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Abstract

We consider boosting algorithms that main-
tain a distribution over a set of examples. At
each iteration a weak hypothesis is received
and the distribution is updated. We moti-
vate these updates as minimizing the relative
entropy to the last distribution subject to lin-
ear constraints. For example AdaBoost con-
strains the edge of the last hypothesis w.r.t.
the updated distribution to be at most γ = 0
(equivalently its weighted error is constrained
to be half). In some sense, AdaBoost is “cor-
rective” w.r.t. the last hypothesis. A more
principled Boosting method is to be “totally
corrective” in that the edges of all the past
hypotheses are constrained to be at most γ,
where γ is suitably adapted.

Using new techniques, we prove the same it-
eration bounds for the totally corrective algo-
rithms as for their corrective versions. More-
over with adaptive γ, the algorithms can be
shown to provably maximize the margin. Ex-
perimentally, the totally corrective versions
clearly outperform the corrective ones and
are competitive with the most efficient algo-
rithm so far, LPBoost, for which there are no
iteration bounds known.
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1. Introduction

The goal of this paper is to characterize boosting
algorithms by the underlying optimization problems
rather than the approximation algorithms that solve
these problems. One of the most common boosting
algorithms is AdaBoost (Freund & Schapire, 1997;
Schapire & Singer, 1999). It can be viewed as minimiz-
ing the relative entropy to the last distribution subject
to the constraint that the edge of the last hypothesis is
zero (equivalently its weighted error is half) (Kivinen
& Warmuth, 1999; Lafferty, 1999). One of the impor-
tant properties of AdaBoost is that it approximately
maximizes the margin of the examples and therefore
seems to exploit the theoretical generalization bounds
that improve with this margin (Schapire et al., 1998).
AdaBoost only approximately maximizes the margin
(Rudin et al., 2004a). However a similar algorithm
called AdaBoost∗ν has been developed recently (Rätsch
& Warmuth, 2005) that provably maximizes the mar-
gin and has analogous iteration bounds as AdaBoost.
The algorithm AdaBoost∗ν also processes only a single
constraint in each iteration: the edge of the last hy-
pothesis must to be at most γ, for an adaptive choice
of γ.

A natural idea is to process all t past hypotheses at
the end of iteration t, i.e. minimize the relative en-
tropy to the last distribution on the examples subject
to the constraints that the edges of all t past hypothe-
ses are at most γ. Such algorithms were proposed
by Kivinen and Warmuth (1999) and called “totally
corrective”. However in that paper only γ = 0 was
considered, which leads to an infeasible optimization
problem when the training data is separable. Building
on the work of Rätsch and Warmuth (2005), we now
adapt γ during the totally corrective algorithm so that
the margin is approximately maximized. We call our
new algorithm TotalBoostν .
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AdaBoost∗ν can be used as a heuristic for implementing
TotalBoostν by doing multiple passes over all past hy-
potheses before adding a new one. However we can
show that this heuristic often requires several mil-
lions of iterations and is considerably less efficient
than a vanilla sequential quadratic optimization ap-
proach for solving the optimization problem underly-
ing TotalBoostν .

Besides developing new proof methods for iteration
bounds of boosting algorithms that parallel the meth-
ods for proving relative loss bounds for online algo-
rithms (Kivinen & Warmuth, 1997), this paper also
does an experimental comparison of the algorithms.
We show that while TotalBoostν has the same iter-
ation bound as AdaBoost∗ν , it often requires several
orders of magnitudes fewer iterations. When there are
many similar weak hypotheses, the totally corrective
algorithms has an additional advantage: assume we
have 100 groups of 100 weak hypotheses each, where
the hypotheses within each group are very similar.
TotalBoostν picks at most one hypothesis from each
group, whereas the algorithms that process one con-
straint at a time often come back to the same group
and choose many more members from the same group.
Therefore the number of weak hypotheses used in the
output convex combination is much smaller for the to-
tally corrective algorithms, making them better suited
for the purpose of feature selection.

