Volume 11 | Article 502751

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.502751
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.502751
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.502751&domain=pdf&date_stamp=2020-11-03
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.502751/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-502751 October 28, 2020 Time: 18:5 # 2

Cruz et al. Explanning Away, Augmentation, and Independence

Reb “explains away” the finding of Ling fever, suggesting
one can reduce one’s degree of belief in a bite from Mar
(Rehder and Waldmann, 2017).

Now imagine the further test showed instead that you were
not bitten by an infected mosquito of the Reb type. How does this
additional piece of information affect your degree of belief that
you were bitten by an infected mosquito of the Mar type? In the
absence of a bite from Reb, the finding of Ling fever is still in need
of an explanation, suggesting one can “augment” one’s degree of
belief in a bite from Mar.

The above reasoning is called intercausal because it involves
inferring the likelihood that one cause is present or absent, based
on knowledge about one or more further causes. People have been
found to show explaining away and augmenting in intercausal
reasoning tasks, though not always reliably. In particular the
size of the effects has sometimes been smaller than predicted
(Morris and Larrick, 1995; Ali et al., 2011; Rottman and Hastie,
2014; Liefgreen et al., 2018; Tešić et al., 2020). The present
paper aims to investigate further the conditions under which
these inferences are drawn. It explores to what extent people
change their intuitions about augmenting and explaining away as
a function of (a) whether the evidence about the effect is positive
or negative, and (b) whether this evidence is certain or uncertain.
But before going into more detail about these two factors, let
us turn briefly to the general framework within which changes
in people’s degrees of belief like those of explaining away and
augmentation can be represented.

Changes in degrees of belief over time as new information
about a situation becomes available can be modeled in a
Bayesian network (BN) (Pearl, 1988, 2000). In a BN, the
relevant events are represented as variables and arrows represent
(non)independence relations connecting the variables, forming
a directed acyclic graph (DAG). Associated with each variable
is a conditional probability table (CPT), which specifies the
probability of each value that the variable can take, as a function
of each of the possible values of the variables on which it directly
depends (i.e., is linked to by arrows). In this way, BNs allow the
graphical representation and variation of complex probabilistic
relations between events, making transparent which variables
are positively or negatively related to one another, and which
are independent, and supporting the computation of dynamic
changes to beliefs as evidence comes in. This probabilistic,
Bayesian approach to causal reasoning provides an alternative
to earlier approaches based on classical logic (Fernbach and
Erb, 2013; Oaksford and Chater, 2017; Over, 2017), possible
worlds semantics (Lewis, 1973; Stalnaker, 1981; Briggs, 2012), and
theories of associative learning (Waldmann and Holyoak, 1992;
Sloman and Lagnado, 2005, 2015; Rehder, 2014).

A BN for our mosquito example has three (marginally
independent) causes (a bite of an infected mosquito of type Reb,
Mar, or Murb), and one common effect (Ling fever). Such a
structure is shown in Figure 1. The CPT for the effect would then
contain the probability of Ling fever for each combination of the
truth or falsity of each of the three causes, yielding eight distinct
entries like those shown. People may not have clear intuitions
about the probability of each of the eight entries, but fewer
parameters need to be specified if one can draw on a more general

FIGURE 1 | Causal structure of the scenario. The upper conditional
probability table (CPT) displays the probability of fever given the presence or
absence of each of the three causes. The lower CPT shows the probability of
a rash given the presence or absence of fever. These CPTs follow from the
priors and causal power values shown in the graph, together with a leakage
parameter of 0 for Fever, and of 0.1 for Rash.

function specifying how the impact of the causes combines to
bring about (or prevent) the effect (c.f. Fenton et al., 2007).

A typical function for common-effect structures like that of
the mosquito example is the noisy-or. The noisy-or specifies
the probability of the effect given a disjunction of independent
causes. It is a generalization of the Boolean OR to reasoning from
uncertain premises. The basic idea is that the probability of a
disjunction is equal to 1 minus the probability of the negation
of the disjunction, so that P(effect| A or B) = 1 – P(effect| not-A
& not-B). Formally, let xi = x1,..,xn be n variables representing
the causes of an effect y. Let vi be a weight factor for each cause,
specifying the conditional probability of the effect given cause i in
the absence of the other causes (i.e., the causal power of cause i,
Cheng, 1997). Finally, let λ be a leakage parameter specifying the
probability that the effect occurs when all the causes included in
the model are absent. The leakage parameter is like a residual
category covering the impact of any causes that have not been
explicitly specified. Then the probability of the effect is given by:(

y = 1|x1, . . . , xn
)
= 1− (1− λ)

n∏
i=1

(1− vi)

where
(
y = 1|x1, . . . , xn

)
stands for the probability of the effect

under the noisy-or,
n∏

i=1
(1− vi) calculates the probability of the

effect given that all causes are absent, (1− λ) specifies that
also all not explicitly represented causes are absent, and finally,
1− takes the complement to arrive at the probability of the
effect given that one or more causes are present, that is the
probability of the noisy-or. When all weight parameters vi are 1
and the leakage parameter λ is 0, then the noisy-or reduces
to the Boolean OR.

The definition of the noisy-or function implies that the causes
are marginally independent (such that in the absence of further
information, the presence or absence of one cause does not affect
the probability that other causes are present or absent) and it
implies that the causes contribute independently to the effect.
This means that the causal power vi of one cause does not change
with the presence or absence of other causes. In the mosquito
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example, one would say that the probability of contracting Ling
fever from a bite of Mar remains the same whether or not we have
also been bitten by Reb.

