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On Wall Street and other global exchanges, electronic trading volumes are 
growing exponentially. Market data feeds can generate tens of thousands of 
messages per second. The Options Price Reporting Authority (OPRA)—which 
aggregates all quotes and trades from options exchanges—estimates peak 
rates of 125,000 messages per second in 2005, with rates doubling every 
year. This dramatic escalation in feed volumes is stressing or even breaking 
traditional feed processing systems. Furthermore, in electronic trading, a 
latency of even one second is unacceptable, and the trading operation whose 
engine produces the most current results will maximize arbitrage profits. 
This fact is causing financial services companies to require millisecond-level 
processing of feed data—or faster—with very low latency. 

Until now, off-the-shelf system software to manage streaming data has been 
largely unavailable for applications to process tens of thousands of messages 
per second. Previously available approaches for developing stream processing 
applications include the following:

• Custom code has traditionally been the only solution to support high-
volume, low-latency streaming applications. However, resorting to a 
custom-coded solution is far from ideal in most environments because the 
result is inflexible, costly to develop and maintain, and often difficult to 
modify in response to new feature requests. 

• Traditional database systems offer general data management functionality 
and are designed to handle applications on static data, ranging from Online 
Transaction Processing (OLTP) to data warehousing. In order to reliably 
store large, finite data-sets and efficiently process human-initiated queries, 
the data is stored on disk and indexed before any query processing can 
take place and outputs produced. (See Figure 1).

 The storage, indexing, and ad hoc query execution in this approach all 
introduce latencies that are unacceptable for fast data streams. 

• Main-memory/specialized databases are higher throughput versions of 
traditional database systems, as they can avoid going to disk for most 
operations, given sufficient memory. Despite being faster than traditional 
Database Management Systems (DBMSs), these systems cannot scale 
to very high stream rates as they still fundamentally “shoehorn” stream 
processing into the prevailing processing model inherent in all relational 
databases.
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Figure 1: Traditional relational database system
stores before querying.
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• Rules engines were first proposed by the artificial intelligence (AI) community 
in the 1970s, with various types marketed in recent years to the financial 
services community. A rule is typically expressed as a condition/action pair, 
where the action is enabled whenever its condition is met. When rules are 
simple, the paradigm works well; however, as the size of a rule set grows 
(such as tick-by-tick monitoring of multiple securities for specific movement 
patterns across price, volume, and time), it quickly becomes unmanageable. 
Since multiple rules can be triggered whenever the data changes, it becomes 
very difficult to manage the flow of control and execution ordering of a 
large intertwined set of rules. Moreover, rules engines are not architecturally 
optimized for low latency and comprehensive state management.

• Point solutions typically implement a specific application suitable for 
solving one specific problem (e.g. algorithmic trading), provided that the 
application’s underlying data model, programming/user interfaces, and 
analytic capabilities exactly meet the needs of the user. Unfortunately, 
this often is not the case. Additionally, point solutions rarely meet the 
demanding real-time processing needs of multiple organizations across the 
firm beyond one problem area.

Recently, several technologies have emerged—including off-the-shelf stream 
processing engines—specifically to overcome these limitations and address 
the challenges of processing high-volume, real-time data without requiring 
the use of custom code. Within several years, it is expected that these engines 
will be as ubiquitous for processing real-time data as relational databases are 
for processing stored data. In order to effectively address the performance 
and agility requirements of stream processing applications, these systems 
need not only be extremely efficient in real time stream processing, but also 
shield the users from the inherent complexities of dealing with imperfect data 
streams and underlying physical resources. 

This paper outlines eight characteristics that such stream processing engines 
should possess to excel at a variety of streaming applications.

To achieve low latency, a system must be able to perform message processing 
without having a costly storage operation in the critical processing path.

A storage operation adds a great deal of unnecessary latency to the process 
(e.g., committing a database record requires a disk write of a log record). For 
many stream processing applications, it is neither acceptable nor necessary to 
require such a time-intensive operation before message processing can occur. 
Instead, messages should be processed “in-stream” as they fly by. See Figure 
2 for an architectural example of this processing paradigm.
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Figure 2:  Stream processing engine processes data 
continuously on-the-fly, with optional storage.



An additional latency problem exists with systems that are passive, because 
such systems wait to be told what to do by an application before initiating 
processing. Passive systems require applications to continuously poll for 
conditions of interest. Unfortunately, polling results in additional overhead 
on the system as well as the application, and additional latency, because (on 
average) half the polling interval is added to the processing delay. Active 
systems avoid this overhead by incorporating built-in event/data-driven 
processing capabilities.