Perhaps one of the simplest boosting algorithms is LP-
Boost: it is totally corrective, but unlike TotalBoostν ,
it uses no entropic regularization. Also, the upper
bound γ on the edge is chosen to be as small as pos-
sible in each iteration, whereas in TotalBoostν it is
decreased more moderately. Experimentally, we have
identified cases where TotalBoostν requires consider-
ably fewer iterations than LPBoost, which suggests
that either the entropic regularization or the moder-
ate choice of γ is helpful for more than just for proving
iteration bounds.

2. Preliminaries

Assume we are given N labeled examples
(xn, yn)1≤n≤N , where the examples are from some
domain and the labels yn lie in {±1}. Boosting
algorithms maintain a distribution d on the examples.
Intuitively dn is large if the example is “hard”. The
standard assumption made on the weak learning
algorithm for the PAC analysis of Boosting algorithm
is that the weak learner returns a hypothesis h from a
fixed set H whose error ε is smaller than 1

2 . Here the
error ε of a ±1 valued hypothesis is the total weight
on all the examples that are misclassified.

When the range of a hypothesis h is the entire interval
[−1,+1], then the edge γh(d) =

∑N
n=1 dnynh(xn) is a

more convenient quantity for measuring the quality of
h. This edge is an affine transformation of the error
for the case when h has range ±1: εh(d) = 1

2 −
1
2γh(d)

and εh(d) ≤ 1
2 iff γh(d) ≥ 0. The edge for a set of hy-

potheses is always the maximum over the hypotheses.

Boosting algorithms produce a convex combination of
weak hypotheses: fα(x) :=

∑T
t=1 αtht(x), where ht

is the hypothesis added in iteration t and αt its co-
efficient. The margin of a given example (xn, yn) is
defined as ynfα(xn). The margin of a set of examples
is always the minimum over the examples. For sake of
simplicity of the presentation1 we assume that H has
finite size M . If we combine all hypotheses from H,
then the following classical theorem (von Neumann,
1928) establishes the connection between margins and
edges:

Theorem 1 (Min-Max-Theorem)

γ∗ = mind maxm=1,... ,M

∑N
n=1 dnynhm(xn)

= maxαminn=1,... ,N yn
∑M
m=1 αmhm(xn) = ρ∗,

where d ∈ PN , α ∈ PM and M = |H|. Here Pk
denotes the k-dimensional probability simplex.

Thus, the minimum edge γ∗ that can be achieved over
all possible distributions d of the training set is equal
to the maximum margin ρ∗ of any convex combination
of hypotheses from H. At the end of trial t, the set of
previous hypotheses is Ht = {h1, . . . , ht}. Because of
the above duality and the fact that Ht ⊆ H,

γ∗t := min
d

max
h∈Ht

γh(d) ≤ γ∗ = ρ∗ . (1)

The non-decreasing sequence {γ∗t }t converges to ρ∗

from below. Also, for any non-optimal distributions
d and hypothesis weights α we always have

max
h∈H

γh(d) > γ∗ = ρ∗ > min
n=1,... ,N

ynfα(xn) =: ρ(α).

(2)

In view of the above, we assume that the edge γt of
hypothesis ht provided by the weak learner at trial t
is always at least ρ∗.

One of the most bare-bones boosting algorithms is LP-
Boost (Algorithm 1) proposed by Grove and Schuur-
mans (1998); Bennett et al. (2000). It uses linear pro-
gramming to constrain the edges of the past t weak
hypotheses to be at most γ∗t , which is as small as pos-
sible. No iteration bound is known for this algorithm,

1For example, the Min-Max-Theorem still holds if H is
compact (see discussion in Rätsch & Warmuth, 2005).
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and also the performance can very much depend on
the LP solver used (interior vs. boundary solutions).