The noisy-or is the most widely used function for specifying
the CPT entries in common effect structures, and experimental
materials in causal reasoning research are often constructed with
the aim of instantiating its independence assumptions. When
these assumptions are met for a given situation or scenario,
then it is possible to use the noisy-or to define the normative
probability of the effect under different values of the causes.
Sometimes the independence assumptions of the noisy-or have
also been proposed to be descriptive of people’s reasoning with
common effect structures in general (Griffiths and Tenenbaum,
2009; Holyoak and Cheng, 2011), and findings of responses
deviating from these assumptions have been explained as arising
from people adding further information to the scenario that
changes the original common effect structure into a different one
(Mayrhofer et al., 2010; Rehder, 2014). In line with the default
use of the noisy-or to model common effect structures, there is
evidence that people find independent, additive relations between
variables easier to process than interactive relations (Juslin et al.,
2009; Cruz and Oberauer, 2014; Rehder and Waldmann, 2017).
However, the default use of the noisy-or has also recently been
criticized, partly because of concerns that it might not always be
a realistic representation of causal relations in the world (Fenton
et al., 2019; Noguchi et al., 2019). There can be cases in which
the causes do not act independently but instead enhance or
inhibit each other’s contribution to the effect, and people may
sometimes take account of such departures from independence
in their reasoning.

This paper assesses predictions derived from the
independence assumptions of the noisy-or under different
conditions, and compares them to those expected under the
assumption of enhancement. Inhibitory causal interaction was
not considered here, but would also be worth investigating
further. In the mosquito example, independent contributions
of the causes to the effect can be thought of as establishing
a linear relation between the number of bites from infected
mosquitos and the probability of Ling fever. Causes that enhance
each other’s contribution to the effect could be thought of as
establishing an exponential relation between number of bites
and probability of Ling fever, as if once arriving in the hosts’
body, the Ling bacteria coordinated their behavior to make the
disease break out.

Below we discuss the predictions for independence in relation
to the four conditions that result from crossing (a) whether the
evidence for the effect is positive or negative, and (b) whether
this evidence is certain or uncertain – and discuss how these
predictions would change under the assumption of enhancement.

Condition 1: Certain Positive Evidence
Suppose we learn that the effect is present (we have Ling fever),
and so increase our degree of belief in the causes (a bite from
an infected mosquito of any type). If we then go on to learn
that a particular cause A (e.g., a bite from Reb) is present, this
“explains away” the presence of the effect. Under the noisy-or it
is then normative to decrease again our degree of belief in the

other causes (Mar and Murb). In the limit, when P(effect|cause
A) = 1, cause A “explains” the presence of the effect entirely, and
the probability of the other causes decreases all the way back to
its baseline – the value it had before receiving the information
that the effect was present. Suppose we instead go on to learn that
cause A is absent. Then we are still in need of an explanation
for the effect, and it is normative to augment, or increase, the
probability of B. Hence under the independence assumption of
the noisy-or, Condition 1 leads to the prediction of explaining
away of a cause B when another cause A is present, and it leads to
augmentation of a cause B when another cause A is absent.

How can the causes affect one another in this way under the
noisy-or, even though they are marginally independent? When
causes are marginally independent, then in the absence of further
information, knowing that one cause is present or absent does
not change the probability that another cause is present or
absent. But once we learn that the effect has occurred, the causes
become conditionally dependent on the presence of the effect.
The effect establishes an indirect connection between the causes,
making information about the presence or absence of one cause
informative about the presence or absence of another.

Condition 2: Uncertain Positive Evidence
Suppose we do not know for sure that the effect (Ling fever) is
present, but only have some uncertain indirect evidence for the
effect because a consequence of the effect (e.g., a rash) is present.
Then this evidence again renders the causes dependent, and it
is normative under the noisy-or to show the same pattern of
explaining away and augmentation as in Condition 1. The impact
of uncertainty in Condition 2 is merely to decrease the size of the
normative changes in probability.

Condition 3: Certain Negative Evidence
Suppose we come to know for certain that the effect is absent (we
do not have Ling fever). Then it is normative to decrease our
degree of belief in the causes. However, under the noisy-or the
causes remain independent in this case. Additional information
showing that one cause is present or absent does not undo
our certainty about the absence of the effect, and so will not
alter our degree of belief in the presence or absence of the
other causes. Hence there is normatively no explaining away or
augmentation under the noisy-or in Condition 3. It was precisely
this concern about noisy-or that was addressed in Fenton et al.
(2019) and Noguchi et al. (2019).

Condition 4: Uncertain Negative
Evidence
Finally, suppose the effect (Ling fever) is not known for certain
to be absent, but there is only some uncertain indirect evidence
for this because its consequence (rash) is absent. Then the
probability of the causes decreases, albeit by a smaller amount
than when knowing the effect to be absent with certainty.
However, because of the lingering uncertainty about whether
the effect is really absent, the causes become dependent under
the noisy-or. Additional information showing that one of the
causes is present or absent can reduce or increase our uncertainty
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about the absence of the effect, and as a result, becomes
informative about the probability that another cause is present
or absent. Specifically, the presence of a particular cause A
increases the probability of the effect, partly canceling out the
reduction in the probability of the effect brought about by
the absence of its consequence. As a result, the probability
of an alternative cause B increases. Conversely, when A is
absent, this decreases the probability of the effect, adding to
the reduction in the probability of the effect brought about by
the absence of its consequence. As a result, the probability of B
decreases further. This pattern of probability changes goes in the
opposite direction to that of explaining away and augmentation
of Conditions 1 and 2.

What would follow for these four conditions if the causes did
not contribute independently to the effect, but instead enhanced
each other’s impact? The previously described mechanisms of
probability change would still be in place, but they would be
overlaid by additional changes in probabilities resulting from
the positive correlation between the causes. Which changes in
probability prevail will depend on the relative weight of the prior
probabilities and effectiveness of the causes on the one hand, and
the correlation between the causes on the other.

