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Abstract

Deep neural networks have become valuable tools for supervised machine learning, e.g., in
the classification of text or images. While offering superior results over traditional techniques to
find and express complicated patterns in data, deep architectures are known to be challenging
to design and train such that they generalize well to new data. An important issue that must
be overcome is numerical instabilities in derivative-based learning algorithms commonly called
exploding or vanishing gradients. In this paper, we propose new forward propagation techniques
inspired by systems of ordinary differential equations (ODE) that overcome this challenge and
lead to well-posed learning problems for arbitrarily deep networks.

The backbone of our approach is interpreting deep learning as a parameter estimation prob-
lem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-
posedness of deep learning and use this new understanding to develop new network architec-
tures. We relate the exploding and vanishing gradient phenomenon to the stability of the
discrete ODE and present several strategies for stabilizing deep learning for very deep networks.
While our new architectures restrict the solution space, several numerical experiments show
their competitiveness with state-of-the-art networks.

Keywords. Machine Learning, Deep Neural Networks, Dynamic Inverse Problems, PDE-Constrained

Optimization, Parameter Estimation, Image Classification.

1 Introduction

In this work, we propose new architectures for deep neural networks (DNN) and show their effec-
tiveness for solving supervised machine learning (ML) problems (for a general overview of DNN
and ML see, e.g., [33, 17, 1] and references therein). We consider the following classification prob-
lem: Assume we are given training data consisting of s feature vectors, y1, . . . ,ys ∈ Rn, and label
vectors, c1, . . . , cs ∈ Rm, whose kth components represent the likelihood of an example belonging
to class k. The goal is to learn a function that approximates the data-label relation on the train-
ing data and generalizes well to similar unlabeled data. We highlight the relation of the learning
problem to dynamic inverse problems, analyze its stability and ill-posedness for commonly used
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architectures, and derive new architectures that alleviate some of these difficulties for arbitrarily
deep architectures.

We are particularly interested in deep learning, i.e., machine learning using neural networks
with many hidden layers. DNNs have been successful in supervised learning, particularly when
the relationship between the data and the labels is highly nonlinear (see, e.g., [4, 28, 25, 30]
and references therein). Their depth (i.e., their number of layers) allows DNNs to express complex
data-label relationships since each layer nonlinearly transforms the features and therefore effectively
filters the information content.

Given the training data (y1, c1), . . . (ys, cs), an inverse problem needs to be solved in order to
train a given network architecture. This problem, also called the learning problem, aims at finding
a parameterization of the DNN that explains the data-label relation and generalizes well to new
unlabeled data. Clearly, using deeper network architectures increases the dimensionality, and thus
the computational complexity, of the parameter estimation problem. Additionally, more labeled
data is required to reliably calibrate very deep networks. Therefore, despite the fact that neural
networks have been used since the early 70’s, deep learning has only recently revolutionized the
industry fueled by advances in computational hardware and the availability of massive data sets.

Well-known issues in deep learning are the size and non-convexity of the associated optimization
problem. Traditionally, stochastic gradient descent methods have been used [35]. It has been
observed that the results can be highly dependent on the choice of optimization algorithm and
sample size [10, 7]. Furthermore, it has been noted that some optimization algorithms yield DNNs
that generalize poorly to new unlabeled data.

Additional difficulties in deep learning stem from instabilities of the underlying forward model,
most importantly the propagation of features through the DNN. As has been shown in [7], the
output of some networks can be unstable with respect to small perturbations in the original fea-
tures. A related problem is the observation of vanishing or exploding gradients [3]. These results
are unsettling since instability of the forward problem usually implies ill-posedness of the inverse
problem (i.e., the learning problem).

A main goal of this work is to gain further insight into the stability of the forward propagation
and the well-posedness of the learning problem summarized in the following two questions:

1. Given a network architecture and parameters obtained by some optimization process, is the
forward propagation problem well posed?

2. Is the learning problem well posed? In other words, given sufficient training data, are there
parameters such that the DNN generalizes well or can generalization be improved by adding
appropriate regularization?

The first question is important because while it may be possible to fit the training data even for
unstable forward propagation models, the trained network is unlikely to generalize. That is, small
deviations in the data, e.g., due to noise, may be drastically amplified by the forward propagation
resulting in incorrect labels. We show that the forward problem can be thought of as a discretization
of an ODE. Therefore, stability of the network corresponds to the stability of its underlying ODE.
Based on this observation, we develop stability criteria for the commonly used residual network
(ResNet) architecture [23] and develop new network architectures that are unconditionally stable
and lead to well-posed learning problems.

The paper is organized as follows. In Section 2 we give a brief mathematical derivation of
the deep learning problem illustrated using the ResNet architecture. In Section 3 we analyze the
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stability of the forward propagation with ResNet and the well-posedness of the resulting learning
problem. Our analysis and examples suggest stability criteria and as a result, in Section 4, we
propose three new architectures with guaranteed stability. In Section 5 we propose regularization
functions favoring smoothness of parameters and multilevel ideas to initialize deep networks. In
Section 6 we demonstrate the effectiveness of our new architectures on several model problems and
explore their use for more realistic learning problems. Finally, in Section 7 we summarize the paper.

2 Mathematical Formulation of the Deep Learning Problem

In this section we briefly describe three main ingredients of deep learning relevant to our work
(for a comprehensive introduction see, e.g., [33, 17, 1, 18]). First, we outline forward propagation
techniques that nonlinearly transform the input features. Second, we describe the classification
process that predicts the class label probability using the features at the output layer (i.e., the
output of the forward propagation). Finally, we formulate the learning problem that aims at
estimating parameters of the forward and classification problems that approximate the data-label
relation.

For notational convenience we stack the training features and labels row-wise into matrices
Y0 = [y1,y2, . . . ,ys]

> ∈ Rs×n and C = [c1, c2, . . . , cs]
> ∈ Rs×m.