Our algorithms are motivated by the minimum rela-
tive entropy principle of Jaynes: find a solution subject
to some linear constraints and among all feasible solu-
tions choose the one that minimizes a relative entropy
to the last distribution dt. The relative entropy is de-
fined as follows: ∆(d, d̃) =

∑
n dn ln dn

d̃n
. There are two

totally corrective versions of the algorithm: one that
knows the target margin ρ∗ and one that does not.
The one that does (called TotalBoostρ

∗

ν ; Algorithm 3),
simply constrains the edges of the previous hypothe-
ses to be at most ρ∗ − ν, where ν is a given precision
parameter. Our main algorithm, TotalBoostν (Algo-
rithm 2) does not know ρ∗. It maintains the estimates
γ̂t =

(
mintq=1 γq

)
− ν and constrains the edges of the

past hypotheses to be at most γ̂t. Note that the se-
quence {γ̂t}t is non-increasing and by our assumption
γt ≥ ρ∗, its elements are at least ρ∗ − ν.

The relative entropy is an example of a Bregman di-
vergence. Our iteration bound relies on a generalized
Pythagorean theorem for such divergences (Censor &
Zenios, 1997; Herbster & Warmuth, 01) and therefore
we need to require that the current distribution dt (the
one we are projecting onto the linear constraint) lies
in the interior of domain PN .

3. Termination Guarantees

When the algorithms break, we need to guarantee that
the margin w.r.t. the current hypothesis set is at least
ρ∗−ν. Furthermore, for all algorithms except LPBoost
we need to assure that dt lies in the interior of PN .
Therefore the algorithms also need to break when the
updated distribution dt+1 lies at the boundary of PN .

TotalBoostρ
∗

ν is given ρ∗ and constrains the edges of all
past hypotheses to be at most ρ∗− ν. When these be-
come infeasible, the edge γ∗t w.r.t. the current hypothe-
ses set is larger than ρ∗−ν. The algorithm also breaks
when the solution dt+1 of the minimization problem
lies at the boundary of PN (i.e. the distribution has a
zero component). In this case γ∗t = ρ − ν, because if
γ∗t < ρ− ν, then all constraints would have slack and
the solution d that minimizes the divergence ∆(d,dt)
(dt lies in the interior of PN ) would also lie in the in-
terior. Thus whenever the algorithm breaks, we have
ρ∗ − ν ≤ γ∗t . TotalBoostρ

∗

ν outputs a convex combi-
nation of the hypotheses {h1, . . . , hT } that maximizes
the margin. By duality, the value of this margin equals
the minimum edge γ∗t and therefore TotalBoostρ

∗

ν is
guaranteed to output a hypothesis of margin larger
than ρ∗ − ν.

Algorithm 1 LPBoost algorithm

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉, desired ac-
curacy ν

2. Initialize: d1
n = 1/N for all n = 1 . . . N

3. Do for t = 1, . . . ,

(a) Train classifier on {S,dt} and obtain hypothe-
sis ht : x 7→ [−1, 1] and let utn = ynht(xn)

(b) Calculate the edge γt of ht: γt = dt · ut,
(c) Set γ̂t = ( min

q=1,... ,t
γq)− ν

(d) Compute γ∗t as in (1) and set dt+1 to any dis-
tribution d for which uq ·d ≤ γ∗t , for 1 ≤ q ≤ t

(e) If γ∗t ≥ γ̂t then T = t and break

4. Output: fα(x) =
∑T
t=1 αtht(x), where the coef-

ficients αt realize margin γ∗T .

TotalBoostν does not know ρ∗. It breaks if its opti-
mization problem becomes infeasible, which happens
when γ∗t is larger than the estimate γ̂t. This estimate
is guaranteed to be at least ≥ ρ∗ − ν. The algorithm
also breaks when the solution dt+1 of the minimiza-
tion problem lies at the boundary of PN . In this
case, γ∗t = γ̂t by an argument similar to the one used
above. Thus whenever the algorithm breaks, we have
ρ∗− ν ≤ γ̂t < γ∗t and therefore TotalBoostν is guaran-
teed to output a hypothesis of margin γ∗t ≥ ρ∗ − ν.