When a positive correlation between causes is small relative
to their prior probabilities and effectiveness to bring about the
effect, then the direction of probability changes will be the same
as for the noisy-or, although augmentation effects will be larger
and explaining away effects smaller. When the prior probabilities
and effectiveness of the causes are small relative to the correlation
between the causes, then the impact of the correlation can
override the effects predicted under independence, potentially
flipping the direction of probability changes. For example, for
the structure of Figure 1, if we know we have Ling fever and
were bitten by a Reb type mosquito, then this decreases the
chances that we were also bitten by a Mar type mosquito under
independence. However, in a situation in which Reb and Mar very
rarely bite, but when they do, they almost always bite together,
then learning we were bitten by Reb might instead increase the
chances that we were also bitten by Mar.

The current study did not explicitly manipulate the correlation
between causes, and instead went a step back to first assess
whether people’s responses followed a pattern consistent with
presence or absence of a correlation when this question was
left open. However, the priors and effectiveness values used
in this study, together with the absence of information about
a potential correlation between causes, suggest it is unlikely
that participants will assume a correlation between causes high
enough to override the impact of priors and effectiveness
information. Therefore, under the assumption of enhancement
we expect explaining away to be lower in Conditions 1 and
2 than it would be under independence, but we do not
expect response patterns in these conditions to flip qualitatively
into augmentation. Similarly, in Condition 4 we expect the
assumption of enhancement to increase the size of augmentation
effects and decrease the size of explaining away effects relative
to their values under independence, but we do not expect
a qualitative flip from explaining away to augmentation or
vice versa.

In contrast, Condition 3 does involve a qualitative difference
in the predicted response patterns under assumptions of
independence and of enhancement. When the effect is known
to be absent with certainty, there is no explaining away
or augmentation under independence. In contrast, under
enhancement we expect a similar pattern of explaining away
and augmentation to that predicted under the noisy-or for
conditions 1 and 2, albeit again attenuated for explaining
away and accentuated for augmentation. Condition 3 therefore
provides a unique opportunity to differentiate whether people are
interpreting causes as independent or correlated.

The above predictions are based on general principles of
probability theory in a Bayesian network framework, as outlined
for example in Wellman and Henrion (1993) or Morris and
Larrick (1995), along with Bayesian network modeling to
obtain more precise quantitative predictions for different model
parameterizations (see discussion section). Table 1 summarizes
the predictions under the noisy-or for the four conditions
described above.

In contrast to the extensive empirical work using noisy-or
structures with positive certain evidence, there has been very little
research about situations involving negative evidence, uncertain
evidence, or common-effect structures that do not conform to the
independence assumption of the noisy-or but instead have causes
that are correlated or interact (Wellman and Henrion, 1993;
Morris and Larrick, 1995; Rehder, 2014; c.f. Rottman and Hastie,
2014). For example, in one group of experiments (Rehder, 2014)
participants were asked to assume that two causes contributed
independently to a common effect, using relatively abstract
scenarios with no information about the marginal probability of
each cause. Participants were asked to compare the probability
of a cause in two situations that differed in terms of whether
the other cause and the effect were present, absent, or their state
was unknown. When the effect was absent, participants tended
to judge a given cause as equally likely regardless of the value of
the other cause, as predicted by the noisy-or (case 3 above). But
they also tended to judge the cause as equally likely in situations
in which one would have predicted explaining away to occur.
The authors explained this pattern, which is not predicted by
any theory, as an aggregate of a group of participants following
the predictions of the noisy-or, and another group establishing
not causal but associative links between the variables involved.
Associative links differ from causal links by being bidirectional
rather than unidirectional. However, further research is needed

TABLE 1 | Predictions under the noisy-or for the direction of probability change of
a cause B after learning that another cause A is present or absent, given four
different types of evidence for the effect.

A present A absent

(1) Certain positive evidence B decreases B increases

(2) Uncertain positive evidence B decreases slightly B increases slightly

(3) Certain negative evidence B remains invariant B remains invariant

(4) Uncertain negative evidence B increases slightly B decreases slightly

See the general discussion for quantitative predictions for different
parameterizations.
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to explore alternative interpretations of these findings (see Tešić
et al., 2020). Earlier studies on people’s sensitivity to the impact
of interactions between causes when these are made explicit
in the instructions (Morris and Larrick, 1995) suggest that
people’s intuitions do capture the direction of the changes in
probability that follow from such interactions. But the extent
of such intuitions, and the contexts in which they arise, are as
yet underexplored.

This paper presents an experiment intended to be a first step
in assessing people’s intuitions for the four conditions outlined
above. To our knowledge, this is the first time that predictions
under causal independence and under causal enhancement are
compared directly in a single experiment, with respect to both
explaining away and augmentation, and for both positive and
negative evidence about the effect. The comparison also takes
into account the differential impact of whether this evidence
is certain or uncertain. We compared these conditions using
the above mosquito scenario, which given its fictional contents
was considered relatively open with respect to how the causes
integrate their impact to bring about the effect. Overall, we
aimed to assess which of the two integration functions accounts
better for people’s responses when the nature of the function is
not prespecified, while taking into account that people may be
uncertain about the information given even when instructed to
assume it to be true or false with certainty (Evans and Over, 2004;
Oaksford and Chater, 2007, 2013; Pfeifer and Kleiter, 2009; Over
and Cruz, 2018).

MATERIALS AND METHODS

Participants
Fifty residents of English speaking countries completed
the online experiment via the platform Prolific Academic,
providing informed consent for participation. After excluding
the data of participants with speeded trial responses, failed
attention checks, and modest reported English language skills,
the final sample consisted of 37 participants. They had a
median age of 39 (range 22–65), and had a diverse formal
educational background.

