
Applications that process real-time streams of data

are pushing the limits of traditional data-processing

infrastructures. This calls for a new class of systems

software—a stream processing engine—whose

attributes can be characterized by a core set of

eight general rules.

Mike Stonebraker, CTO, StreamBase Systems

Ugur Cetintemel, Senior Architect, StreamBase Systems

Stanley Zdonik, Chief Architect, StreamBase Systems

The Eight Rules of
Real-Time Stream Processing

®

W H E N N O W M E A N S R I G H T N O W.

On Wall Street and other global exchanges, electronic trading volumes are
growing exponentially. Market data feeds can generate tens of thousands of
messages per second. The Options Price Reporting Authority (OPRA)—which
aggregates all quotes and trades from options exchanges—estimates peak
rates of 125,000 messages per second in 2005, with rates doubling every
year. This dramatic escalation in feed volumes is stressing or even breaking
traditional feed processing systems. Furthermore, in electronic trading, a
latency of even one second is unacceptable, and the trading operation whose
engine produces the most current results will maximize arbitrage profits.
This fact is causing financial services companies to require millisecond-level
processing of feed data—or faster—with very low latency.

Until now, off-the-shelf system software to manage streaming data has been
largely unavailable for applications to process tens of thousands of messages
per second. Previously available approaches for developing stream processing
applications include the following:

• Custom code has traditionally been the only solution to support high-
volume, low-latency streaming applications. However, resorting to a
custom-coded solution is far from ideal in most environments because the
result is inflexible, costly to develop and maintain, and often difficult to
modify in response to new feature requests.

• Traditional database systems offer general data management functionality
and are designed to handle applications on static data, ranging from Online
Transaction Processing (OLTP) to data warehousing. In order to reliably
store large, finite data-sets and efficiently process human-initiated queries,
the data is stored on disk and indexed before any query processing can
take place and outputs produced. (See Figure 1).

 The storage, indexing, and ad hoc query execution in this approach all
introduce latencies that are unacceptable for fast data streams.

• Main-memory/specialized databases are higher throughput versions of
traditional database systems, as they can avoid going to disk for most
operations, given sufficient memory. Despite being faster than traditional
Database Management Systems (DBMSs), these systems cannot scale
to very high stream rates as they still fundamentally “shoehorn” stream
processing into the prevailing processing model inherent in all relational
databases.

Overview

Figure 1: Traditional relational database system
stores before querying.

Memory

Disk

Processing

Queries

Storage

• Rules engines were first proposed by the artificial intelligence (AI) community
in the 1970s, with various types marketed in recent years to the financial
services community. A rule is typically expressed as a condition/action pair,
where the action is enabled whenever its condition is met. When rules are
simple, the paradigm works well; however, as the size of a rule set grows
(such as tick-by-tick monitoring of multiple securities for specific movement
patterns across price, volume, and time), it quickly becomes unmanageable.
Since multiple rules can be triggered whenever the data changes, it becomes
very difficult to manage the flow of control and execution ordering of a
large intertwined set of rules. Moreover, rules engines are not architecturally
optimized for low latency and comprehensive state management.

• Point solutions typically implement a specific application suitable for
solving one specific problem (e.g. algorithmic trading), provided that the
application’s underlying data model, programming/user interfaces, and
analytic capabilities exactly meet the needs of the user. Unfortunately,
this often is not the case. Additionally, point solutions rarely meet the
demanding real-time processing needs of multiple organizations across the
firm beyond one problem area.

Recently, several technologies have emerged—including off-the-shelf stream
processing engines—specifically to overcome these limitations and address
the challenges of processing high-volume, real-time data without requiring
the use of custom code. Within several years, it is expected that these engines
will be as ubiquitous for processing real-time data as relational databases are
for processing stored data. In order to effectively address the performance
and agility requirements of stream processing applications, these systems
need not only be extremely efficient in real time stream processing, but also
shield the users from the inherent complexities of dealing with imperfect data
streams and underlying physical resources.

This paper outlines eight characteristics that such stream processing engines
should possess to excel at a variety of streaming applications.

To achieve low latency, a system must be able to perform message processing
without having a costly storage operation in the critical processing path.

A storage operation adds a great deal of unnecessary latency to the process
(e.g., committing a database record requires a disk write of a log record). For
many stream processing applications, it is neither acceptable nor necessary to
require such a time-intensive operation before message processing can occur.
Instead, messages should be processed “in-stream” as they fly by. See Figure
2 for an architectural example of this processing paradigm.