The termination condition for LPBoost2 follows a sim-
ilar argument. Now we directly check for γ∗t ≥ γ̂t.
The algorithm Adaboostρ

∗

ν stops as soon as its linear
combination of hypotheses has margin at least ρ∗ − ν.
Finally, Adaboost∗ν stops as soon as the realized mar-
gin ρ(α) (cf. (2), using the α’s computed by the al-
gorithm) is at least γ̂t ≥ ρ∗ − ν. For both of these
algorithms the current distribution dt lies in the inte-
rior because it is realized by finite alpha coefficients.

4. Iteration Bound

In the previous section we showed that when the algo-
rithms break, then the output hypothesis has margin
at least ρ∗ − ν. We now show that TotalBoostν must
break after T ≤ 2 lnN

ν2 iterations. In each iteration t,
the algorithm updates the distribution that is “closest”
to d1 and lies in a certain convex set and these sets get
smaller as t increases. Here closeness is measured with
the relative entropy which is a special Bregman diver-
gence. This closest point is called a projection of d1 to

2We use a different termination condition for LPBoost
than in (Bennett et al., 2000; Grove & Schuurmans, 1998).
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Algorithm 2 TotalBoostν with accuracy param. ν

1. Input: S = 〈(x1, y1), . . . , (xN , yN )〉 , desired ac-
curacy ν

2. Initialize: d1
n = 1/N for all n = 1 . . . N

3. Do for t = 1, . . .

(a) Train classifier on {S,dt} and obtain hypothe-
sis ht : x 7→ [−1, 1] and let utn = ynht(xn)

(b) Calculate the edge γt of ht: γt = dt · ut,
(c) Set γ̂t = ( min

q=1,... ,t
γq)− ν

(d) Update weights:

dt+1 = argmin
{d∈PN : d·uq≤γ̂t, for 1≤q≤t}

∆(d,d1)

(e) If above infeasible or dt+1 contains a zero
then T = t and break

4. Output: fα(x) =
∑T
t=1 αtht(x), where the co-

efficients αt maximize margin over hypotheses set
{h1, . . . , hT }.

the convex set. The proof employes the Generalized
Pythagorean Theorem that holds for such projections
w.r.t. any Bregman divergence.

Theorem 2 TotalBoostν breaks after at most d 2 lnN
ν2 e

iterations.

Proof Let Ct denote convex set of all points d ∈ RN
that satisfy

∑
n dn = 1, dn ≥ 0 (for 1 ≤ n ≤ N), and

edge constraints d · uq ≤ γ̂t, for 1 ≤ q ≤ t, where
uqn = ynhq(xn). The distribution dt at iteration t− 1
is the projection of d1 onto the closed convex set Ct−1.
Notice that because γ̂t can only decrease and a new
constraint is added in trial t, we have Ct ⊆ Ct−1. If
t ≤ T −1, then our termination condition assures dt+1

exists and lies in Ct−1. Furthermore, dt lies in the
interior of PN and at trial t − 1, there is a feasible
distribution in Ct−1∩ri(PN ). These two preconditions
assure that the Generalized Pythagorean Theorem for
Bregman divergences can be applied (Bregman, 1967,
Lemma 1; Herbster & Warmuth, 01, Theorem 2):

∆(dt+1,d1) ≥ ∆(dt+1,dt) + ∆(dt,d1).

Assume we know by induction that ∆(dt,d1) ≥ (t −
1)ν

2

2 (Base case: t = 1). For the inductive step we

Algorithm 3 TotalBoostρ
∗

ν with accuracy parameter
ν and maximal margin ρ∗

As TotalBoostν but in step 3(c) we use γ̂t = ρ∗ − ν.

Algorithm 4 AdaBoost∗ν with accuracy parameter ν
As TotalBoostν but now use minimize the divergence
to the last distribution w.r.t. a single constraint:

dt+1 = argmin
{d:d·ut≤γ̂t}

∆(d,dt).

Let αt be the dual coefficient of the constraint on the
edge of ht used in iteration t. The algorithm breaks if
the margin w.r.t. the current convex combination is at
least γ̂t.

show that ∆(dt+1,dt) > ν2

2 . Observe that

∆(dt+1,dt) ≥ min
d∈Ct

∆(d,dt)

≥ min
{d :

∑
i d
t
n=1,d·ut≤γt−ν}

∆(d,dt), (3)

where the second inequality follows from the fact that
convex set we are minimizing over was enlarged. We
form a Lagrangian for the two constraints:

L(d̃, α, β) = ∆(d̃,dt)+α(d̃·ut−γt+ν)+β(
∑
n

d̃n−1).