Materials and Design
At the start of the experiment and then again at the top of
each trial, participants were shown information about a fictional
archipelago in which three types of Mosquito (the Reb, Mar, and
Murb mosquito) could transmit a disease known as Ling fever.
The information about the mosquitos and the disease reflected
the causal structure in Figure 1. Participants were informed that
the prior probability of being bitten by an infected mosquito
was 70% for each type, but that the mosquito types differed in
the effectiveness with which they transmitted the disease when
they bit their hosts. In the absence of bites from the other two
mosquito types, the bite of an infected Reb mosquito led to Ling
fever 90% of the time; the bite of an infected Mar mosquito
led to Ling fever 50% of the time; and the bite of an infected
Murb mosquito led to Ling fever 10% of the time. Ling fever
could not be contracted through any other cause (i.e., the leakage

parameter for the effect was 0). A person with Ling fever had a
90% chance of showing a purple rash. A purple rash due to other
causes occurred only 10% of the time on the archipelago. The
scenario made no statement about the presence or absence of any
relation between causes. The above combination of parameters
was chosen on the basis of a prior exploration of the parameter
space in which the Bayesian network structure of Figure 1 was
queried using parameter values across the probability range, with
the aim of maximizing the size of normative probability changes
across conditions. The sizes of normative changes nonetheless
never exceeded 20% and were sometimes smaller than 10%. We
discuss the implications of this limitation further below.

The design crossed two within participant variables: (1) initial
information about the effect, that is whether the effect was
present (Ling fever), the effect was absent (No Ling fever), the
consequence of effect was present (Rash), or the consequence of
effect was absent (No rash); and (2) additional information about
one of the causes (bite present vs. bite absent). Crossing these two
variables resulted in eight conditions, reflected in the eight panels
of Figure 2 below.

For each of the eight conditions there were two trials, yielding
16 trials in total. On one of the trials, participants were informed
that a protagonist was or was not bitten by an infected Reb
mosquito, and were asked what impact this information had on
the probability that the protagonist was bitten by an infected
Mar mosquito. On the other trial, participants were informed
that a protagonist was or was not bitten by an infected Mar
mosquito, and were asked what impact this information had
on the probability of them being bitten by an infected Reb
mosquito. The difference between these two trials comes from
the difference in effectiveness of disease transmission between
mosquito types. As mentioned above, a bite from an infected
Reb mosquito causes Ling fever 90% of the time, whereas a
bite from an infected Mar mosquito causes Ling fever only
50% of the time. Hence, on one trial information about the
presence/absence of a cause with high effectiveness is used to
draw an inference about the presence/absence of a cause with
medium effectiveness, and vice versa on the other trial. The Murb
mosquito did not feature in the questions asked to participants
because with only 10% effectiveness, this cause was associated
with only very small normative changes in probability across
conditions. The role of the differential effectiveness of the causes
can be related to research on the reliability of testimony (Hahn
et al., 2013). However, this variable goes beyond the scope of the
questions addressed in this paper and its results are not discussed
further here. In the context of this paper, cause effectiveness
is merely a methodological variable whose inclusion makes it
possible to generalize the results on the questions of interest
to more than one effectiveness value. The results presented
were thus averaged across the two trails for each of the eight
cells of the design.

On each trial, participants were given initial information
about the effect, and additional information about one of
the causes. The task was to judge whether after receiving
the additional information, the probability of a second
cause was higher, lower, or the same compared to before
receiving the additional information. The order of trials
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FIGURE 2 | Proportion of times each of the three response options (lower, same, higher) was chosen in each of the eight experimental conditions. The rows show
the data separately for when the cause was present (upper) vs. absent (lower). The columns show the data separately for the conditions in which the effect was
present (Ling fever), its consequence was present (rash), the effect was absent (no Ling fever), or the consequence of the effect was absent (no rash). The dark gray
bar in each panel represents the normative response under independence. The horizontal scale at the bottom of each panel shows the size of the normative change
under independence. Error bars show 95% CIs.

was randomized for each participant. A screenshot of a
sample trial from Condition 1 (certain positive evidence)
is shown below. Each trial referred to a different island
and protagonist.

Initial information for the island of Eik:

• The risk of being bitten by an infected mosquito is the same for the three
mosquito types. Within a given month, a random person from the island
has a 70% chance of being bitten by an infected Reb mosquito, a 70%
chance of being bitten by an infected Mar mosquito, and a 70% chance of
being bitten by an infected Murb mosquito.

• But the species differ in the effectiveness with which they transmit the
disease when they bite their hosts.

• The Reb mosquito transmits the disease 90% of the time that it bites; the
Mar mosquito 50% of the time, and the Murb mosquito 10% of the time.

• A person that has the disease has a 90% chance of showing a
characteristic purple rash. The chances that a person from the island
would show such a rash for other reasons is only 10%.

Michele from the island of Eik is known to have Ling fever. A further
test showed that Michele was bitten by an infected Mar mosquito.
Does this additional information change the chances that Michele was
bitten by an infected Reb mosquito? If so, then in which way?

We asked participants to provide qualitative judgments of
probability changes rather than to make repeated quantitative
probability judgments under different information conditions,
because we wanted to make the task less dependent on
numeracy as well as on working memory limitations that
could have an impact when comparing responses across trials.
However, we did ask for percentage probability judgments
during eight practice trials aimed at allowing participants
to form an impression of the relevant causal structure and
the relations between the probabilities of its elements. Two
of the practice trials asked for P(cause A & cause B) and
P(cause A or cause B). These probabilities allowed us to obtain
an indirect impression of whether participants perceived the
causes to be initially independent, that is, whether P(A &
B) = P(A)P(B), and P(A or B) = P(A) + P(B) − P(A &
B). We computed probabilistic coherence, that is, conformance
with the axioms of probability theory, of people’s responses
to these two questions with and without the assumption
of cause independence. This is an indirect measure because
people’s responses could be incoherent for many reasons
(Tversky and Kahneman, 1983; Bar-Hillel and Neter, 1993). But
it provides one source of information on the question, which can
then be complemented with further information from this and
future experiments.
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Procedure
Participants went through the instructions and eight practice
trials, followed by the 16 trials of the main experiment. The
information on the causal structure and parameters for the
scenario remained visible on each trial. At the end of the
experiment, participants provided demographical information
and were asked to rate on a percentage scale how difficult
they found the task. The median rating of experiment
difficulty was 74%. The median duration of the experimental
session was 12.23 min.