To exemplify our discussion of forward propagation we consider the ResNet [23] model that
has been very successful in classifying images using deep network architectures (see [18] for other
options). In ResNets, the forward propagation of the input values, Y0 ∈ Rs×n, through a network
consisting of N layers is given by

Yj+1 = Yj + hσ(YjKj + bj) for j = 0, . . . , N − 1. (2.1)

The propagation in (2.1) is parametrized by the nonlinear pointwise activation function σ : Rs×n →
Rs×n and affine transformations represented by their weights, K0,K1, . . . ,KN−1 ∈ Rn×n and
biases, b0, b1, . . . , bN−1 ∈ R. We augmented the original formulation in [23] by the parameter
h > 0 in order to increase the stability of the forward propagation and allow for a continuous
interpretation of the process; see also Section 3. The values Y1, . . . ,YN−1 are also called hidden
layers and YN is called the output layer. The activation function is applied element-wise and is
assumed to be smooth and monotonically non-decreasing. As two commonly used examples, we
consider the hyperbolic tangent and the rectified linear unit activations

σht(Y) = tanh(Y) and σReLU(Y) = max(0,Y).

The class label probabilities are predicted using the values at the output layers, YN , a hypothesis
function h(YNW+esµ

>), and its associated weights, W ∈ Rn×m, and bias, µ ∈ Rm. Here ek ∈ Rs
denotes the k-dimensional vector of all ones. For Bernoulli variables (m = 1) it is natural to consider
the logistic regression function

h(x) = exp(x)./(1 + exp(x)), (2.2)

where the exponential and the division operations are applied element-wise. For multinomial dis-
tributions (m > 1) we use the softmax function

h(X) = exp(X)./(exp(X)em). (2.3)
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The learning problem aims at estimating the parameters of the forward propagation (i.e.,
K0,K1, . . . ,KN−1 and b0, b1, . . . , bN−1) and the classifier (W and µ) so that the DNN accurately
approximates the data-label relation for the training data and generalizes to new unlabeled data.
As we show below, the learning problem can be cast as a dynamic inverse problem. This under-
standing provides new opportunities for applying theoretical and computational techniques from
parameter estimation to deep learning problems. We present the learning processing as an opti-
mization problem, i.e.,

min
W,µ,K0,...,N−1,b0,...,N−1

1

s
S(h(YNW + esµ

>),C) + αR(W, µ,K0,...,N−1, b0,...,N−1) (2.4a)

subject to Yj+1 = Yj + hσ(YjKj + bj), j = 0, 1, . . . , N − 1, (2.4b)

where the loss function S is convex in its first argument and measures the quality of the predicted
class label probabilities, the regularizer R penalizes undesirable (e.g., highly oscillatory) parame-
ters, and the parameter α > 0 trades off minimizing the data fit and regularity of the parame-
ters. A simple example of a loss function is the sum-of-squared difference function S(Cpred,C) =
1
2‖Cpred −C‖2F . Since our numerical experiments deal with classification we use cross entropy loss
functions. Choosing an ”optimal” regularizer, R, and regularization parameter, α, is both cru-
cial and nontrivial. Commonly Tikhonov regularization, also referred to as weight decay, has been
used [19], although, other possibilities enforcing sparsity or other structure have been proposed [34].
We introduce novel regularization functions in Section 5. For simplicity, we assume that a suitable
value of α > 0 is chosen by the user or that it is done dynamically as suggested in [8].

There are numerous approaches to solving the learning problem. In this work, we use a simple
block coordinate descent method to demonstrate the properties of the forward propagation. Our
method alternates between updating the parameters of the classifier, (W, µ), using the current val-
ues of the propagated features, YN , and then updating the parameters of the forward propagation
while keeping the updated weights of the classifier fixed. The first problem is typically convex and
the latter problem is generally non-convex due to the forward propagation process. Both steps are
based on subsampling the training data. To this end, note that most common loss functions can
be written as a sum over all examples, i.e.,

1

s
S(h(YNW + esµ

>),C) =
1

s

s∑
i=1

S(h(y>i W + µ>), c>i ) ≈ 1

T

∑
i∈T

S(h(y>i W + µ>), c>i ), (2.5)

where T ⊂ {1, 2, . . . , s} is a randomly chosen set updated during each iteration of the block coordi-
nate descent method. The size of the batches is a parameter in our algorithm whose choice depends
on the size and complexity of the problem, as well as the computational resources available. In each
iteration of the block coordinate descent scheme, our algorithm approximately solves the resulting
classification problem using a Newton preconditioned conjugate gradient (PCG) method. Subse-
quently, the weights of the forward propagation are updated using a Gauss-Newton-PCG method.
Note that gradient and approximate Hessian computations require matrix-vector products with the
derivative matrices of the values of the output layer, YN , with respect to K0,...,N−1 and b0,...,N−1.
The matrix-vector products with the derivative matrix can be computed without its explicit con-
struction through forward and backward propagation, respectively. However, this requires storing
(or re-computing) the values at the output layers; see, e.g., Section 4.4 for derivative computation.
Therefore, as also suggested in [9], we subsample T further to reduce the cost of the Hessian matrix
vector products in our PCG scheme.
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Our implementation includes computing the validation error in each iteration of the block
coordinate descent method. The final output of our algorithm is the parameters that achieve the
lowest validation error.

3 Stability and well posedness of the forward propagation

In this section, we analyze the stability of the ResNet forward problem (2.1) and illustrate why
some choices of transformation weights may generate instabilities or prohibit effective learning
altogether.

It is well known that any parameter estimation problem requires a well-posed forward problem,
i.e., a problem whose output is continuous with respect to its input. e.g., practical image classi-
fication algorithms need to be robust against noisy or slightly shifted input images. Ill-posedness
of the forward problem implies that even if the estimated parameters lead to a small training er-
ror, they will probably fail or do poorly on a perturbation of the data. In other words, networks
whose forward propagation is not well-posed generalize poorly. Thus, well-posedness of the forward
propagation is a necessary condition to obtain DNNs that generalize well.

The following discussion also gives new perspectives on two well-known phenomena in the deep
learning community: Vanishing and exploding gradients; see, e.g., [3]. These phenomena refer to the
gradient of the objective function in (2.4a) and pose a severe challenge for very deep architectures.
Note that the gradient represents the sensitivity of the output with respect to a perturbation of the
input. Thus, an exploding gradient implies that the output is unstable with respect to the input.
Similarly, a vanishing gradient implies that the output is insensitive with respect to the input.
Clearly both cases prohibit effective training, but more importantly, may not result in DNNs that
generalize well.

