
S4: Distributed Stream Computing Platform

Leonardo Neumeyer
Yahoo! Labs

Santa Clara, CA
neumeyer@yahoo-inc.com

Bruce Robbins
Yahoo! Labs

Santa Clara, CA
robbins@yahoo-inc.com

Anish Nair
Yahoo! Labs

Santa Clara, CA
anishn@yahoo-inc.com

Anand Kesari
Yahoo! Labs

Santa Clara, CA
anands@yahoo-inc.com

Abstract—S4 is a general-purpose, distributed, scalable, par-
tially fault-tolerant, pluggable platform that allows program-
mers to easily develop applications for processing continuous
unbounded streams of data. Keyed data events are routed with
affinity to Processing Elements (PEs), which consume the events
and do one or both of the following: (1) emit one or more events
which may be consumed by other PEs, (2) publish results.
The architecture resembles the Actors model [1], providing
semantics of encapsulation and location transparency, thus
allowing applications to be massively concurrent while exposing
a simple programming interface to application developers. In
this paper, we outline the S4 architecture in detail, describe
various applications, including real-life deployments. Our de-
sign is primarily driven by large scale applications for data
mining and machine learning in a production environment.
We show that the S4 design is surprisingly flexible and lends
itself to run in large clusters built with commodity hardware.

Keywords-actors programming model; complex event pro-
cessing; concurrent programming; data processing; distributed
programming; map-reduce; middleware; parallel program-
ming; real-time search; software design; stream computing

I. INTRODUCTION

S4 (Simple Scalable Streaming System) is a distributed
stream processing engine inspired by the MapReduce model.
We designed this engine to solve real-world problems in
the context of search applications that use data mining and
machine learning algorithms. Current commercial search
engines, such as Google, Bing, and Yahoo!, typically provide
organic web results in response to user queries and then
supplement with textual advertisements that provide revenue
based on a “cost-per-click” billing model [2]. To render
the most relevant ads in an optimal position on the page,
scientists develop algorithms that dynamically estimate the
probability of a click on the ad given the context. The context
may include user preferences, geographic location, prior
queries, prior clicks, etc. A major search engine may process
thousands of queries per second, which may include several
ads per page. To process user feedback, we developed S4,
a low latency, scalable stream processing engine.

To facilitate experimentation with online algorithms, we
envisioned an architecture that could be suitable for both
research and production environments. The main require-
ment for research is to have a high degree of flexibility
to deploy algorithms to the field very quickly. This makes
it possible to test online algorithms using live traffic with

minimal overhead and support. The main requirements for a
production environment are scalability (ability to add more
servers to increase throughput with minimal effort) and high
availability (ability to achieve continuous operation with no
human intervention in the presence of system failures). We
considered extending the open source Hadoop platform to
support computation of unbound streams but we quickly
realized that the Hadoop platform was highly optimized for
batch processing. MapReduce systems typically operate on
static data by scheduling batch jobs. In stream computing,
the paradigm is to have a stream of events that flow into
the system at a given data rate over which we have no
control. The processing system must keep up with the
event rate or degrade gracefully by eliminating events, this
is typically called load shedding. The streaming paradigm
dictates a very different architecture than the one used in
batch processing. Attempting to build a general-purpose
platform for both batch and stream computing would result
in a highly complex system that may end up not being
optimal for either task. An example of a MapReduce online
architecture built as an extension of Hadoop can be found
in [3].

The MapReduce programming model makes it possible to
easily parallelize a number of common batch data processing
tasks and operate in large clusters without worrying about
system issues like failover management [4]. With the surge
of open source projects such as Hadoop [5], adoption of
the MapReduce programming model has accelerated and is
moving from the research labs into real-world applications
as diverse as web search, fraud detection, and online dating.
Despite these advances, there is no similar trend for general-
purpose distributed stream computing software. There are
various projects and commercial engines ([6], [7], [8], [9],
[10]), but their use is still restricted to highly specialized
applications. Amini et. al. [7] provide a review of the various
systems.

The emergence of new applications such as real-time
search, high frequency trading, and social networks is push-
ing the limits of what can be accomplished with traditional
data processing systems [11]. There is a clear need for
highly scalable stream computing solutions that can operate
at high data rates and process massive amounts of data.
For example, to personalize search advertising, we need to



process thousands of queries per second from millions of
unique users in real-time, which typically involves analyzing
recent user activity such as queries and clicks. We found that
user session features can increase the accuracy of the models
used to predict ad relevance. This performance improvement
is used to improve the relevance of the ads shown to each
individual user [12]. S4 addresses the need for a general-
purpose distributed stream computing platform.