By differentiating w.r.t. the primal variables d̃n we see
that the primal solution has the form:

d∗n = dtn exp(−αutn − β − 1).

Enforcing the first constraint eliminates β and the so-
lution becomes:

d∗n =
dtn exp(−αutn)

Z(α)
,

where Z(α) =
∑N
n=1 d

t
n exp(−αutn). Note that we are

in iteration t ≤ T − 1 and our termination condition
assures all inequality constraints of Ct have slack and
dt ∈ ri(PN ). Therefore, d∗ ∈ ri(PN ) and α must be
finite. By plugging d∗ into the Lagrangian, we get the
Lagrange dual function, whose maximum over α ≥ 0
has the same value as (3) because (3) has a feasible
distribution in ri(PN ):

max
α≥0

(−(γt − ν)α− lnZ(α))

≥ max
α≥0

(
−(γt − ν)α− ln Ẑ(α)

)
, (4)

where Ẑ(α) = 1+γt
2 exp(−α) + 1−γt

2 exp(α), is the
upper bound of Z(α) obtained by applying the in-
equality exp(−αu) ≤ 1+u

2 exp(−α) + 1−u
2 exp(α), for

Algorithm 5 AdaBoostρ
∗

ν with accuracy parameter ν
and maximal margin
As AdaBoost∗ν but in step 3(c) we use γ̂t = ρ∗ − ν.
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u ∈ [−1, 1]. By differentiating (4) we see that the last
expression is minimized for α = 1

2 ln 1+γt
1−γt−

1
2 ln 1+γt−ν

1−γt+ν .

With this choice, (4) becomes:

∆±(γt − ν, γt) >
ν2

2
, (5)

where ∆±(a, b) is the binary entropy 1+a
2 ln 1+a

1+b +
1−a

2 ln 1−a
1−b .

The above induction shows that for T ≥ 2

∆(dT ,d1) > (T − 1)
ν2

2
⇔ T <

2 lnN
ν2

+ 1.

Since T is an integer, we have T ≤ d 2 lnN
ν2 e.

By scrutinizing this proof, one notices that this iter-
ation bound also holds for the TotalBoost∗ν algorithm
because of our assumption that γt ≥ ρ∗. The key re-
quirement for this proof is that the closed and convex
constraint sets Ct used for the projection at trial t must
be non-increasing and contain the distributions d s.t.
d · uq ≤ ρ∗ − ν, for 1 ≤ q ≤ t.

In the complete paper we prove the same iteration
bound for AdaBoost∗ν , Adaboostρ

∗

ν , and the vari-
ants of TotalBoost where argmin(d,d1) is replaced
by argmin(d,dt). The proof follows the standard ap-
proach in online learning (Kivinen & Warmuth, 1997),
where the progress ∆(d,dt) − ∆(d,dt+1) is lower
bounded where d is any comparator distribution which
all constraints hold that were used up to iteration T−1.
Mistake: this comparator might not exist for
on-line algoirthms. Using a similar projection ar-
gument we lower bound the progress in the first T − 1
iterations by ν2

2 . The iteration bound is then obtained
by summing the progress over the first T−1 iterations.

5. Experiments

In this section we illustrate the behavior of our new
algorithms TotalBoostν & TotalBoostρ

∗

ν , and compare
them with LPBoost and AdaBoost∗ν on three different
datasets:

• Dataset 1 is a public dataset from Telik Inc. for
a drug discovery problem called COX-1: 125 bi-
nary labeled examples with a set of 3888 binary
features that are complementation closed.

• Dataset 2 is an artificial dataset used in Rudin
et al. (2004b) for investigating boosting algo-
rithms that maximize the margin: 50 binary la-
beled examples with 100 binary features. For each
original feature we added 99 similar features by in-
verting the feature values of 1-3 randomly chosen

examples. This results in a 10,000 dimensional
feature set of 100 blocks of size 100.