To understand the phenomenon, consider the forward propagation in ResNets (2.1). As pointed
out in [21], the forward propagation is an explicit Euler discretization of the nonlinear ODE

ẏ(t) = σ(K>(t)y(t) + b(t)), with y(0) = y0, (3.6)

over a time interval t = [0, T ]. The final time T > 0 and the rate in which K(t) changes in time
controls the depth of the network. The ODE is stable if

max (Re(λ(J(t)))) ≤ 0, ∀t ∈ [0, T ], (3.7)

where Re(·) denotes the real part, λ(·) are the eigenvalues of a square matrix, and J is the Jacobian
of the right hand side in (3.6), i.e.,

J(t) =
(
∇y

(
σ(K(t)>y + b(t))

))>
= diag

(
σ′(K(t)>y + b(t))

)
K(t)>. (3.8)

Since the activation function σ is typically monotonically non-decreasing, i.e., σ′(·) ≥ 0, (3.7) is
satisfied if

max (Re(λ(K(t)))) ≤ 0, ∀t ∈ [0, T ]. (3.9)

To ensure the stability of the overall forward propagation, we also require the discrete version of
the ODE to have a sufficiently small h as summarized in the following well-known lemma.

Lemma 1 The ResNet (2.1) is stable if

|1 + hmax(λ(Kj))| ≤ 1, ∀j = 0, 1, . . . , N − 1. (3.10)
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K+, λ(K+) = 2

−1.5 0 1.5
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0
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K−, λ(K−) = −2
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K0, λ(K0) = ±ı
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0
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Figure 1: Phase plane diagrams for ResNets with N = 10 identical layers parameterized by the
weight matrices in (3.11) starting with three different features. Colored lines indicate the values at
hidden layers and arrows depict the force field. Left: Due to its positive eigenvalues, the features
diverge using K+ leading to an unstable forward propagation. Center: K− yields a contraction
that annihilates differences in the features and renders the learning problem ill-posed. Right: The
anti-symmetric matrix K0 leads to rotations, preserves distances between the features, and yields
well-posed forward propagation and learning.

Proof 1 See, e.g., [2] for the proof of stability criteria for the forward Euler method.

The above discussion suggests that the stability of the continuous forward propagation (3.9)
and its discrete analog (3.10) need to be added to the optimization problem (2.4) as constraints.
Otherwise, one may obtain some transformation weights, K0,K1, . . . ,KN−1, that fit the training
data, but generate an unstable process. As discussed above, these solutions cannot be expected to
generalize well for other data.

We illustrate the stability issues of ResNet using a simple example.

Example 1 (Stability of ResNet) For s = 3 and n = 2 we consider the forward propagation
through a ResNet given by (2.1). We consider three networks consisting of N = 10 identical layers,
i.e., for each layer we use the activation σht = tanh, h = 0.1, b = 0, and a constant weight matrix.
To illustrate the impact of the eigenvalues of the weight matrix on the propagation, we consider
three ResNets parameterized by

K+ =

(
2 −2
0 2

)
, K− =

(
−2 0

2 −2

)
, and K0 =

(
0 −1
1 0

)
, (3.11)

where λ(K+) = 2, λ(K−) = −2 and λ(K0) = ±ı. We consider the feature vectors y1 =
[0.1, 0.1]>, y2 = −y1, y3 = [0, 0.5]>. After propagating the features through the layers, we il-
lustrate the different propagations in Figure 1. We represent the values at the hidden layers as
colored lines in the 2D plane where each color is associated with one feature vector. To highlight
the differences in the dynamics in all three cases, we also depict the force field using black arrows
in the background. This plot is often referred to as the phase plane diagram.

As can be seen in left subplot, the features diverge away from the origin and each other using
K+. Note that y1 and y2, which are close together initially, depart into opposite directions. This
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clearly yields an unstable forward propagation that cannot be expected to generalize well. In contrast
to that, the center subplot shows that K− yields an accumulation point at the origin. While the
forward propagation satisfies (3.9) and is thus stable, the learning problem, which requires inversion
of this process, is ill-posed. Finally, the anti-symmetric matrix K0 yields a rotation in the feature
space, which preserves the distances between the features and leads to a stable forward propagation
and a well-posed learning problem.

Clearly the effects depicted here are more pronounced in deeper networks with more layers and/or
larger values for h.

While the first case in Example 1 indicates that (3.9) is a necessary condition for successful
learning, the second case suggests that it is not sufficient. In general, when Re(λ(K(t))) < 0 for
most times and the network is deep (e.g., long time integration) differences between initial feature
vectors decay. In other words, for all initial conditions y0 we have that y(t)→ 0 as t→∞; compare
with center plot in Figure 1. Hence, even though the forward problem is stable the inverse problem
is highly ill-posed as it comparable to an inverse heat equation. In these situations, the gradients
of the objective function in (2.4a) will vanish since small changes in the transformation weights will
have no noticeable impact on the values of the outputs.

If we are inspired from the propagation of signals through neurons, then a ResNet (2.4b) with
Re (max(λ(K))) > 0 consists of neurons that amplify the signal with no upper bound, which is not
biological, and a ResNet with Re (max(λ(K)))� 0 can be seen as a lossy network. A moderately
lossy network may be advantageous when the input is noisy, since it tends to decay high order
oscillations. However, having too much signal loss is clearly harmful as it also annihilates relevant
information in the input signal.

In summary, our discussion of ResNets illustrates that the stability of the forward propagation
and well-posedness of the learning problem can be obtained for deep networks when

Re (λ(K(t))) ≈ 0, ∀t ∈ [0, T ]. (3.12)

In this case, the forward propagation causes only moderate amplification or signal loss, and thus
even deep networks preserve features in the input data and allow for effective learning.