It is worth mentioning that many real world systems
implement a streaming strategy of partitioning the input data
into fixed-size segments that are processed by a MapReduce
platform. The disadvantage of this approach is that the
latency is proportional to the length of the segment plus
the overhead required to do the segmentation and initiate
the processing jobs. Small segments will reduce latency,
add overhead, and make it more complex to manage inter-
segment dependencies (eg. A segment may need information
from prior segments). On the other hand, large segments
would increase latency. The optimal segment size will de-
pend on the application. Rather than trying to fit a square
peg into a round hole we decided to explore a programming
paradigm that is simple and can operate on data streams in
real-time. The design goals were as follows:

• Provide a simple Programming Interface for processing
data streams.

• Design a cluster with high availability that can scale
using commodity hardware.

• Minimize latency by using local memory in each pro-
cessing node and avoiding disk I/O bottlenecks.

• Use a decentralized and symmetric architecture; all
nodes share the same functionality and responsibilities.
There is no central node with specialized responsibil-
ities. This greatly simplifies deployment and mainte-
nance.

• Use a pluggable architecture to keep the design as
generic and customizable as possible.

• Make the design science friendly, that is, easy to
program and flexible.

To simplify the initial S4 design, we made the following
assumptions:

• Lossy failover is acceptable. Upon a server failure, pro-
cesses are automatically moved to a standby server. The
state of the processes, which is stored in local memory,
is lost during the handoff. The state is regenerated using
the input streams. Downstream systems must degrade
gracefully.

• Nodes will not be added to or removed from a running
cluster.

We found that these requirements are acceptable for
most of our applications. In the future, we plan to work
on solutions for applications where these limitations aren’t
acceptable.

The dual goals of allowing distributed operation on com-

modity hardware, and avoiding the use of shared memory
across the cluster led us to adopt the Actors model [1]
for S4. This model has a set of simple primitives and has
been proven to be effective at an industrial scale through its
use in a variety of frameworks [13]. In S4, computation is
performed by Processing Elements (PEs) and messages are
transmitted between them in the form of data events. The
state of each PE is inaccessible to other PEs; event emission
and consumption is the only mode of interaction between
PEs. The framework provides the capability to route events
to appropriate PEs and to create new instances of PEs. These
aspects of the design provide the properties of encapsulation
and location transparency.

The S4 design shares many attributes with IBM’s Stream
Processing Core (SPC) middleware [7]. Both systems are
designed for big data and are capable of mining information
from continuous data streams using user defined operators.
The main differences are in the architectural design. While
the SPC design is derived from a subscription model, the
S4 design is derived from a combination of MapReduce and
the Actors model. We believe that the S4 design achieves
a much greater level of simplicity due to its symmetry; all
nodes in the cluster are identical and there is no centralized
control. As we will show, this is accomplished by leveraging
ZooKeeper [14], a simple and elegant cluster management
service, that can be shared by many systems in the data
center.

II. DESIGN

We define a stream as a sequence of elements (”events”)
of the form (K, A) where K, and A are the tuple-valued
keys and attributes repectively [9]. Our goal is to design a
flexible stream computing platform which consumes such
a stream, computes intermediate values, and possibly emits
other streams in a distributed computing environment. This
section contains an example application, followed by de-
tailed descriptions of the various components of S4.

A. Example

In the example described in Figure 1, input events contain
a document with a quotation in English. The task is to
continuously produce a sorted list of the top K most frequent
words across all documents with minimal latency. Quote
events are sent to S4 with no key. The QuoteSplitterPE
object (PE1) listens for Quote events that have no key.
QuoteSplitterPE is a keyless PE object that processes
all Quote events. For each unique word in a document,
the QuoteSplitterPE object will assign a count and
emit a new event of type WordEvent, keyed on word.
WordCountPE objects listen for WordEvent events emit-
ted with key word. For example, the WordCountPE
object for key word=“said” (PE2) receives all events
of type WordEvent keyed on word=“said”. When a
WordEvent event for key word=“said” arrives, S4 looks