Rule 1

Keep the Data Moving

Optional Storage
and Queries

Alerts

Actions

Real-Time

Feeds

Memory

Disk

Stream Processing Application

Storage

Figure 2: Stream processing engine processes data
continuously on-the-fly, with optional storage.

An additional latency problem exists with systems that are passive, because
such systems wait to be told what to do by an application before initiating
processing. Passive systems require applications to continuously poll for
conditions of interest. Unfortunately, polling results in additional overhead
on the system as well as the application, and additional latency, because (on
average) half the polling interval is added to the processing delay. Active
systems avoid this overhead by incorporating built-in event/data-driven
processing capabilities.

In streaming applications, some querying mechanism must be used to issue
arbitrary queries on moving data and compute real-time analytics.

Just as the value of SQL has been and remains its ability to issue arbitrary
queries against a data store, the same type of querying capability must exist
against streams. Historically, for streaming applications, general purpose
languages such as C++ or Java have been the workhorse development
and programming tools; however, relying on low-level tools such as these
languages results in long development cycles and high maintenance costs.
Two alternative higher-level approaches exist: a rules language (limitations
described above) or SQL for data streams (StreamSQL).

SQL’s success at expressing complex data transformations derives from the
fact that it is based on a set of very powerful data processing primitives that do
filtering, merging, correlation, and aggregation. SQL is explicit about how these
primitives interact so that its meaning can be easily understood independently
from run-time conditions. Furthermore, SQL is a widely promulgated standard
that is understood by hundreds of thousands of database programmers and is
implemented by every serious DBMS in commercial use today.

Thus, SQL should be the logical starting point for a stream processing engine.
Since standard SQL runs queries on records in a finite stored data set, to
deal with continuous event streams and time-based records (tuples), SQL
must be extended to become StreamSQL. StreamSQL should retain the core
capabilities of standard SQL, while adding new ones such as a rich windowing
system, the ability to mix stored data with streaming data, and the ability
to extend the primitives to include powerful custom logic (such as analytic
functions) that are capable of transforming the data in arbitrary ways.

As with SQL, StreamSQL must provide a high level of abstraction, making the
complicated concepts associated with stream processing accessible to the user
without the need for low-level programming or deep knowledge about the
underlying physical resources or infrastructure. A StreamSQL implementation
must also include a well-optimized execution strategy that can provide very
low response times even in the presence of high volume data.

In a conventional database, data is always present before it is queried, but in
a real-time system, since the data is never stored, the infrastructure must make
provision for handling data that is late or delayed, missing, or out-of-sequence.

One requirement is the ability to time-out individual calculations or
computations. For example, consider a simple real-time business analytic that
computes the average price of the last tick for a collection of 25 securities.
One need only wait for a tick from each security and then output the average
price. However, suppose one of the 25 stocks is thinly traded, and no tick for
that symbol will be received for the next 10 minutes. This is an example of a
computation that must block, waiting for input to complete its calculation.
Such input may or may not arrive in a timely fashion. In fact, if the Securities
& Exchange Commission (SEC) orders a stop to trading in one of the 25
securities, then the calculation will block indefinitely.

Rule 3

Handle Stream
Imperfections—

Delayed, Missing, and
Out-of-Order Data

Rule 2

Query Using SQL on
Streams (StreamSQL)

In a real-time processing system, it is never a good idea to allow a program to
wait indefinitely. Hence, every calculation that can block must be allowed to
time out, so that the application can continue with partial data.

A stream processing system must process time-series messages in a
predictable manner to ensure that the results of processing are deterministic
and repeatable. For example, consider two feeds, one containing TICKS data
with fields:

 TICKS (stock_symbol, volume, price, time)

and the other is a SPLITS feed, which indicates when a stock splits, with the
format:

 SPLITS (symbol, time, split_factor)

A typical stream processing application would be to produce the real-time
split-adjusted price for a collection of stocks. The price must be adjusted for
the cumulative split_factor that has been seen. The correct answer to this
computation can be produced when messages are processed by the system in
ascending time order, regardless of when the messages arrive to the system.
If a split message is processed out-of-order, then the split-adjusted price for
the stock in question will be wrong for one or more ticks. Notice that it is
insufficient to simply sort-order messages before they are input to the system―
correctness can be guaranteed only if time-ordered, deterministic processing
is maintained throughout the entire processing pipeline. ACID transactions
used by traditional DBMSs are also insufficient, as they cannot guarantee
repeatability but can only enforce serializability.