4 Stable Forward Propagation for DNNs

Motivated by the discussion in the previous section, we introduce three new forward propagation
methods that are stable for arbitrarily deep neural networks and lead to well-posed inverse problems.
Our approaches, presented in Section 4.1 and 4.2, use different means to enforce Jacobians whose
eigenvalues have very small real parts ( see (3.12)). The methods in Section 4.2 are inspired
by Hamiltonian systems and we present leapfrog and Verlet integration techniques for forward
propagation in Section 4.3. Finally, we compute the derivative of the Verlet method using back
propagation [38] and discuss the relation between back propagation and the older and more general
adjoint method [27] in Section 4.4.
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4.1 Anti-Symmetric Weight Matrices

Perhaps the simplest way to obtain a stable forward propagation is to construct force fields whose
Jacobians are anti-symmetric. For example, consider the forward propagation

Yj+1 = Yj + hσ

(
1

2
Yj

(
Kj −K>j

)
+ bj

)
, j = 0, 1, . . . , N − 1, (4.13)

which is a forward Euler discretization of the ODE

ẏ(t) = σ

(
−1

2
(K(t)−K(t)>)y(t) + b(t)

)
, ∀t ∈ [0, T ].

Since K(t)−K(t)> is anti-symmetric its eigenvalues are imaginary, which also holds for the Jacobian
of the right hand side as shown in (3.8). Thus, the ResNet parameterized by the anti-symmetric
weight matrix is stable and preserves information given an appropriate integration technique and
sufficiently small time steps.

It is possible to add some diffusion to the process, e.g., by adding a negative definite matrix.
While this might improve the robustness against noise in the feature vectors, we do not explore it
in this work for brevity.

4.2 Hamiltonian Inspired Neural Networks

Restricting the parameter space to anti-symmetric matrices is only one way to obtain a stable
forward propagation. Alternatively, we can recast forward propagation as a Hamiltonian system,
which has the structure

ẏ(t) = −∇zH(y, z, t) and ż(t) = ∇yH(y, z, t), ∀t ∈ [0, T ].

The function H : Rn × Rn × [0, T ] → R is the Hamiltonian. In our application, Hamiltonian
systems for forward propagation are attractive due to their property of conserving vs. increasing
or dissipating the energy of the system; see [2, Ch.6] for a general introduction.

The Hamiltonian function H measures the energy of the system, which in the autonomous case
gets conserved. A simple approach can be derived from the Hamiltonian

H(y, z) =
1

2
z>z + f(y),

where f : Rn → R is at least twice continuously differentiable. This leads to the ODE system

ż(t) = −∇yf(y(t)), ẏ(t) = z(t), ∀t ∈ [0, T ].

Eliminating z we obtain a second order system

ÿ(t) = ∇yf(y(t)), ∀t ∈ [0, T ].

Inspired by the continuous version of the ResNet forward propagation (3.6) we propose to use
the following second order ODE

ÿ(t) = σ(K>(t)y(t) + b(t)), y(0) = y0. (4.14)
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The dynamical system in (4.14) is stable for all weight matrices with non-positive real eigenvalues,
i.e., that satisfy (3.9). This constraint can either be added to (2.4) or like the previous section, be
enforced by design. The latter approach can be obtained, e.g., by using

K(C) = −C>C, for some C ∈ Rn×n. (4.15)

Note that in contrast to the anti-symmetric model in (4.13), the negative definite model is more
challenging to ensure. Guaranteeing (3.9) either requires adding a nonlinear transformation as in
(4.15), or involves expensive eigenvalue computations, if added as constraint to (2.4).

The forward propagations (2.1), (4.13), or (4.14) require additional constraints on K and are
limited to square weight matrices. We therefore propose a network that is intrinsically stable, i.e.,
a network whose forward propagation is stable independent of the choice of the weights. To this
end, we introduce symmetry into the Hamiltonian system by defining

ẏ(t) = σ(K(t)z(t) + b(t)) and ż(t) = −σ(K(t)>y(t) + b(t)). (4.16)

Note that (4.16) is a special case of ResNet with an augmented variable z ∈ Rm and the associated
ODE

d

dt

(
y
z

)
(t) = σ

((
0 K(t)

−K(t)> 0

)(
y
z

)
(t) + b(t)

)
,

(
y
z

)
(0) =

(
y0

0

)
.

This system is stable regardless of the spectrum or size of the matrices K(t) since the overall matrix
in the linear transformation is anti-symmetric. To ensure stability of the discrete version the time
step size needs to be sufficiently small; see Lemma 3.10.

4.3 Symplectic Forward Propagation

In this section, we use symplectic integration techniques to solve the discrete versions of the
Hamiltonian-inspired networks (4.14) and (4.16). Symplectic methods have been shown to cap-
ture the long time features of Hamiltonian systems and thus provide a slightly different approach
as compared to the forward Euler method used in ResNet (2.4b). For the second-order ODE (4.14)
we propose the conservative leapfrog discretization

yj+1 =

{
2yj + h2σ(Kjyj + bj), j = 0

2yj − yj−1 + h2σ(Kjyj + bj), j = 1, 2, . . . , N − 1
. (4.17)

For the augmented network (4.16) we use a Verlet integration where for j = 0, 1, . . . , N −1 we have

zj+ 1
2

= zj− 1
2
− hσ(K>j yj + bj) (4.18a)

yj+1 = yj + hσ(Kjzj+ 1
2

+ bj) (4.18b)

Since both discretizations are symplectic, the respective Hamiltonians are preserved if the transfor-
mation weights are time invariant and the step size is sufficiently small.

We demonstrate the long time dynamics of the two new Hamiltonian-inspired forward propa-
gation methods using a simple example with two-dimensional features and identical layers.
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leapfrog, K−, N = 500

−0.15 0 0.15
−0.15

0

0.15

leapfrog, K−, N = 5, 000

−0.15 0 0.15
−0.15

0

0.15

Verlet, Kv, N = 500

−0.1 0 0.1
−0.1

0

0.1

Verlet, Kv, N = 5, 000

−0.1 0 0.1
−0.1

0

0.1

Figure 2: Phase space diagrams for the forward propagation using the leapfrog and Verlet methods
starting from y1 = [0.1, 0.1]> (blue) and y2 = [−0.1,−0.1]> (red). For each network we show the
short term (N = 500) and long term (N = 5, 000) behavior for identical layers. In both cases
non-trivial behavior can be observed even for constant weight matrices.