In streaming applications, some querying mechanism must be used to issue 
arbitrary queries on moving data and compute real-time analytics. 

Just as the value of SQL has been and remains its ability to issue arbitrary 
queries against a data store, the same type of querying capability must exist 
against streams. Historically, for streaming applications, general purpose 
languages such as C++ or Java have been the workhorse development 
and programming tools; however, relying on low-level tools such as these 
languages results in long development cycles and high maintenance costs. 
Two alternative higher-level approaches exist: a rules language (limitations 
described above) or SQL for data streams (StreamSQL).
 
SQL’s success at expressing complex data transformations derives from the 
fact that it is based on a set of very powerful data processing primitives that do 
filtering, merging, correlation, and aggregation. SQL is explicit about how these 
primitives interact so that its meaning can be easily understood independently 
from run-time conditions. Furthermore, SQL is a widely promulgated standard 
that is understood by hundreds of thousands of database programmers and is 
implemented by every serious DBMS in commercial use today. 

Thus, SQL should be the logical starting point for a stream processing engine. 
Since standard SQL runs queries on records in a finite stored data set, to 
deal with continuous event streams and time-based records (tuples), SQL 
must be extended to become StreamSQL. StreamSQL should retain the core 
capabilities of standard SQL, while adding new ones such as a rich windowing 
system, the ability to mix stored data with streaming data, and the ability 
to extend the primitives to include powerful custom logic (such as analytic 
functions) that are capable of transforming the data in arbitrary ways. 

As with SQL, StreamSQL must provide a high level of abstraction, making the 
complicated concepts associated with stream processing accessible to the user 
without the need for low-level programming or deep knowledge about the 
underlying physical resources or infrastructure. A StreamSQL implementation 
must also include a well-optimized execution strategy that can provide very 
low response times even in the presence of high volume data.

In a conventional database, data is always present before it is queried, but in 
a real-time system, since the data is never stored, the infrastructure must make 
provision for handling data that is late or delayed, missing, or out-of-sequence. 

One requirement is the ability to time-out individual calculations or 
computations. For example, consider a simple real-time business analytic that 
computes the average price of the last tick for a collection of 25 securities. 
One need only wait for a tick from each security and then output the average 
price. However, suppose one of the 25 stocks is thinly traded, and no tick for 
that symbol will be received for the next 10 minutes. This is an example of a 
computation that must block, waiting for input to complete its calculation. 
Such input may or may not arrive in a timely fashion. In fact, if the Securities 
& Exchange Commission (SEC) orders a stop to trading in one of the 25 
securities, then the calculation will block indefinitely. 
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In a real-time processing system, it is never a good idea to allow a program to 
wait indefinitely. Hence, every calculation that can block must be allowed to 
time out, so that the application can continue with partial data. 

A stream processing system must process time-series messages in a 
predictable manner to ensure that the results of processing are deterministic 
and repeatable. For example, consider two feeds, one containing TICKS data 
with fields: 

 TICKS (stock_symbol, volume, price, time)

and the other is a SPLITS feed, which indicates when a stock splits, with the 
format:

 SPLITS (symbol, time, split_factor)

A typical stream processing application would be to produce the real-time 
split-adjusted price for a collection of stocks. The price must be adjusted for 
the cumulative split_factor that has been seen. The correct answer to this 
computation can be produced when messages are processed by the system in 
ascending time order, regardless of when the messages arrive to the system. 
If a split message is processed out-of-order, then the split-adjusted price for 
the stock in question will be wrong for one or more ticks. Notice that it is 
insufficient to simply sort-order messages before they are input to the system―
correctness can be guaranteed only if time-ordered, deterministic processing 
is maintained throughout the entire processing pipeline. ACID transactions 
used by traditional DBMSs are also insufficient, as they cannot guarantee 
repeatability but can only enforce serializability.

The ability to produce predictable, repeatable results is also important from 
the perspective of fault tolerance and recovery, as replaying and reprocessing 
the same input stream should yield the same outcome regardless of the time 
of execution. 

Another requirement for streaming applications is that they are capable of 
storing and accessing current or historical state information, preferably using 
a familiar standard such as SQL commands.

Storage of state data is desired almost universally, whether it is yesterday’s 
business analytics or control strategies to apply in a specific trading situation. 
In addition, for many situations, events of interest depend partly on real-time 
data and partly on history, as in the following example:

“Issue an alert when the volume-weighted average price of IBM shares 
over the last 10 ticks exceeds the same statistic over the last 50 ticks, 
as long as this has not happened more than 5 times in the last seven 
hours of trading.”