• Dataset 3 is a series of artificially generated
datasets of 1000 examples with varying number
of features but roughly constant margin. We
first generated N1 random ±1-valued features
x1, . . . , xN1 and set the label of the examples as
y = sign(x1 + x2 + x3 + x4 + x5). We then du-
plicated each features N2 times, perturbed the
features by Gaussian noise with σ = 0.1, and
clipped the feature values so that they lie in the
interval [-1,1]. We considered N1 = 1, 10, 100 and
N2 = 10, 100, 1000.

The features of our datasets represent the values of
the available weak hypotheses on the examples. In
each iteration of boosting, the “base learner” simply
selects the feature that maximizes the edge w.r.t. the
current distribution d on the examples. Note that our
datasets and the base learner were chosen to exemplify
certain properties of the algorithms and more exten-
sive experiments are still needed.

We first discuss how the entropy minimization prob-
lems can be solved efficiently. We then compare the al-
gorithms w.r.t. the number of iterations and the num-
ber of selected hypothesis. Finally we show how LP-
Boost is affected by the underlying optimizer and ex-
hibit cases where LPBoost requires considerably more
iterations than TotalBoostν .

5.1. Solving the Entropy Problems

We use a “vanilla” sequential quadratic programming
algorithm (Nocedal & Wright, 2000) for solving our
main optimization problem:

min
d :
∑
n dn=1, d≥0, uq·d≤γ̂t (1≤q≤t)

N∑
n=1

dn log
dn
d1
n

.

We initially set our approximate solution to d̂ = d1

and iteratively optimize d̂. Given the current solution
d̂ satisfies the constraints

∑
n d̂n = 1 and d̂ ≥ 0, we

determine an update δ by solving the following prob-
lem:

min
δ

(
N∑
n=1

(
1 + log

d̂n
d1
n

)
δn +

1

2d̂n
δ2
n

)
,

w.r.t. the constraints d̂ + δ ≥ 0,
∑
n δn = 0, and

uq · (d̂ + δ) ≤ γ̂t (for 1 ≤ q ≤ t). The estimate d̂
is updated to d̂ ← d̂ + δ and we repeat this process
until convergence. The algorithms typically converges
in very few steps.
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Figure 1: TotalBoostν , LPBoost and AdaBoost∗ν on dataset 1 for ν = 0.03, 0.01, 0.003: We show the margin that is
realized using the dual α coefficient of TotalBoostν and AdaBoost∗ν (green) and maximum margin (blue) w.r.t. the
current hypotheses set (computed with LP). Observe that AdaBoost∗ν needs several thousands iterations and the number
of iterations of TotalBoostν and LPBoost are comparable. The margins of TotalBoostν and AdaBoost∗ν start growing

slowly, in particular when ν is small. The margin of TotalBoostρ
∗
ν (which knows ρ∗) increases faster than LPBoost (not

shown).

Note that the above objective is the 2nd order Taylor
approximation of the relative entropy ∆(d,d1) at d =
d̂. The resulting optimization problem is quadratic
with a diagonal Hessian and can be efficiently solved by
off-the-shelf optimizer packages (e.g. ILOG CPLEX).

5.2. Number of Iterations

First, we consider the number of iterations needed un-
til each of the algorithms has achieved a margin of at
least ρ∗ − ν. We use dataset 1 and record the mar-
gin of the convex combination of hypotheses produced
by TotalBoostν , LPBoost and AdaBoost∗ν . Addition-
ally, we compute the maximal margin of the current
hypothesis sets in each iteration. See Figure 1 for de-
tails. The default optimizer used for solving LPs and
QPs is ILOG CPLEX’s interior point method.