Example 2 Let s = 2 and n = 2 and consider the features y1 = [0.1, 0.1]> and y2 = [−0.1,−0.1]>.
We consider networks with identical layers featuring b = 0 and hyperbolic tangent as activation
function. For the leapfrog integration we use the matrix K = K− defined in (3.11) (recall that
λ(K) = −2) and a step size of h = 1. To illustrate the Verlet integration (which can handle
non-square matrices) we use a time step size of h = 0.1 and

Kv =

 2 1
−1 2

0 1

 .

To expose the short-term behavior we use N = 500 layers and to demonstrate the non-trivial
long term characteristics we use N = 5, 000 layers. We depict the phase plane diagrams for both
networks and both depths in Figure 2. Even though we use identical layers with constant matrices
the features neither explode nor vanish asymptotically.

We proposed three new ways of forward propagation to ensure stability for arbitrary numbers
of layers. Among the three approaches, the Verlet method is the most flexible as it can handle
non-square weighting matrices and does not require additional constraints on K.

4.4 Derivatives of the Verlet Method

We now discuss the computation of derivatives for the Verlet method. The derivatives of the ResNet
are standard and can be found, e.g., in [24]. Given the ResNet derivatives, the anti-symmetric model
can be differentiated using the chain rule and time stepping. The leapfrog method can be treated
in a similar way to the usual ResNet architecture and therefore the details are omitted.

Our presentation follows the standard approach used in machine learning known as back prop-
agation [24]; however, we note that back propagation is a special case of the adjoint method [5]
used in time dependent optimal control; see, e.g.,[6]. The adjoint method is more general than
back propagation as it can also be used to compute the gradient of less “standard” time stepping
methods. Thus, we discuss the back propagation method in the context of the adjoint method as
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applied to the Verlet method. We start from the usual sensitivity equation, and then discuss how
to efficiently compute matrix-vector products.

Exemplarily we show how to differentiate the values at the output layer of (4.18) with respect
to the weight matrix Kk at an arbitrary layer k. For simplicity, we assume that K is square.
Derivatives for non-square weight matrices and with respect to the bias, bk, can be computed along
the same line. Clearly, the values of zj and yj at the hidden layers j ≤ k are independent of Kk.
Applying the chain rule to (4.18) we see that

∂zk+ 1
2

∂Kk
= hdiag

(
σ′(Kkyk + bk)

)
(yk ⊗ I) =: C1

∂yk+1

∂Kk
= −hdiag

(
σ′(−K>k zk+ 1

2
+ bk)

)
(I⊗ Zk+ 1

2
+ K>k ⊗ I) =: C2,

(4.19)

where ⊗ denotes the Kronecker product and I is the n × n identity matrix, respectively. We can
now differentiate layer by layer, where for k < j < N − 1 we obtain

∂zj+ 1
2

∂Kk
=
∂zj− 1

2

∂Kk
+ hdiag

(
σ′(Kjyj + bj)

)
Kj

∂yj
∂Kk

∂yj+1

∂Kk
=
∂yj
∂Kk

− hdiag
(
σ′(−K>j zj+ 1

2
+ bj)

)
K>j

∂zj+ 1
2

∂Kk

(4.20)

Combining equations (4.19) and (4.20) the derivatives can be written compactly as a block linear
system 

I
I

−I Bk+1 I
−I Ak+1 I

. . .
. . .

. . .

−I AN I
−I BN I





∂z
k+1

2
∂Kk
∂yk+1

∂Kk
...

∂z
N+1

2
∂Kk
∂yN+1

∂Kk


=



C1

C2

0
...

0


, (4.21)

where

Bj = −hdiag
(
σ′(Kjyj + bj)

)
Kj , and Aj = hdiag

(
σ′(−K>j zj+ 1

2
+ bj)

)
K>j .

The system (4.21) is block triangular with identity matrices on its diagonal and thus can be
solved explicitly using forward substitution. Such systems commonly arise in optimal control of
time dependent PDEs and in dynamic inverse problems. For more details, including notes on
implementation, see, e.g., [37].

In the optimal control literature the matrices
∂z

j+1
2

∂Kk
and

∂yj

∂Kk
are often referred to as the sensi-

tivities. While the matrices can be dense and large, computing matrix vector products can be done
efficiently by forward propagation. To this end, the right hand side of (4.21) is multiplied by the
vector and the linear system is then solved with a vector right hand side. The multiplication with
the transpose, also known as the adjoint method, is done by solving the equation backwards. It is
important to note that the back-propagation algorithm [38] is essentially a particular implementa-
tion of the adjoint method discussed much earlier in [27].
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5 Regularization

In this section we present derivative-based regularization functions and a multilevel learning ap-
proach to ensure smoothness of parameters in deep learning. By biasing the learning process
towards smooth time dynamics we aim at improving the generalization. Intuitively, we cannot
expect the network to generalize well in the absence of smoothness. While the presented regular-
ization techniques are commonly employed in other areas of inverse problems, e.g., imaging their
application to deep learning is, to the best of our knowledge, rather novel.

5.1 Regularizing the Forward Propagation

The perhaps most common regularization strategy used in deep learning is referred to as weight
decay, which is equivalent to standard Tikhonov regularization of the form

R(K) =
1

2
‖K‖2F ,

where ‖ · ‖F denotes the Frobenius norm. While this regularization reduces the magnitude of the
weights, it is not sensitive rapidly changing weights between adjacent layers. To illustrate why
this may be problematic, consider removing a single layer from a deep network. Since the network
is deep, we should not expect large changes in the values of the output layer and thus similar
classification errors. However, if this layer performs, e.g., a 90-degree rotation of the features while
the adjacent layers keep the features unchanged, the effect will be dramatic.

The above interpretation of forward propagation as a time dependent process implies that K
should be smooth, or at least piecewise smooth in time. To this end we propose the following new
regularization for the transformation weights

R(K) =
1

h

∑
‖Kj −Kj−1‖2F and R(b) =

1

2h

∑
(bj − bj−1)2. (5.22)

This regularization favors weights that vary smoothly between adjacent layers. Furthermore, as we
see in our numerical experiments, the regularization adds robustness to the process. We can easily
add or subtract steps without significantly changing the final result, thus adding more generalizing
power to our network.