up the WordCountPE object using the key word=“said”. If
the WordCountPE object exists, the PE object is called and
the counter is incremented, otherwise a new WordCountPE
object is instantiated. Whenever a WordCountPE object
increments its counter, it sends the updated count to a
SortPE object. The key of the SortPE object is a ran-
dom integer in [1, n], where n is the desired number of
SortPE objects. Once a WordCountPE object chooses
a sortID, it uses that sortID for the rest of its existence.
The purpose of using more than one SortPE object is
to better distribute the load across several nodes and/or
processors. For example, the WordCountPE object for key
word=“said” sends an UpdatedCountEvent event to a
SortPE object with key sortID=2 (PE5). Each SortPE
object updates its top K list as UpdatedCountEvent
events arrive. Periodically, each SortPE sends its partial
top K lists to a single MergePE object (PE8), using an
arbitrary agreed upon key, in this example topK=1234. The
MergePE object merges the partial lists and outputs the
latest authoritative top K list.

B. Processing Elements

Processing Elements (PEs) are the basic computational
units in S4. Each instance of a PE is uniquely identified
by four components: (1) its functionality as defined by a PE
class and associated configuration, (2) the types of events that
it consumes, (3) the keyed attribute in those events, and (4)
the value of the keyed attribute in events which it consumes.
Every PE consumes exactly those events which correspond
to the value on which it is keyed. It may produce output
events. Note that a PE is instantiated for each value of the
key attribute. This instantiation is performed by the platform.
For example, in the word counting example, WordCountPE
is instantiated for each word in the input. When a new word
is seen in an event, S4 creates a new instance of the PE
corresponding to that word.

A special class of PEs is the set of keyless PEs, with
no keyed attribute or value. These PEs consume all events
of the type with which they are associated. Keyless PEs
are typically used at the input layer of an S4 cluster where
events are assigned a key.

Several PEs are available for standard tasks such as count,
aggregate, join, and so on. Many tasks can be accomplished
using standard PEs which require no additional coding. The
task is defined using a configuration file. Custom PEs can
easily be programmed using the S4 software development
tools.

In applications with a large number of unique keys, it
may be necessary to remove PE objects over time. Perhaps
the simplest solution is to assign a Time-to-Live (TTL) to
each PE object. If no events for that PE object arrive within
a specified period of time, the PE becomes eligible for
removal. When system memory is reclaimed, the PE object
is removed and prior state is lost (in our example, we would

QuoteSplitterPE (PE1) counts unique 
words in Quote and emits events for 
each word.

A keyless event (EV) arrives at PE1 with quote: 
“I meant what I said and I said what I meant.”, Dr. SeussEV Quote

KEY null
VAL quote="I ..."

EV WordEvent
KEY word="i"
VAL count=4

EV WordEvent
KEY word="said"
VAL count=2

MergePE (PE8) combines partial 
TopK lists and outputs final 
TopK list.

EV PartialTopKEv
KEY topk=1234
VAL words={w:cnt}

PE1

PE2

PE5

PE3 PE4

PE6 PE7

PE8

EV UpdatedCountEv
KEY sortID=2
VAL word=said count=9

EV UpdatedCountEv
KEY sortID=9
VAL word="i" count=35

WordCountPE (PE2-4) 
keeps total counts for 
each word across all 
quotes. Emits an event 
any time a count is 
updated.

SortPE (PE5-7) 
continuously sorts partial 
lists. Emits lists at periodic 
intervals

PE1 QuoteSplitterPE null
PE2 WordCountPE word="said"
PE4 WordCountPE word="i"

PE7 SortPE sortID=9

PE ID PE Name Key Tuple

PE5 SortPE sortID=2

PE8 MergePE topK=1234

Figure 1. Word Count Example

lose the count for that word). This memory management
strategy is simple but not the most efficient. To maximize
quality of service (QoS), we should ideally remove PE
objects based on the available system memory and the
impact the object may have on the overall performance of
the system. We envision a solution where PE objects can
provide the priority or importance of the object. This value is
application specific, hence the logic should be implemented
by the application programmer.

C. Processing Node

Processing Nodes (PNs) are the logical hosts to PEs. They
are responsible for listening to events, executing operations
on the incoming events, dispatching events with the as-
sistance of the communication layer, and emitting output
events (Figure 2). S4 routes each event to PNs based on a
hash function of the values of all known keyed attributes in
that event. A single event may be routed to multiple PNs.
The set of all possible keying attributes is known from the
configuration of the S4 cluster. An event listener in the PN
passes incoming events to the processing element container
(PEC) which invokes the appropriate PEs in the appropriate
order.