RESULTS AND DISCUSSION

Coherence for participants’ responses to the two practice trials
asking for P(cause A & cause B) and P(cause A or cause B) was
computed by first coding whether a given response was coherent
or not – separately under the assumption of independence and
without this assumption – and then subtracting the resulting
variable for observed coherence from the chance rate of obtaining
a coherent response, in order to determine whether responses
were coherent more often than expected by chance (Cruz
et al., 2015; Evans et al., 2015). The chance rate of a coherent
response under independence is constrained to a point value
as given by the equalities P(A & B) = P(A)P(B), and P(A or
B) = P(A) + P(B) − P(A & B). In contrast, the chance rate
of a coherent response without making any assumption about
the relation between the causes is an interval on the probability
range. For the probability of the conjunction of two causes A
and B, this interval is [max(0, P(cause A) + P(cause B) − 1),
min(P(cause A), P(cause B))]. For the probability of the disjuncti
on of two causes it is [max(P(cause A), P(cause B)), min(P(cause
A)+ P(cause B), 1)].

The coherence of participants’ responses to the two practice
questions was found to be at chance level under the assumption
of independence, but above chance when not making any
assumption about how the causes might or might not be
related. Specifically, assuming independence, responses to the
conjunction question were coherent 7% more often than expected
by chance (t(36) = 1.56, p = 00.127, 95% CI [−0.021,0.163]); and
responses to the disjunction question were coherent 2% more
often than expected by chance (t(36) = 0.53, p = 0.533, 95% CI
[−0.038,0.072]). This outcome did not change when the range
of coherent responses was increased by + −5%, and the chance
rate increased accordingly, to account for the possibility that
people are sensitive to the relevant coherence constraints but
have degrees of belief that are coarser than point probabilities.
In contrast, without assuming any specific relation between the
causes, responses to the conjunction question were coherent 54%
more often than expected by chance (t(36) = 8.75, p < 0.001, 95%
CI [0.413,0.662]); and responses to the disjunction question were
coherent 65% more often than expected by chance (t(36) = 17.14,
p < 0.001, 95% CI [0.570,0.722]).

This finding does not in itself suggest that people are not
assuming the causes to be independent, or that they are making
no assumption about the relation between causes. But it provides
an initial indication that people’s probability judgments in

experiments may sometimes become more understandable when
moving beyond the presupposition of independence.

The pattern of responses in the main experiment is displayed
in Figure 2. The x axis shows the three response options, and the
height of the bars represents the proportion of times a response
was chosen within each of the eight conditions. The darker bar
in each panel shows the predicted response under independence.
Each column of the figure corresponds to one of the four
conditions in Table 1: effect present (Ling fever), consequence
of effect present (rash), effect absent (no Ling fever), and
consequence of effect absent (no rash). The first row represents
the conditions in which an alternative cause was present, and
the second row the conditions in which an alternative cause
was absent. The horizontal scale at the bottom of each panel
represents the size of the normative change under independence.
An initial look at the figure tells us that the normative response
under independence was the numerically most frequent in four
of the eight experimental conditions (panels c, e, f, and g). The
normative response under the assumption of a modest positive
correlation between causes, whose impact is not stronger than
that of the causes’ priors and effectiveness values, was numerically
most frequent in three of the eight conditions (panels d, e, and f).

The data were analyzed in two ways. First, a series of
generalized linear models for binomial distributions compared
the proportion of higher vs. same, higher vs. lower, and same
vs. lower responses for each condition. A second analysis
assessed, for each condition, whether the response predicted
under independence was more frequent than expected by chance.
This second analysis was carried out in a series of linear models
following a similar procedure to the coherence analysis above. To
measure whether a response was more frequent than expected by
chance under independence, we first coded whether a response
conformed to the prediction under independence or not, and
then subtracted this variable for observed conformance from the
chance rate of conforming to the predicted response. With three
response options, the chance rate was 1/3 on each trial. The data
were analyzed using the glm and lmer functions for the R software
environment (package lme4, Bates et al. (2015); R Core Team,
2017). Analyses were performed separately for each condition
because the responses predicted under independence and under
enhancement changed between conditions. The general rationale
for model selection aimed to maximize the random structure
justified by the design, as recommended by Barr et al. (2013).
However, in this case it was only possible to include random
intercepts for participants in the lmer models1.

The results show a complex picture that is not straightforward
to group into findings concerning independence vs.
enhancement, or explaining away vs. augmentation. We
instead group the results into three domains that we think
capture some of the most significant insights that can be gained
from the findings, and which may explain some patterns of
differences between experimental conditions.

1For the binomial regression analyses, effect size estimates were provided through
likelihood ratio values. For the linear model analyses, which in this case were
intercept only models, effect sizes were estimated in the same way as for one-
sample t-tests: as the ratio of the fixed effect of the intercept to its standard
deviation.
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The Role of the Size of the Predicted
Change
Consider first the conditions in which there was positive evidence
for the effect (panels a, b, e, and f). Here the predictions
under independence and enhancement coincide, so that any
divergences from these predictions cannot easily be attributed to
a violation of the assumption of causal independence.

Panels (a) and (e) show the results for when the effect (Ling
fever) was certain to be present. Panels (b) and (f) show the results
for when there was uncertain, indirect evidence that the effect was
present because its consequence (rash) was present. Panels (e)
and (f) further refer to the conditions in which one of the causes
was absent. Responses in these latter two conditions showed a
clear augmentation effect, in accordance with the predictions.
That is, the dark bar in these panels tells us that the probability of
a given cause was rated as higher upon learning that an alternative
cause was absent.

Note that in these two cases the size of the predicted
change under independence was larger than 10% (16.06% on
average when the effect was present, and 10.95% on average
when the consequence of the effect was present, as indicated
through the horizontal scales at the bottom of the panels).
Under enhancement, the size of the normative change would be
expected to be even larger, but the extent to which it would be
larger would depend on the strength of the causal interaction.