5.2 Regularizing the Classification Weights

We propose using smoothness regularization on the classification weights for image classification
problems, e.g., in convolution neural networks (CNN); see; e.g., [18, Ch.9]. For motivation, let the
examples in Y0 represent vectorized n1 × n2 × n3 images. The network propagates the images in
time and generates perturbed images of the same size. The hypothesis function predicts the class
label probabilities based on affinely transformed output images, i.e.,

Cpred = h(YNW + esµ
>).

The size of each column in W is n1 · n2 · n3 and the operation YN (j, :)>W(:, j) is a dot product
between the jth output image and the classification weights for the kth class. Noting that the rows
of YN and the columns of W can be interpreted as discrete images sets the stage for developing
regularization approaches commonly used in image processing; see, e.g., [12].
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To further motivate the importance of regularization, note that if the number of examples
is much larger than the number of features (pixels in the image) and if there is no significant
redundancy, finding the optimal W given YN and C is an over-determined problem. Otherwise
the problem is ill-posed and there may be infinitely many weights that yield the same classification
on the observed data. The risk in both cases is overfitting since the optimal classification weights
can be highly irregular and generalize poorly. Thus, one way to enforce uniqueness and improve
generalization is to regularize the weights.

A standard approach in machine learning also known as pooling aims at achieving this goal. The
main idea of pooling is to coarsen the output images and thereby to decrease the dimensionality
of the classification problem. The simplest approach is skipping, i.e., subsampling the image YN ,
e.g., at every other pixel. Other common options are average pooling and max-pooling, where
image patches are represented by their average and maximum value, respectively. From an inverse
problems perspective, pooling can be thought of as a subspace regularization [22]. For example,
average pooling is similar to requiring W to be constant over each image patch.

An alternative approach to regularization is to interpret the jth feature yj ∈ Rn and the
kth classification weight wk ∈ Rn in CNN as discretizations of image functions yj : Ω → R and
wk : Ω → R where Ω ⊂ R2 is the image domain. Assuming yj are sufficiently regular (which is to
be enforced by the regularization) we can see that the probability of the jth example belonging to
the kth class can be viewed as

h(y>j wk + µk) ≈ h

(∫
Ω
y(x)w(x) dx+ µk

)
. (5.23)

To obtain weights that are insensitive to small displacements of the images it is reasonable to favor
spatially smooth parameters by using regularization of the form

R(wk) =
1

2
‖Lwk‖2, (5.24)

where L is a discretized differential operator. This regularization also embeds the optimal wk into
a suitable function spaces. For example, using an image gradient ensures that wk is in the Sobolev
space H1(Ω,R). Most importantly for our application at hand, derivative based regularization
yields smooth classification weights that, as we see next, can be interpreted by visual inspection.

5.3 Multilevel Learning

As another means of regularizing the problem, we exploit a multilevel learning strategy that grad-
ually increases the number of layers in the network. Our idea is based on the continuous inter-
pretation of the forward propagation in which the number of layers in the network corresponds to
the number of discretization points. Our idea is closely related to ideas in image processing where
multilevel strategies are commonly used to decrease the risk of being trapped in local minima; see,
e.g., [32]. More details about multilevel methods in learning can be found in [21].

The basic idea is to begin by solving the learning problem using a network with only a few layers
and then prolongate the estimated weights of the forward propagation to initialize the optimization
problem for the next network that features twice as many layers. We repeat this process until a
user-specified maximum number of layers is reached.

Besides realizing some obvious computational savings on the smaller networks, the main moti-
vation behind our approach is to obtain good starting guesses for the next level. This is key since,
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while deeper architectures offer more flexibility to model complicated data-label relation, deeper
networks are in our experience difficult to initialize. Additionally, the Gauss-Newton-PCG method,
which we use to estimate the parameters of the forward propagation, typically converges within a
few iterations when the initial parameters are close to a local minimum.

6 Numerical Examples

In this section we present numerical examples for classification problems of varying levels of diffi-
culty. We begin with three examples aiming at learning classification functions in two variables,
which allow us to easily assess and illustrate the performance of the DNNs. In Section 6.4 we
show results for the MNIST data set [29, 31], which is a common benchmark problem in image
classification.

6.1 Concentric Ellipses

As a first test, we consider a small-scale problem in two dimensions. The test data consists of 600
points that are evenly divided into two groups that form concentric ellipsoids; see left subplot in
Figure 4. The original data is randomly divided into 500 training examples and 100 examples used
for validation.

We train the original ResNet, the anti-symmetric ResNet, and the Hamiltonian networks with
leapfrog and Verlet propagation using the block coordinate descent method and a multilevel strat-
egy with 4, 8, 16, 32, 64, 128, 256 and 1024 layers. Each block coordinate descent iteration consists of
a classification step (≤2 iterations of Newton-PCG with ≤ 2 PCG iterations) and a Gauss-Newton-
PCG step to update the propagation weights (≤10 PCG iterations preconditioned by regularization
operator). In all examples we use the logistic regression hypothesis function (2.2) and tanh activa-
tion function. The final time is T = 20 and the width of the network is n = 2.

We show the performance of the multilevel scheme in the left subplot of Figure 3. For this
simple data set, all forward propagation methods eventually achieve an optimal validation accuracy
of 100%. It is notable though that the validation accuracy does not increase monotonically for the
ResNets and leapfrog methods, while it does so for the Verlet forward propagation. The results
for the Verlet method at the final level are shown in Figure 4. The two steps of deep learning
(propagation and classification) can be seen in the center plot. The propagation transforms the
feature such that they can be linearly separated. The result of the learning process is a network
that predicts the class for all points in the 2D plane, which is illustrated in the right subplot of
Figure 4.