There is a special type of PE object: the PE prototype. It
has the first three components of its identity (functionality,
event type, keyed attribute); the attribute value is unassigned.
This object is configured upon initialization and, for any
value V, it is capable of cloning itself to create fully qualified
PEs of that class with identical configuration and value V



Figure 2. Processing Node

for the keyed attribute. This operation is triggered by the
PN once for each unique value of the keyed attribute that it
encounters.

As a consequence of the above design, all events with
a particular value of a keyed attribute are guaranteed to
arrive at a particular corresponding PN, and be routed to
the corresponding PE instances withn it. Every keyed PE
can be mapped to exactly one PN based on the value of the
hash function applied to the value of the keyed attribute of
that PE. Keyless PEs may be instantiated on every PN.

D. Communication Layer

The communication layer provides cluster management
and automatic failover to standby nodes and maps physical
nodes to logical nodes. It automatically detects hardware
failures and accordingly updates the mapping [15].

Emitters specify only logical nodes when sending mes-
sages. Emitters are unaware of physical nodes or when
logical nodes are re-mapped due to failures.

The communication layer API provides bindings in sev-
eral languages (e.g, Java, C++). Legacy systems can use the
communication layer API to send input events in a round-
robin fashion to nodes in an S4 cluster. These input events
are then processed by keyless PEs.

The communication layer uses a pluggable architecture to
select network protocol. Events may be sent with or without
a guarantee. Control messages may require guaranteed deliv-
ery while data may be sent without a guarantee to maximize
throughput.

The communication layer uses ZooKeeper [16] to help
coordinate between nodes in an S4 cluster. ZooKeeper is
an open source subproject of Hadoop maintained. It is a
distributed coordination service for distributed applications.

E. Configuration Management System

We envision a management system where human oper-
ators can set up and tear down clusters for S4 tasks, and
perform other administrative operations. The assignment of
physical nodes to these S4 task clusters is coordinated using

ZooKeeper [16]. A subset of active nodes are assigned
to particular tasks, while the remaining idle nodes remain
in a pool which can be used as needed (e.g. failover, or
dynamic load balancing). In particular, an idle node may be
registered as a standby for multiple active nodes which may
be assigned to distinct tasks.

III. PROGRAMMING MODEL

The high-level programming paradigm is to write generic,
reusable and configurable processing elements that can be
used across various applications. Developers write PEs in
the Java programming language. PEs are assembled into
applications using the Spring Framework.

The processing element API is fairly simple and flexible.
Developers essentially implement two primary handlers:
an input event handler processEvent() and an output
mechanism output(). In addition, developers can define
some state variables for the PE. processEvent() is
invoked for each incoming event of the types the PE has
subscribed to. This method implements the logic for input
event handling, typically an update of the internal PE state.
The output() method is an optional method that can be
configured to be invoked in a variety of ways. It can be
invoked either at regular time intervals t, or on receiving
n input events. This also means it can be invoked on every
incoming event, in the case where n=1. The output()
method implements the output mechanism for the PE, typ-
ically to publish internal state of the PE to some external
system.

We demonstrate this with an example. Consider a PE that
subscribes to an event stream of user search queries, counts
instances for each query since the beginning and intermit-
tently writes out the counts to an external persister. The
event stream consists of events of type QueryEvent. The
class QueryCounterPE implements processEvent()
and output() as described in Figure 3. In this case,
queryCount is the internal PE state variable that holds
the count for the query corresponding to this PE. Finally,
the configuration for the PE is described in Figure 4. In this
case, the keys property tells us that QueryCounterPE
subscribes to events of type QueryEvent and is keyed
on the attribute queryString from the event. The con-
figuration ties the PE to a data persistence component
externalPersister (this could be an abstraction for
a data serving system) and instructs the output() method
to be invoked every 10 minutes.

IV. PERFORMANCE

We introduce a real-world benchmark application, de-
scribe how we approached the problem in S4, and present
some performance results.