The augmentation effect was statistically significant. In panel
(e) higher responses were more frequent than same responses
(LR = 2.042, z = 2.865, p = 0.004, 95% CI [1.267,3.382]);
and more frequent than lower responses (LR = 49, z = 3.853,
p < 0.001, 95% CI [10.754,867.505]). The frequency of the
predicted higher responses was above chance in this condition
(EMM = 0.329, F(1,36) = 23.897, p < 0.001, d = 1.007, 95%
CI [0.195,0.462]). In panel (f) higher responses were again more
frequent than same responses (LR = 1.750, z = 2.187, p = 0.029,
95% CI [1.069,2.931]); and more frequent than lower responses
(LR = 5.250, z = 4.299, p < 0.001, 95% CI [2.605,12.067]).
The frequency of the predicted higher responses was also above
chance in this condition (EMM = 0.234, F(1,36) = 11.105,
p = 0.002, d = 0.690, 95% CI [0.095,0.374]).

The pattern of responses was less clear cut in panels (a) and
(b). Here one of the causes is present and this "explains" the
presence of the effect, leading to the prediction of a reduction
in the probability of the other cause. But one can see that the
size of the predicted change under independence is relatively
small (3.86% on average when the effect was present, and 4.62%
on average when the consequence of the effect was present, as
shown in the horizontal scales at the bottom of the panels).
Under enhancement, the normative size of the explaining away
effect would be expected to be even smaller, albeit the extent
of this decrement would again depend on the strength of the
causal interaction. In line with this smaller normative change,
fewer participants chose the normative lower response, and more
participants chose the same response.

This pattern was corroborated statistically. For both panels
(a) and (b), the frequency of the lower response did not differ
significantly from that of same response (for (a): LR = 1.615,

z = 1.992, p = 0.0546, 95% CI [0.997,2.666]). For (b): (LR = 1.429,
z = 1.448, p = 0.148, 95% CI [0.885,2.337]); although the
lower response was more frequent than the opposite higher
response (For (a): LR = 0.231, z = −3.238, p = 0.001, 95% CI
[0.086,0.524]. For (b): LR = 0.214, z = −3.424, p < 0.001, 95%
CI [0.080,0.483]). The frequency of the lower response did not
differ from chance in these two conditions (For (a): EMM = 0.018,
F(1,36) = 0.067, p = 0.797, d = 0.051, 95% CI [−0.120,0.156]. For
(b): EMM = 0.045, F(1,36) = 0.403, p = 0.529, 95%, d = 0.124, CI
[−0.096,0.186]).

The pattern for panels (a) and (b) was similar to that for panel
(h): the condition in which the consequence of the effect (rash)
was absent and one of the causes was absent. Here the prediction
under independence is that the opposite of augmentation occurs:
the information that one of the causes is absent adds to the
evidence for the absence of the effect, and the probability of the
other cause decreases further. However, the size of the predicted
change under independence was again relatively small (3.86% on
average). In line with this, the same response was more frequent
than the lower response (LR = 1.950, z = 2.428, p = 0.015,
95% CI [1.152,3.408]). The lower response was numerically more
frequent than the opposite higher response, but this difference
was not significant (LR = 0.750, z = −0.842, p = 0.400, 95% CI
[0.377,1.458]). The frequency of the lower response was at chance
level in this condition (EMM =−0.063, F(1,36) = 1.233, p = 0.274,
d = 0.322, 95% CI [−0.176,0.050]).

The preceding results suggest people tended to respond
in accordance with the probabilistic constraints given by the
problem structure and in a way broadly consistent with
the assumption of independence, but that differences in the
frequency of relevant response options only reached significance
when the normative size of the change was large enough to
be noticeable (larger than 10% under independence). This was
although participants made judgments only about the direction,
and not about the size, of the change.

If this experiment had only tested the conditions in panels
(a), (b), (e), and (f), involving positive evidence for the
effect, then it would not have been possible to distinguish
the role of the size of the normative change from whether
this normative change was an increase (augmentation) or
decrease (explaining away) of the probability of the cause
asked for. That is, if we had only considered panels (a), (b),
(e), and (f), then an alternative explanation for the difference
in the pattern of results between (e) and (f) on the one
hand, and (a) and (b) on the other, would have been that
people find situations with negative evidence easier to think
through than situations with positive evidence. But such an
alternative explanation does not fit with the results for panel
(h), which concern negative evidence and yet resemble the
responses given to the cases of positive evidence in (a) and
(b) more than those for negative evidence in (e) and (f).
Considering the five panels together, a better, and simpler,
explanation for the differences between conditions seems to be
that they reflect differences in the size of the normative change.
Further experiments varying the size of the normative change
systematically across conditions would be necessary to further
test this interpretation.
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The Probability of a Cause When the
Effect Is Absent
Let us now turn to panels (c) and (g): the conditions in which the
effect (Ling fever) was certain to be absent. Under the assumption
of causal independence, the normative response in these two
conditions is that there is no change. If the causes are instead
positively correlated, then the normative response is explaining
away for (c) and augmentation for (g). Finally, if the causes are
interpreted as contributing independently to the effect but the
absence of the effect is treated as uncertain (Oaksford and Chater,
2013; Over and Cruz, 2018), then the normative response is the
opposite of explaining away and augmentation: an increase in
the probability of a cause when another cause is present (c), and
a decrease in the probability of a cause when another cause is
absent (g). The conditions of panels (c) and (g) offer a unique
opportunity for testing the contrasting predictions of the above
three assumptions.