It should be noted that AdaBoost∗ν needs considerably
less computations per iteration than the totally cor-
rective algorithms. In the case where calling the base
learner is very cheap, AdaBoost∗ν may in some unusual
cases require less computation time than TotalBoostν .
However, in our experiments, the number of itera-
tions required by AdaBoost∗ν to achieve margin at
least ρ∗ − ν was ≈ 1/10 times the theoretical up-
per bound 2 log(N)/ν2. TotalBoostν typically requires
much fewer iterations, even though no improved the-
oretical bound is known for this algorithm. In our
experience, the iteration number of TotalBoostν de-
pends only slightly on the precision parameter ν and
when γ̂t is close to ρ∗, then this algorithm converges
very fast to the maximum margin solution (LPBoost
has a similar behavior).

While the algorithms AdaBoost∗ν and TotalBoostν
provably maximize the margin, they both have the
problem of starting too slowly for small ν. If there is
any good upper bound available for the optimal margin
ρ∗, then we can initialize γ̂t with this upper bound and
speed up the starting phase. In particular, when ρ∗ is
known exactly, then the algorithms AdaBoostρ

∗

ν and
TotalBoostρ

∗

ν require drastically fewer iterations and
the latter consistently beats LPBoost (not shown). In
practical situations it is often easy to obtain a reason-
able upper bound for ρ∗.

5.3. Number of Hypotheses

In this subsection, we compare how many hypothe-
ses the algorithms need to achieve a large margin.
Note that LPBoost and TotalBoostν only select a base
hypothesis once: After the first selection, the distri-
bution d is maintained such that the edge for that
hypothesis is smaller than γ̂t and it is not selected
again. AdaBoost∗ν may select the same hypothesis
many times. However, if there are several similar fea-
tures (as in datasets 2 & 3), then this corrective al-
gorithm often selects hypotheses that are similar to
previously selected ones and the number of weak hy-
potheses used in the final convex combination is un-
necessarily large. Hence, TotalBoostν and LPBoost
seem better suited for feature selection, when small
ensembles are needed.

In Figure 2 we display the margin vs. the number of
used and selected hypotheses. The number of selected
hypothesis for LPBoost and TotalBoostν is equal to
the number of iterations. For these algorithms a pre-
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Figure 2: TotalBoostν , LPBoost and AdaBoost∗ν on dataset 2 for ν = 0.01: [left & middle] We depict the realized (green)
and the LP-optimized (blue) margin (as in Figure 1) versus the number of used (active) and selected (active or inactive)
hypotheses in the convex combination. We observe that the totally corrective algorithms use considerable less hypotheses
than the AdaBoost∗ν . If ν � 0.01, then TotalBoostν is again affected by the slow start which leads to a relatively large
number of selected hypotheses in the beginning. [right] Here we show the number of selected hypotheses versus the
number of selected blocks of hypotheses. AdaBoost∗ν often chooses additional hypotheses from a previously chosen block,
while TotalBoostν and LPBoost typically only do this in exchange with another hypothesis from this block (not shown).

viously selected hypothesis can become inactive (cor-
responding α = 0). In this case it is not counted as
a used hypothesis. Note that the number of used hy-
potheses for LPBoost may depend on the choice of the
optimizer (also see discussion below). In the case of
AdaBoost∗ν , all selected hypotheses are used in the fi-
nal convex combination. (See caption of Figure 2 for
more details.) We can conclude that the totally cor-
rective algorithms need considerable less hypotheses
when there are many redundant hypotheses/features.
LPBoost and TotalBoostν differ in the initial iterations
(depending on ν), but produce combined hypotheses
of similar size.

In Figure 3 we compare the effect of different choices
of the optimizer for LPBoost. For dataset 2 there is
a surprisingly large difference between interior point
and simplex based methods. The reason is that the
weights computed by the simplex method are often
sparse and the changes in the duplicated features are
sparse as well (by design). Hence, it can easily hap-
pen that the base learner is “blind” on some examples
when selecting the hypotheses. Interior point methods
find a solution in the interior and therefore distribute
the weights among the examples. To illustrate that
this is the right explanation, we modify LPBoost such
that it first computes γ∗t but then it computes the
weights using the relative entropy minimization with
γ̂t = γ∗t +ε (where ε = 10−4). We call this the regular-
ized LPBoost algorithm. We observe in Figure 3 that
the regularization considerably improves the speed of
the simplex based solver.