Figure 3. Excerpt from QueryCounterPE.java
private queryCount = 0;

public void processEvent(Event event)
{
queryCount ++;

}

public void output()
{
String query = (String) this.getKeyValue().get(0);
persister.set(query, queryCount);

}

Figure 4. Excerpt from QueryCounterPE.xml
<bean id="queryCounterPE"

class="com.company.s4.processor.QueryCounterPE">
<property name="keys">

<list>
<value>QueryEvent queryString</value>

</list>
</property>
<property name="persister" ref="externalPersister">
<property name="outputFrequencyByTimeBoundary"

value="600"/>
</bean>

A. Streaming Click-Through Rate Computation

User clicks are one of the most valuable user behaviors
on the web. They provide immediate feedback on the pref-
erences and engagement of the user which can be used
to improve user experience by showing the most popular
items in more prominent positions. In the case of search
advertising that use a pay-per-click revenue model, publish-
ers, agencies, and advertisers determine payments based on
click counts. Click-through rate (CTR) is the ratio of the
number of clicks divided by the number of ad impressions.
When sufficient historical data is available, CTR is a good
estimate of the probability that a user will click on an item.
Precisely because clicks are an invaluable variable for using
in personalization and ranking, it is also subject to click
fraud. Click fraud could be used to manipulate ranking in a
search engine. Click fraud is typically implemented by using
malicious software running on remote computers (bots) or
groups of computers (botnets). Another potential threat is
impression spam, that is, requests originated by bots. Some
of these requests may not be malicious in nature but could
affect CTR estimations.

In this example (Figure 5), we show how to use S4 to
measure CTR in real-time. In the context of search adver-
tising, a user query is processed by the ad engine, returning
a ranked list of ads. In the example, we measure CTR in
real-time for each query-ad combination. To eliminate click
and impression noise, we use a set of heuristic rules to
eliminate suspicious serves and clicks. (In this example, a
serve corresponds to a user query and is assigned a unique
ID. For each serve, a search results page is returned to
the user who may or may not click on hyperlinks. Clicks
associated with that page are tagged with the same unique

ID.)
Serve events contain data pertaining to the serve, eg. the

serve ID, query, user, ads, etc. The click events, on the
other hand, only contain information about the click, and
additionally the serve ID of the serve associated with the
click. To compute CTR at the query-ad level in S4, we need
to route click and serve events using a key composed of the
query and ad ids. If the click payload doesn’t include query
and ad information, we need to do a join by serve ID prior to
routing the events with query-ad as the key. Once joined,
the events must pass through a bot filter. Finally, serves and
clicks are aggregated to compute CTR. A snapshot of the
event flow is shown in Figure 5.

PE1

PE2

PE3

PE4

JoinPE: Joins clicks/
serve join using the key 
"serve"

BotFilterPE: Uses 
stateless and stateful 
rules to filter events

CTRPE counts clean serves 
and clicks using a sliding 
window. Computes CTR 
and other click metricsOutput events are directed 

to a data server or any 
other listener.

Emit "clean" events using 
a composite key. (eg. 
query="ipod", adID = 
"78")

EV RawServe
KEY null
VAL Serve Data

EV RawClick
KEY null
VAL Click Data

EV Serve
KEY serve=123
VAL Serve Data

EV Click
KEY serve=123
VAL Click Data

EV JoinedServe
KEY user=Peter
VAL Joined Data

EV JoinedClick
KEY user=Peter
VAL Joined Data

EV FilteredServe
KEY q-ad=ipod-78
VAL Joined Data

EV FilteredClick
KEY q-ad=ipod-78
VAL Joined Data

EV Q-Ad-CTR
KEY q-ad=ipod-78
VAL Joined Data

RouterPE: Routes 
keyless input events

PE1 RouterPE null
PE2 JoinPE serve=123
PE3 BotFilterPE user="Peter"

PE ID PE Name Key Tuple

PE4 CTRPE q-ad=ipod-78

Figure 5. CTR computation

B. Experimental Setup

1) Online Experiment: We ran the streaming click-
through rate (CTR) on a random sample of live search
traffic. To ensure consistent experience, search engine users
where assigned to the experiment randomly but fixed based
on a hash of their browser cookies. On average, about one
million searches per day were issued by 250,000 users. The
experiment ran for two weeks. The peak observed event rate
during this experiment was 1600 events per second. The



experimental cluster consisted of 16 servers, each with 4
32-bit processors and 2 GB of memory.

The task was to compute click-through rate (CTR) for a
query and advertisement combination with very low latency.
The CTR was aggregated over a sliding rectangular window
of 24 hours. This was implemented by dividing the window
into “slots” of 1 hour each and aggregating clicks and
impressions for each slot. Subsequently, on the hour, the
aggregations from slots within the window were added up
and pushed out to a serving system. This method is quite
efficient with respect to memory usage, but the trade-off is
in update latency. With more memory, we could maintain
finer grained slots, eg., 5 minutes and reduce the update
latency. The system, as implemented, provided short term
CTR estimates, which were then combined with longer term
CTR estimates. In the case of a PN failure, we lose the data
in that node, and no short term estimates will be available
for the query/advertisement instances that happen to be
partitioned to that node. In this case, our failover strategy is
to back off to the long term estimates.