Consider first the condition in panel (c), where one of
the causes is present. The same response predicted under
independence was numerically more frequent than the lower
response predicted under enhancement, but the difference
was not significant (LR = 1.194, z = 0.727, p = 0.467,
95% CI [0.741,1.934]). The same and the lower response
were both more frequent than the higher response predicted
under the assumption of independence + uncertainty (same
vs. higher: LR = 0.162, z = −4.133, p < 0.001, 95% CI
[0.062,0.356]. Lower vs. higher: LR = 0.194, z = −3.682,
p < 0.001, 95% CI [0.073,0.432]). The same response predicted
under independence was above chance in this condition
(EMM = 0.167, F(1,36) = 4.933, p = 0.033, d = 0.415, 95%
CI [0.018,0.316]). Overall, the responses in this condition
were in accordance with independence and, to a numerically
lesser extent, with enhancement. In contrast, there was
no evidence that participants followed the independence
assumption while treating the information that the effect was
absent as uncertain.

Turning to the condition in panel (g), where one of the
causes is absent, the numerically most frequent response was
again that there is no change, in line with the independence
assumption. But the pattern was less clear cut, and no
response option was significantly more frequent than the others
(same vs. lower: LR = 1.333, z = 1.065, p = 0.287, 95%
CI [0.788,2.286]. Same vs. higher: LR = 0.563, z = −1.953,
p = 0.051, 95% CI [0.310,0.991]. Lower vs. higher: LR = 0.750,
z = −0.923, p = 0.356, 95% CI [0.401,1.376]). The frequency
of the same response was at chance level in this condition
(EMM = 0.099, F(1,36) = 2.151, p = 0.151, 95%, d = 0.334, CI
[−0.035,0.233]). Overall, participants seemed to have no clear
common intuitions for the case in which both the effect and one
of the causes was absent.

Evidence Against Negative Evidence
Finally, consider the pattern in panel (d). Here there is uncertain
evidence that the effect (Ling fever) is absent because its
consequence (rash) is absent, and we then learn that one of
the causes is present. For the parameters of the model, the

predicted response under both independence and enhancement
assumptions is that the opposite of explaining away occurs. This
is because the presence of the cause undermines the uncertain
evidence for the absence of the effect. The probability of the effect
increases again, and with it also the probability of the other cause.
The predicted size of the change under independence was 4.14%
on average, which is not very large. Considering the findings
from panels (a), (b), and (h), we can thus expect a relatively
high frequency of same responses in this condition. The panel
shows that although there was indeed a sizeable number of same
responses, the most frequent response was instead the lower
response, which is opposite to what had been predicted.

Statistically, the predicted higher responses were less frequent
than the same responses (LR = 0.172, z = −3.630, p < 0.001,
95% CI [0.059,0.408]) and less frequent than the lower responses
(LR = 0.125, z = −4.384, p < 0.001, 95% CI [0.043,0.288]).
The frequency of the higher response was below chance in this
condition (EMM =−0.266, F(1,36) = 59.504, p < 0.001, d = 1.728,
95% CI [−0.334,−0.197]).

The finding for this condition was surprising, and is the
only one of the eight investigated in which responses seemed
to deviate systematically from Bayesian predictions under both
independence and enhancement assumptions. One possible
explanation is that it constitutes a double negation effect. This
effect, first described in research on deductive reasoning, refers
to the finding that people make more errors drawing inferences
when this requires negating a negation. That is, when it requires
establishing that not-not-A = A (Evans and Handley, 1999;
Oaksford et al., 2000). In a probabilistic extension of this idea, the
present condition required participants to undermine negative
evidence for an effect, and assess the consequences of this for
the probability of a cause. However, the finding would have to
be replicated and the conditions of its occurrence investigated
further to determine the value of this explanation.

DISCUSSION

This study investigated people’s intercausal judgments
in situations with several alternative causes for a common
effect. We compared the predictions that follow from assuming
that the causes contribute independently to the effect, with
those that follow from assuming that the causes interact to some
extent, enhancing each other’s contribution to the effect. In doing
so, we took into account: (a) whether the information about
the effect was considered certain or uncertain, (b) whether the
evidence for the effect was positive or negative, and (c) whether
one of the causes was present or absent. The resulting eight
conditions were compared in a single experiment using a within
participants design.

The experiment aimed to explore further people’s intuitions
about explaining away and augmentation, and identify
possible factors that could shed light on why previous studies
have often found people’s responses to conform with the
explaining away effects that follow from the independence
assumption of the noisy-or, but to a lesser extent than
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predicted by normative models (Ali et al., 2011; Rehder, 2014;
Rottman and Hastie, 2014).

Extant explanations for under-explaining away have pointed
to possible differences in the interpretation of probability (Tešić
et al., 2020), prior knowledge that changes the causal structure
reasoned about, for instance by adding links between causes or
additional intervening variables that must be active to allow an
effect to occur (Mayrhofer et al., 2010; Rehder, 2014; Rottman
and Hastie, 2014), and by positing that a subset of participants
may represent the relations between variables as associative,
and thus bidirectional, rather than as causal and unidirectional
(Rehder and Waldmann, 2017). The latter has been referred to
as the “rich get richer” principle because it implies that when
one variable is present, this will increase the probability that
variables connected to it will also be present, and vice-versa when
a variable is absent (c.f. parallel constraint satisfaction networks,
Glöckner et al., 2010).

The present results highlight two further possible reasons
for the findings of under-explaining away, which we view as
complementing rather than standing in competition to the
explanations outlined above. The first is that people may not
spontaneously interpret causes as contributing independently
to the effect, as presupposed by the use of the noisy-or, but
may sometimes instead interpret the causes as enhancing each
other’s contribution, even in cases in which the materials are
fictional and no explicit information suggesting any relation
between causes is provided. On the one hand, this underlines
the need to be careful when designing experiments, to make
sure participants are really assuming causal independence before
interpreting deviations from the predictions under independence
as non-normative. On the other hand, it also points to the
option of not trying to create materials for which independence
unambiguously holds in the first place, and instead setting out to
examine in more detail how people reason about causal structures
with interacting causes.