6.2 Swiss Roll

We consider another small-scale test problem that is inspired by the Swiss roll example. The data
is obtained by sampling the vector functions

f1(r, θ) = r

(
cos(θ)
sin(θ)

)
, and f2(r, θ) = (r + 0.2)

(
cos(θ)
sin(θ)

)
,

for r ∈ [0, 1] and θ ∈ [0, 4π] at 4,096 points each. The data is perturbed by adding 1% Gaussian
white noise to the features. Every other point along the curve is removed from the data set and
used for validation. See left subplot in 5 for a plot of the training data.
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Figure 3: Multilevel convergence for the two-dimensional examples in Sections 6.1–6.3. For each
level (level ` corresponds to DNN with 2` layers) we show the best validation accuracy (the optimal
value is 1, which corresponds to a validation error of 0%).

labeled training data propagated training data prediction + validation data

Figure 4: Classification results for the ellipse problem from Section 6.1 using a Hamiltonian Neural
Network with Verlet propagation with N = 1, 024 layers. Left: Labeled input features representing
two concentric ellipses that are not linearly separable. Center: The output features are linearly
separable and can be accurately classified. Right: We show the predictions of the network (colors
in the background) superimposed by the validation data.

Given the data we use the same parameterization of the multilevel and block coordinate descent
method as in the previous example. For all networks we use a width of n = 2, the tanh activation,
logistic regression function (2.2), and choose a final time of T = 10. The propagation weights
enforcing smoothness in time with α = 10−6. No regularization is used in the classification.

We plot the validation accuracy for each network and the different steps of the multilevel strategy
in the center subplot of Figure 3. The standard ResNet and the Hamiltonian NN with Verlet forward
propagation both achieve an optimal validation accuracy for N = 1, 024, however, the convergence
is considerably faster for the Hamiltonian network that reaches the optimal accuracy with N = 32
layers. Interestingly, the accuracy of the leapfrog network is optimal for networks up to 32 layers
in this example and deteriorates for deeper networks. We visualize the results obtained using the
Verlet method in Figure 5.
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input training data propagated training data prediction + validation data

Figure 5: Classification results for the Swiss roll example described in Section 6.2 using a Hamil-
tonian network with N = 1, 024 layers and the Verlet forward propagation. Left: We show the
training data (red and blue dots). Center: The Verlet method propagates the features so that
the affine linear logistic regression classifier can separate them. Right: We show the interpolation
obtained by our network (colored background) and the validation data.

6.3 Peaks

We propose a new challenging test problem for classification into multiple classes using the peaks

function in MATLABr, which reads,

f(x) = 3(1− x1)2 exp(−(x2
1)− (x2 + 1)2)− 10(x1/5− x3

1 − x5
2)

exp(−x2
1 − x2

2)− 1/3 exp(−(x1 + 1)2 − x2
2),

where x ∈ [−3, 3]2. The peaks function is smooth but has some nonlinearities and most importantly
non-convex level sets. We discretize the function on a regular 256× 256 grid and divide the points
into 5 different classes based on their function value. The points in each class are then randomly
subsampled such that the training data approximately represents the volumes of the level sets.
In our case the s = 1, 100 sample points are divided into five classes each with 202 points. We
illustrate the test data in the left subplot of Figure 6.

We randomly choose 20% of the data for validation and train the networks using the remaining
880 examples. We use tanh for the activation, the softmax hypothesis function (2.3), and choose a
final time of T = 10. We regularize the propagation weights enforcing smoothness in time with a
regularization parameter of α = 10−5. No regularization is used in the classification. We use the
same multi-level strategy and identical parameters in the block coordinate descent methods as in
the previous examples.

We first train the standard ResNet and the anti-symmetric variant where we use a width of
n = 8 by duplicating the features four times. The performance of both models at the final level is
comparable; see also right subplot in Figure 3. The validation accuracy for N = 1, 024 is around
98.5 % for the standard and 99.1% for the anti-symmetric version. It is notable though that the
anti-symmetric ResNet outperforms on levels 4 and 7 (100% validation accuracy).

For the Hamiltonian network with Verlet forward propagation we use a narrower network con-
taining only the original features (i.e., n = 2 / no duplication). As in the previous experiments
the accuracy generally improves with increasing depth (with one exception between levels 5 and
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input training data propagated training data prediction + training data

Figure 6: Classification results for peaks example described in 6.3 using a Hamiltonian network
with n = 1, 024 layers and the Verlet forward propagation. Left: We illustrate the training data by
colored dots that represent the class. Center: We show the propagated features and the predictions
of the softmax classifier. Right: We depict the predictions of our network (colored background)
and the training data.

6). The optimal accuracy is obtained at the final level (N = 1, 024) with a validation accuracy of
98.5%. We illustrate the results for the Verlet network in Figure 6. The center subplot shows how
the forward propagation successfully rearranges the features such that they can be labeled using
a linear classifier. The right subplot shows that the prediction function fits the training data, but
also approximates the true level sets.

6.4 MNIST

We use the MNIST dataset of hand-written digits [29, 31] to illustrate the applicability of our
methods in image classification problems. The data set consists of 60,000 labeled digital images of
size 28 × 28 showing hand written digits from 0 to 9. We randomly divide the data into 50,000
training and 10,000 validation examples. The MNIST problem is considered a solved problem and it
has been shown that, using data augmentation techniques, DNNs can achieve accuracies of around
0.2%; see, e.g., [13, 14]. Data augmentation increases the dimensionality of the feature space by
adding transformed versions of the input data, e.g., by applying spatial transformations. We do not
use data augmentation in the following, since our example aims at comparing the different forward
propagation techniques for narrow but deep architectures. We compare using the standard and
anti-symmetric ResNet and the first-order Hamiltonian network using Verlet integration.

We use a three-level multilevel strategy where the number of layers is 4, 8, and 16. In each step
we use the block coordinate descent method to approximately solve the learning problem and pro-
longate the forward propagation parameters to the next level using piecewise linear interpolation.
The width of the network is 6 (yielding n = 4, 704 features used in the classification) and we use
3× 3 convolution operators that are fully connected within a given layer to model the linear trans-
formation matrices K0, . . . ,KN−1. The final time is set to T = 6. To compute the Gauss-Newton
step we first compute the full gradient over all 50,000 examples and then randomly subsample 5,000
terms for Hessian computations in the PCG step. The maximum number of iterations is set to 20
at each layer.