2) Offline Experiment: We also ran an offline stress test,
in which we setup a test cluster of 8 servers, each with 4
64-bit processors and 16 GB of memory. We run 16 PN’s
on these machines, with 2 on each. We used real click and
serve data from logs of search traffic. We recreated click and
serve events and computed the real CTR of search queries,
which we use as gold standard for the accuracy tests. The
event data consisted of 3 million serves and clicks.

C. Results

The experiment on live traffic showed that we can improve
CTR by about 3% with no loss in revenue, primarily through
detecting low quality ads very quickly and filtering them out.

The offline stress test was aimed at evaluating the per-
formance of the system under event rates far beyond the
expected operating point. On the test cluster we described
above, we streamed offline generated events through the
S4 grid, in a sequence of runs at progressively increasing
event rates. At the end of each run, we compare the CTR’s
estimated by the system with the true CTR’s computed from
search logs. Figure 6 shows the results from this test.

Events per second Relative Error in CTR Data Rate
2000 0.0% 2.6 Mbps
3644 0.0% 4.9 Mbps
7268 0.2% 9.7 Mbps

10480 0.4% 14.0 Mbps
12432 0.7% 16.6 Mbps
14900 1.5% 19.9 Mbps
16000 1.7% 21.4 Mbps
20000 4.2% 26.7 Mbps

Figure 6. Relative Error of CTR Estimate

The system showed signs of degrading at about 10 Mbps.

The source of degradation was due to the fact that the S4
grid could not process the event stream fast enough at this
rate, hence causing event loss.

V. APPLICATION: ONLINE PARAMETER OPTIMIZATION

In this section, we introduce a real-life practical applica-
tion of S4: an online parameter optimization (OPO) system
[17], for automating tuning of one or more parameters of
a search advertising system using live traffic. The system
removes the need for manual tuning and constant human
intervention, while searching a larger parameter space in
less time than was possible by manual searches. The system
ingests events emitted by the target system (in our case, the
search advertising system), measures performance, applies
an adaptation algorithm to determine new parameters, and
injects the new parameters back into the target system. This
closed loop approach is similar in principle to traditional
control systems.

A. Functional design

We assume the target system (TS) produces output that
can be represented as a stream and has measurable perfor-
mance in the form of a configurable objective function (OF).

We set aside 2 randomly-assigned slices of the output
stream of the target system as slice1 and slice2.
We require that the target system has the ability to apply
different parameter values in each slice and that each slice
can be identified as such in the output stream.

The online parameter optimization system (OPO) has 3
high-level functional components: measurement, comparator
and optimizer.

1) Measurement: The measurement component ingests
the slice1 and slice2 streams of the TS and measures
the value of OF in each slice. The OF is measured for the
duration of a slot. A slot can either be specified in units of
time of in terms of event counts of the output stream.

2) Comparator: The comparator component takes as
input the measurements produced by the measurement com-
ponent and determines if and when there is a statistically
significant difference in performance between the slice1
and slice2 slices. When it determines a significant differ-
ence, it sends a message to the optimizer. If no difference is
detected after a specified number of measurement slots, the
slices are declared as equal.

3) Optimizer: The optimizer implements the adaptation
strategy. It takes as input the history of parameter influences,
including the latest output of the comparator, and outputs
new parameter values for both the slice1 and slice2
slices, thus signaling the start of a new “experiment cycle”.

B. S4 implementation

Figure 7 describes the implementation of the OPO system
in S4. The 3 functional components were implemented



PE1

PE2

PE4

RouterPE (PE1) re-routes EV to PE2,3 based 
on the sliceID

EV TSEvent
KEY sliceID="slice1"
VAL stateinfo

A keyless event (EV) from target system (TS)
arrives to PE1 with payload containing some state 
information about TS, including the sliceID

PE3

EV TSEvent
KEY null
VAL stateinfo

OptimizerPE (PE5) runs adaptation strategy, 
maintains history of experiments and 
outputs parameters back to TS

EV OptimizeEvent
KEY comparisonId="slice1:slice2"