5.4. Redundancy in High Dimensions

We found that LPBoost usually performs very well
and is very competitive to TotalBoostν in terms of
the number of iterations. Additionally, it only needs
to solve linear and not entropy minimization prob-
lems. However, no iteration bound is known for LP-
Boost that is independent of the size of the hypoth-
esis set. We performed a series of experiments with
increasing dimensionality and compared LPBoost’s
and TotalBoostν ’s convergence speed. We found that
in rather high dimensional cases, LPBoost converges
quite slowly when features are redundant (see Figure 4
for an example using dataset 3). We will investigate
why LPBoost converges more slowly in this example
and construct more extreme datasets that show this.

6. Conclusion

We view boosting as a relative entropy projection
method and obtain our iteration bounds without
bounding the average training error in terms of the
product of exponential potentials as is customarily
done in the boosting literature (see e.g. Schapire and
Singer (1999)). In the full paper we will relate our
methods to the latter slightly longer proof style.

Our proof technique based on Bregman projection and
the Generalized Pythagorean theorem is very versatile.
The iteration bound of O( logn

ν2 ) holds for all boosting
algorithms that use constrained minimization of any
Bregman divergence over a domain containing PN for
which infd∈Ct ∆̃(d,dt) = Ω(ν2) and ∆̃

(
dT−1, ( 1

n )
)

=
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Figure 3: LPBoost with different opti-
mizers: shown is the margin vs. the no.
of selected hypotheses. Different opti-
mizers lead to the selection of different
hypotheses with varying maximum mar-
gins. Adding a regularizer (see text) sig-
nificantly improves the simplex solution
in some cases.

Figure 4: LPBoost vs. TotalBoostν on two 100,000 dimensional datasets. Shown
is the margin vs. the number of iterations: [left] data with 100 duplicated blocks
(with clipped Gaussian noise) and [right] data with independent features. When
there are lots of duplicated features, then LPBoost stalls after an initial fast
phase, while it performs well in other cases. We did not observe this behavior
for TotalBoostν or AdaBoost∗ν (not shown). The difference becomes larger when
the block size is increased.

O(log n). For example, the sum of binary entropies ∆2

has both these properties:

inf
Ct

:=∆2(d,dt)︷ ︸︸ ︷∑
n

(
dn ln

dn
dtn

+ (1− dn) ln
1− dn
1− dtn

)
≥ inf
Ct

∆(d,dt) + inf
d:
∑
n dn=1

∆(1− d,1− dt)︸ ︷︷ ︸
0

(5)

≥ ν2

2
,

where the first inequality follows from splitting the
inf and dropping one of the constraints from the con-
straint set Ct and 1 denotes the all one vector. Further-
more, ∆2

(
dT−1, ( 1

n )
)
≤ (lnn) + 1 and this leads to an

iteration bound of 2((lnn)+1)
ν2 . The corrective version

based on this divergence has been called LogitBoost
(Friedman et al., 2000; Duffy & Helmbold, 2000). The
above reasoning immediately provides O( logn

ν2 ) itera-
tion bounds for corrective and totally correction ver-
sions of LogitBoost that maximize the margin. Even
though the theoretical bounds for the LogitBoost vari-
ants are essentially the same as the bounds for the
standard relative entropy algorithms discussed in this
paper, the LogitBoost variants are ???marginally infe-
rior??? in practice.

Both the corrective and totally corrective algorithms
for maximizing the margin start rather slowly and
heuristics are needed for decreasing the edge bound
γ̂t so that this slow start is avoided.

For practical noisy applications, boosting algorithms

are needed that allow for a bias term and for soft mar-
gins. LPBoost has already been used this way in Ben-
nett et al. (2000) but no iteration bounds are known
for any version of LPBoost. We show in the full paper
that our methodology still leads to iteration bounds for
boosting algorithms with entropic regularization when
a bias term is added. Iteration bounds for soft margin
versions are left as future research.
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