The ability to produce predictable, repeatable results is also important from
the perspective of fault tolerance and recovery, as replaying and reprocessing
the same input stream should yield the same outcome regardless of the time
of execution.

Another requirement for streaming applications is that they are capable of
storing and accessing current or historical state information, preferably using
a familiar standard such as SQL commands.

Storage of state data is desired almost universally, whether it is yesterday’s
business analytics or control strategies to apply in a specific trading situation.
In addition, for many situations, events of interest depend partly on real-time
data and partly on history, as in the following example:

“Issue an alert when the volume-weighted average price of IBM shares
over the last 10 ticks exceeds the same statistic over the last 50 ticks,
as long as this has not happened more than 5 times in the last seven
hours of trading.”

A very popular extension of this requirement comes from firms with electronic
trading applications, who want to test a trading algorithm on historical data to
see how it would have performed, and also test alternative scenarios. When
the algorithm works well on historical data, it can be seamlessly switched over
to a live feed without application modification.

Another reason for seamless switching is the desire to compute some sort
of business analytic starting from a past point in time (such as starting two
hours ago), “catch up” to real time, and then seamlessly continue with the
calculation on live data. This capability requires switching automatically from
historical to live data, without manual intervention.

Rule 5

Integrate Stored and
Streaming Data

Rule 4

Generate Predictable
Outcomes

For low-latency streaming data applications, interfacing with a client-server
DBMS connection will add excessive latency and overhead to the application.
Therefore, state must be stored in the same operating system address space
as the application. As such, a DBMS solution will only satisfy this requirement
if the stream processing infrastructure is extended with an embedded DBMS.
Hence, the scope of a StreamSQL command must be either a real-time stream,
for example TICKS, or a stored table in the embedded DBMS. See Figure 3 for
an example of such an architecture. For low latency processing, the application
state should be stored and processed entirely in main memory.

To preserve the integrity of mission-critical information and avoid disruptions in
real-time processing, a stream processing system must use a high-availability
(HA) solution.

High availability is a critical concern for most stream processing applications.
For example, virtually all financial services firms expect their applications to
stay up all the time, no matter what happens. If a failure occurs, the application
needs to failover to backup hardware and keep going. Restarting the operating
system and recovering the application from a log incur too much overhead and
is thus not acceptable for real-time processing. Hence, a “Tandem-style” hot
backup and real-time failover scheme, whereby a secondary system frequently
synchronizes its processing state with a primary and takes over when primary
fails, is the best reasonable alternative for these types of applications. This HA
model is depicted in Figure 4.

Rule 6

Guarantee Data Safety
and Availability

Alerts

Actions

Real-Time

Feeds

Local
Embedded

Storage

Figure 3: Stream processing engine with in-process,
embedded database.

Figure 4: “Tandem-style” hot backup and failover ensures
high availability for real-time data processing.

Primary

Secondary

Market

Data

Alerts

Actions

Checkpoint

It must be possible to split an application over multiple processors or machines
for scalability, without the developer having to write low-level code.

Distributed operation is becoming increasingly important given the favorable
price-performance characteristics of low-cost commodity clusters. Stream
processing engines must also support multi-threaded operation to take
advantage of modern multi-processor (or multi-core) computer architectures.
Even on a single-processor machine, multi-threading is crucial to avoid
blocking for external events, thereby facilitating low latency.

Not only must scalability be provided easily over any number of machines, but
the resulting application should automatically and transparently load-balance
over the available machines, so that the application does not get bogged
down by a single overloaded machine.

None of the preceding rules will make any difference alone unless an application
using these combined capabilities on one infrastructure can “keep up”; i.e.,
process high-volumes of streaming data with very low latency. In numbers,
this means capability to process tens to hundreds of thousands of messages
per second with latency in the microsecond to millisecond range on top of
commercial off-the-shelf hardware—while also handling stream imperfections,
integrating real-time and stored data, scaling over distributed systems, and
maintaining fault-tolerant operation.

To achieve such high performance, the system should have a highly-optimized
execution path that minimizes the ratio of overhead to useful work. As
exemplified by the previous rules, a critical issue here is to minimize the
number of “boundary crossings” by integrating all critical functionality (e.g.,
processing and storage) into a single system process. However, this is not
sufficient by itself; all system components need to be designed with high
performance in mind.