Within each step of the block coordinate descent we solve the classification problem using at
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ResNet anti-symmetric ResNet Hamiltonian Verlet
layers TE VE TE VE TE VE

4 0.96% 1.71% 1.13% 1.70% 1.49% 2.29%
8 0.80% 1.59% 0.92% 1.46% 0.82% 1.60%
16 0.73% 1.53% 0.91% 1.38% 0.35% 1.58%

Table 1: Multilevel training result for MNIST data set (see Section 6.4). We show the train-
ing error (TE) and validation error (VE) for the standard and anti-symmetric ResNet and the
Hamiltonian inspired network with Verlet forward propagation for increasing number of layers in
the network. The different forward propagation methods yield comparable results with the anti-
symmetric ResNet giving slightly lower validation errors at each level.

most 5 iterations of Newton-PCG with up to 10 inner iterations. We use a discretized Laplacian as
a regularization operator in (5.24) and its shifted symmetric product as a preconditioner to favor
smooth modes; see [11]. The regularization parameter used in the classification is 0.01. The output
values for all examples are used at the final layer and no pooling is performed.

Smooth time dynamics are enforced by penalizing the time derivatives as outlined in Section 5.1
with a manually calibrated regularization parameter of α = 0.005. The regularization operator is
used to precondition the PCG iterations in the Gauss-Newton method.

To show the performance of the multilevel strategy, we summarize the training and validation
errors at the respective levels in Table 1. The table shows similar performance for all forward
propagation methods. Note that both the validation and training errors are reduced using a larger
number of layers, but no overfitting is observed. In this experiment, the multi level approach
considerably simplified the initialization of the deep networks. For example, the initial parameters
of the standard ResNet at the final level (N = 16 layers) gave already a validation accuracy of
98.41%, which was improved to 98.47% with subsequent training. We illustrate the results of the
anti-symmetric ResNet, which yields slightly superior performance in terms of validation error, in
Figure 7. The smoothness of the classification weights enforced by our regularizer can be seen in
the right column.

7 Summary and conclusions

We propose new architectures for deep neural networks that improve stability of the forward propa-
gation and through regularization improve the well-posedness of the learning task. We also propose
a multilevel strategy that simplifies the choice of initial parameters and thereby simplifies the train-
ing of very deep networks. Our forward propagation methods are inspired by Hamiltonian systems
and motivated by a stability analysis that is based on a continuous formulation of the learning
problem. This work also exposes the relation between deep learning and dynamic inverse problems
laying a foundation for fruitful research directions in data science.

Our stability discussion in Section 3 provides new insights why ResNets [23], a commonly used
forward propagation scheme in deep learning, can be unstable. Our result is based on a continuous
interpretation of ResNets as a system of nonlinear ODEs and a standard stability argument. We
provide an intuitive example that shows how the spectral properties of the transformation matrix
determine whether gradients explode, vanish, or are stable. Based on our findings and numerical
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input ”0”

input ”8”

propagated ”0”

propagated ”8”

weights for ”0”

weights for ”8”

Figure 7: Classification results for the MNIST data set (see Section 6.4) using an anti-symmetric
ResNet with N = 16 layers and 6 neurons. We show two randomly chosen input images, their
propagated versions at the output layer, and the classification weights for the two digits shown.
The smoothness enforced by the second-order regularization operator is evident in the weights.

experience, we argue that it is desirable to restrict ResNets to matrices whose real parts of the
spectrum are close to zero. We also emphasize that the well-posedness of the learning problem in
ResNets relies on sufficiently small time steps.

Based on our theoretical considerations, we propose three new forward propagation methods in
Section 4 that lead to well posed learning problems for arbitrarily deep networks. The first one is a
simple modification of ResNet that applies a linear transformation to the transformation matrices
to annihilate the real parts of their eigenvalues. The other two methods are inspired by Hamiltonian
systems and provide alternative ways to preserve in information in the forward propagation. The
Hamiltonian networks require special integration techniques; see [2] for details on their treatment.
The second-order forward propagation is discretized using the leapfrog method and the first-order
propagation uses the Verlet method. While the leapfrog method requires matrices with non-positive
real eigenvalues the Verlet method does not require any restrictions and yields the best performance
in our numerical experiments.

Our approach to stabilize the learning problem for very deep architectures differs significantly
from existing approaches, e.g., batch normalization [26]. The idea in batch normalization is to
add hidden layers that rescale the propagated features to prevent vanishing or exploding gradients
and to improve overall conditioning of the optimization problem; see [7, Sec. 6]. The scaling
coefficients are estimated during the stochastic optimization using mini-batches. Thus, the output
values of the network are affected by the selection of the batches, which introduces additional noise
in the stochastic optimization scheme [7]. By design, our proposed methods ensure that the overall
scaling of features is preserved, which is why batch normalization is not applied in our numerical
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experiments.
To improve the ability to generalize and simplify training deep networks, we also propose new

regularization approaches that depend on our continuous formulation of the problem. We use
derivative-based regularizers to favor smooth time dynamics and, for image classification problems,
smooth classification weights. As additional regularization, we employ a multi-level learning strat-
egy that gradually increases the depth of the network. In our experiments this approach has been a
simple yet effective way to obtain good initializations for the learning problems. Our regularization
methods are commonly used in imaging science, e.g., image registration [32], however, to the best
of our knowledge not commonly employed in deep learning.

We illustrate our methods using three academic test problems with available ground-truth and
the MNIST problem [31], which is a commonly used benchmark problem for image classifica-
tion. Our experiments show that the proposed new architectures yield results that are competitive
with the established ResNet architecture. This is particularly noteworthy for the proposed anti-
symmetric ResNet, where we restrict the dimensionality of the search space to ensure stability.

By establishing a link between deep learning and dynamic inverse problems, we are positive
that this work will stimulate further research by both communities. An important item of future
work is investigating the impact of the proposed architectures on the performance of learning
algorithms. Currently, stochastic gradient descent [35] is commonly used to train deep neural
networks due to its computational efficiency and empirical evidence supporting its generalizations.
A specific question is if the improvements in the forward propagation and regularization proposed
in this paper will lead to better generalization properties of subsampled second-order methods such
as [9, 36]. Another thrust of future work is the development of automatic parameter selection
strategies for deep learning based on the approaches presented, e.g., in [16, 22, 39, 20, 15]. A
particular challenge in this application is the nontrivial relationship between the regularization
parameters chosen for the classification and forward propagation parameters.
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