The absence of a manipulation of the size of a correlation
or interaction between causes was a limitation of the current
study, and something worth pursuing in follow-up work. Such
work could also include a dissociation of the two independence
assumptions of the noisy-or separately, exploring separately
people’s intuitions about (a) causes that covary, in the sense that
the marginal probability that one cause is present changes as
a function of the probability of another cause (Rottman and
Hastie, 2014); and (b) causes that interact in their contribution
to the effect, in the sense that whenever two causes happen
to be present at the same time, the probability of the effect
is increased or decreased to a greater extent than would be
predicted by considering the impact of each cause independently
(see also Fenton et al., 2019). An example of covariance would
be a situation in which one cook is preparing soup, and the
smell of the soup compels other cooks to enter the kitchen and
start cooking more soup. An example of interaction would be a
situation in which whenever soup happens to be cooked by more
than one cook, the cooks start to work together; making the soup
turn out better/worse than it would have been if they had been
working independently.

Studies of reasoning about covarying and interacting causes
are made more difficult by the lack of a single function from
which to derive the CPT for the causal structure of interest.
But this difficulty can be met by determining the size of each
interaction effect, and then modifying an initial CPT based
on independence to incorporate the interaction (Wellman and
Henrion, 1993; Lemmer and Gossink, 2004; Fenton et al., 2019).

A second possible reason for the under-explaining away found
in previous studies is that at least in some of these studies, the
size of the normative change itself may have been too small to
be subjectively relevant. Thus, people might be sensible to the
probabilistic constraints posed by the structure of the problem,
but our degrees of belief may be coarser than point probabilities,
so that a larger change is necessary for it to be subjectively
meaningful. The size of the normative change is not available in
studies that do not include precise information about priors and
causal power, and this information is of course often not available
in real world situations (Rehder, 2014; Rottman and Hastie,
2014). However, the present findings suggest that in those cases in
which the size of the normative change is not negligible, people’s
responses do follow normative predictions in a consistent way.

As a further argument for the above interpretation, Figure 3
shows the size of the normative change that occurs under the
assumption of independence for a causal structure like that
of Figure 1. As in Figure 1, the leakage parameter for the
consequence of the effect (rash) was set to 0.1, but unlike
Figure 1, the causes were set to have equal priors and equal causal
power for simplicity.

Figure 3 shows the size of the normative change for three
of the four conditions of Table 1. The fourth condition: when
the effect is absent, was not included in Figure 3 because it is
associated with the prediction that the probabilities of the causes
remain invariant, i.e., there is no normative change in this case.

The left column shows the condition in which the effect is
known to be present – the most commonly studied case for
explaining away in the literature. The middle column shows the
condition in which the consequence of the effect is absent, and
the right column shows the condition in which the consequent
of the effect is present. For each condition, the size of the
normative change is shown on the y axis as a function of the
prior probabilities of the causes (on the x axis), the causal
power of the causes (separate lines) and the leakage parameter
λ (separate rows).

One can see that across the range of values these parameters
can take, the size of the normative change only rarely reaches
values higher than 20%, and it decreases as the value of the
leakage parameter increases. When the effect is present or its
consequence is absent, the size of the change tends to be
larger for lower values of the prior, whereas this is not the
case when the consequence of the effect is present. Overall,
the size of the normative change increases with the power of
the causes. When the effect is present, this effect of causal
power is more or less evenly spread. In contrast, when the
consequence is absent, it takes a causal power over 0.5 to obtain
a non-negligible change at all, with higher values of causal power
having increasing impact.
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FIGURE 3 | Normative changes in the probability of one cause when learning that another cause is present or absent, for a common-effect structure like that of
Figure 1 but with equal priors and causal powers for each cause. Probability changes are shown as a function of the prior probabilities of the causes (x axis), causal
power (separate lines), and the value of the leakage parameter (separate rows). Left column: explaining away and augmentation for the condition in which the effect
is present. Middle column: opposite probability changes to those of explaining away and augmentation for the condition in which the consequence of the effect is
absent. Right column: explaining away and augmentation for the condition in which the consequence of the effect is present. The condition in which the effect is
absent is not shown here because probabilities remain invariant under the noisy-or in this case (c.f. Table 1).

Note that as mentioned above, positive and negative
normative changes arise under opposite conditions when the
effect is present and when the consequence of the effect is
absent. When the effect is present, negative changes correspond
to the size of the explaining away effect, P(cause B| effect
& cause A) - P(cause B| effect) < 0, and positive changes
correspond to the size of the augmentation effect, P(cause B|
effect & not-cause A) - P(cause B| effect) > 0. In contrast, when
the consequence is absent, the normative probability changes
go in the opposite direction: P(cause B| effect & cause A)
- P(cause B| effect) > 0, and P(cause B| effect & not-cause
A) - P(cause B| effect) < 0. This distinction is not visible
in the graphs, which focus instead on illustrating the impact
of causal power.

In the present study it was difficult to find model
parameters for which the size of the predicted change was
substantial across all experimental conditions in which
a change was predicted, which included conditions in
which the evidence for the effect was negative. But further
studies could test this factor more explicitly by varying
the size of the normative change within each condition
and assessing the effect of this variation on participants’
probability judgments.

Future work could also assess the generalizability of
the present findings by asking participants for numeric

probability judgments under different information conditions
in a dynamic reasoning setting, rather than for qualitative
probability changes as was done here. This would also make
it easier to build up the task more gradually for participants,
for instance asking first about P(effect), then about P(effect|
not-cause A), and finally about P(effect| cause B & not-
cause A).

Finally, we found that responses were contrary to predictions
under both independence and enhancement assumptions when
a partial canceling of the effect of negative evidence was
required. This unexpected finding resembles a probabilistic
extension of the double negation effect from the deductive
reasoning literature, and is worth investigating further. If
replicated it may constitute a distinct source of error in
probabilistic reasoning, beyond more frequently discussed
sources such as those based on content effects, associative
reasoning, and the use of heuristic task simplifications (Tversky
and Kahneman, 1983; Oaksford, 2002; Glöckner et al., 2010;
Rehder and Waldmann, 2017).
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