To make sure that a system can meet this requirement, it is imperative that any
user with a high-volume streaming application carefully test any product he
might consider for throughput and latency on his target workload.

This paper has discussed eight rules which characterize the requirements
for real-time stream processing. As more and more organizations realize
significant benefits of using a stream processing engine vs. custom-coding—
such as low latency, business agility, greater developer productivity, and
flexibility to quickly capture new opportunities—this technology will become
even more widespread as a fundamental systems software infrastructure.
Over time, stream processing engines will become as broadly deployed for
querying and processing real-time data as relational databases are today for
processing stored data. Since a firm’s ability to gain competitive advantage
is greatly enhanced via adoption of such technologies, IT and application
development organizations should consider and evaluate stream processing
engines today. These Eight Rules serve to illustrate the necessary features
required for any product in this category that will be used for high-volume
low-latency applications.

Summary

Rule 8

Process and Respond
Instantaneously

Rule 7

Partition and Scale
Applications Automatically

Mike Stonebraker, Ph.D., CTO of StreamBase Systems, has been
a pioneer of database research and technology for more than 30
years and is the 2005 recipient of the IEEE’s von Neumann Award.
He was the main architect of the Ingres DBMS, the object-relational
Postgres DBMS, and the federated data system, Mariposa. All
three were developed at the University of California at Berkeley
where Stonebraker was a professor of computer science for 25

years. Stonebraker also served as founder and CTO of Ingres Corporation, Illustra,
and Cohera Corporation as well as the CTO of Informix. In addition to driving the
technology vision for StreamBase, Mike is presently adjunct professor of computer
science at the Massachusetts Institute of Technology and he serves on the board of
directors of a number of emerging technology companies.

Ugur Cetintemel, Ph.D. Senior Architect of StreamBase
Systems, received his doctorate in computer science from the
University of Maryland, College Park in 2001. He is currently
an assistant professor at the department of Computer Science
at Brown University. His work focuses on the architecture and
performance of advanced information systems and databases.
Çetintemel has published numerous papers in leading databases

and systems conferences, primarily in the areas of data stream processing, distributed
data storage, and replication. He won the prestigious CAREER award from the
National Science Foundation in 2004.

Stanley Zdonik, Ph.D., Chief Architect of StreamBase Systems,
is also a professor of computer science at Brown University, where
he has led the advanced data management research group since
1983. His team has researched object-oriented database systems,
semantic query optimization, transaction management, network
information systems, data management for mobile systems,
data dissemination and stream processing. Zdonik has written

more than 90 research papers and, is a member of the board of the Very Large
Database (VLDB) Endowment and an editor of several academic journals. He also
has been program chair for both the VLDB and the International Conference on Data
Engineering (ICDE). Previously, Zdonik worked on an advanced data management
system for pharmacologists (called Prophet) at Bolt, Beranek and Newman. He has
been a consultant to major corporations including Verizon, Xerox, Digital Equipment
Corporation, Object Design, and Computer Corporation of America.

Backed by top-tier venture capital firms and founded by Dr. Mike Stonebraker, one
of the world’s foremost database experts, StreamBase Systems is at the vanguard of
a sea change in the use, value, processing, and analysis of real-time event streams.

The company has developed a new class of systems software, called a stream pro-
cessing engine, designed to help organizations meet the performance, agility, and
return-on-investment challenges posed by high-volume, high-velocity streaming
data applications. The company’s StreamBase platform is the first in this new breed
of systems software. It offers opportunities for competitive advantage for a number
of world-class organizations today, including financial services firms, telecommunica-
tions providers, government and military agencies, and other leaders of industry.

More information about StreamBase and its capabilities and areas of expertise can
be found at www.streambase.com.

About the
Authors

About
StreamBase

Corporate Headquarters
181 Spring Street

Lexington, MA 02421
1.866.STRMBAS
1.866.787.6227
1.781.761.0800

London Office
107-111 Fleet Street
London EC4A 2AB
United Kingdom

+44 (0) 20 7936 9050

New York City Office
220 West 42nd Street

20th Floor
New York, NY 10036

1.866.STRMBAS
1.866.787.6227

Reston, VA Office
11921 Freedom Drive

Suite 550
Reston, VA 20190
1.703.608.6958