A very popular extension of this requirement comes from firms with electronic 
trading applications, who want to test a trading algorithm on historical data to 
see how it would have performed, and also test alternative scenarios. When 
the algorithm works well on historical data, it can be seamlessly switched over 
to a live feed without application modification. 

Another reason for seamless switching is the desire to compute some sort 
of business analytic starting from a past point in time (such as starting two 
hours ago), “catch up” to real time, and then seamlessly continue with the 
calculation on live data. This capability requires switching automatically from 
historical to live data, without manual intervention.
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For low-latency streaming data applications, interfacing with a client-server 
DBMS connection will add excessive latency and overhead to the application. 
Therefore, state must be stored in the same operating system address space 
as the application. As such, a DBMS solution will only satisfy this requirement 
if the stream processing infrastructure is extended with an embedded DBMS. 
Hence, the scope of a StreamSQL command must be either a real-time stream, 
for example TICKS, or a stored table in the embedded DBMS. See Figure 3 for 
an example of such an architecture. For low latency processing, the application 
state should be stored and processed entirely in main memory.

To preserve the integrity of mission-critical information and avoid disruptions in 
real-time processing, a stream processing system must use a high-availability 
(HA) solution. 
 
High availability is a critical concern for most stream processing applications. 
For example, virtually all financial services firms expect their applications to 
stay up all the time, no matter what happens. If a failure occurs, the application 
needs to failover to backup hardware and keep going. Restarting the operating 
system and recovering the application from a log incur too much overhead and 
is thus not acceptable for real-time processing. Hence, a “Tandem-style” hot 
backup and real-time failover scheme, whereby a secondary system frequently 
synchronizes its processing state with a primary and takes over when primary 
fails, is the best reasonable alternative for these types of applications. This HA 
model is depicted in Figure 4.
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Figure 3:  Stream processing engine with in-process, 
embedded database.

Figure 4:  “Tandem-style” hot backup and failover ensures 
high availability for real-time data processing.
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It must be possible to split an application over multiple processors or machines 
for scalability, without the developer having to write low-level code. 

Distributed operation is becoming increasingly important given the favorable 
price-performance characteristics of low-cost commodity clusters. Stream 
processing engines must also support multi-threaded operation to take 
advantage of modern multi-processor (or multi-core) computer architectures. 
Even on a single-processor machine, multi-threading is crucial to avoid 
blocking for external events, thereby facilitating low latency.

Not only must scalability be provided easily over any number of machines, but 
the resulting application should automatically and transparently load-balance 
over the available machines, so that the application does not get bogged 
down by a single overloaded machine.

None of the preceding rules will make any difference alone unless an application 
using these combined capabilities on one infrastructure can “keep up”; i.e., 
process high-volumes of streaming data with very low latency. In numbers, 
this means capability to process tens to hundreds of thousands of messages 
per second with latency in the microsecond to millisecond range on top of 
commercial off-the-shelf hardware—while also handling stream imperfections, 
integrating real-time and stored data, scaling over distributed systems, and 
maintaining fault-tolerant operation.

To achieve such high performance, the system should have a highly-optimized 
execution path that minimizes the ratio of overhead to useful work. As 
exemplified by the previous rules, a critical issue here is to minimize the 
number of “boundary crossings” by integrating all critical functionality (e.g., 
processing and storage) into a single system process. However, this is not 
sufficient by itself; all system components need to be designed with high 
performance in mind.

To make sure that a system can meet this requirement, it is imperative that any 
user with a high-volume streaming application carefully test any product he 
might consider for throughput and latency on his target workload.

This paper has discussed eight rules which characterize the requirements 
for real-time stream processing. As more and more organizations realize 
significant benefits of using a stream processing engine vs. custom-coding—
such as low latency, business agility, greater developer productivity, and 
flexibility to quickly capture new opportunities—this technology will become 
even more widespread as a fundamental systems software infrastructure. 
Over time, stream processing engines will become as broadly deployed for 
querying and processing real-time data as relational databases are today for 
processing stored data. Since a firm’s ability to gain competitive advantage 
is greatly enhanced via adoption of such technologies, IT and application 
development organizations should consider and evaluate stream processing 
engines today. These Eight Rules serve to illustrate the necessary features 
required for any product in this category that will be used for high-volume 
low-latency applications.

Summary
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