VAL UF history

MeasurementPE (PE2,3) computes UF 
and outputs events keyed on 
comparisonID

PE5

EV MetricsEvent
KEY comparisonID="slice1:slice2"

VAL UF for 'slice1' ComparatorPE (PE4) aims to determine significant 
difference between 'slice1' and 'slice2', and emits 
OptimizeEvent keyed on comparisonID when it does

EV TSEvent
KEY sliceID="slice2"
VAL stateinfo

EV MetricsEvent
KEY comparisonID="slice1:slice2"

VAL UF for 'slice2'

PE1 RouterPE null
PE2 MeasurementPE sliceID="slice1"
PE3 MeasurementPE sliceID="slice2"

PE5 OptimizerPE comparisonID="slice1:slice2"

PE ID PE Name Key Tuple

PE4 ComparatorPE comparisonID="slice1:slice2"

Figure 7. OPO implementation in S4

in the form of 3 PEs. The MeasurementPE is keyed
on a sliceID, and there is one instance for slice1
and slice2 each (for more advanced strategies, we can
easily extend this to more slices). Measurements of the
objective function were on slots of fixed time duration. The
ComparatorPE is keyed on a comparisonID, which
maps to a pair of slices, in our case, slice1:slice2.
The determination of statistically significant difference be-
tween slices was based on a dependent t-test for paired
measurements. It was configured to require a minimum
number of valid measurements. OptimizerPE is keyed on
slice1:slice2 as well. For the adaptation strategy, we
use a modified version of the Nelder-Mead (aka Amoeba)
algorithm [18]: a gradient-free minimization algorithm. The
parameters output by OPO are fed back to the search
advertising serving system. These parameter values control
aspects of the serving system, therefore resulting in different
user behavior.

C. Results

We ran the OPO system on real traffic slices of a search
advertising system. The goal was to improve system metrics
over the current parameter value (tuned using traditional
methods) as much as possible. The objective function was a
formulaic representation of revenue and user experience on
a search engine. The traffic slices were based on partitions
of search engine user space: each slice received traffic from

about 200,000 users per day. The system ran for two weeks,
trying to optimize a parameter known to have a significant
effect on search engine performance. The optimal parameters
generated by the OPO system demonstrated reasonable im-
provements in the primary measures of system performance:
revenue by 0.25% and click yield by 1.4%

D. Summary
We demonstrated the design and implementation of an

online parameter optimization system using S4. We applied
this system to tuning a search advertising system with
favorable results. This system can be applied to tune any
dynamic system (that satisfies a few requirements described
earlier) with tunable parameters.

VI. FUTURE WORK

The current system uses static routing, automatic failover
via ZooKeeper, but lacks dynamic load balancing and robust
live PE migration. We plan to incorporate these features.

VII. ACKNOWLEDGEMENTS

The authors would like to thank all the colleagues at Ya-
hoo! who supported and contributed to this project especially
Khaled Elmeleegy, Kishore Gopalakrishna, George Hu, Jon
Malkin, Benjamin Reed, Stefan Schroedl, and Pratyush Seth.
We are also grateful to Yahoo! for making the S4 source
code freely available to the community at large under the
Apache License, Version 2.0 [19].



REFERENCES

[1] G. Agha, Actors: A Model of Concurrent Computation in
Distributed Systems. Cambridge, MA, USA: MIT Press,
1986.

[2] B. Edelman, M. Ostrovsky, and M. Schwarz, “Internet ad-
vertising and the generalized second-price auction: Selling
billions of dollars worth of keywords,” American Economic
Review, vol. 97, no. 1, pp. 242–259, 2007.

[3] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears, “MapReduce online,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-136, Oct 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-136.html

[4] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[5] Apache Hadoop. http://hadoop.apache.org/.

[6] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[7] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen, R. King,
P. Selo, Y. Park, and C. Venkatramani, “SPC: a distributed,
scalable platform for data mining,” in DMSSP ’06: Pro-
ceedings of the 4th international workshop on Data mining
standards, services and platforms. New York, NY, USA:
ACM, 2006, pp. 27–37.

[8] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik,
“The Design of the Borealis Stream Processing Engine,” in
CIDR, 2005, pp. 277–289.

[9] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik,
“Aurora: A new model and architecture for data stream
management,” The VLDB Journal, vol. 12, no. 2, pp. 120–
139, 2003.

[10] Streambase. http://streambase.com/.

[11] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 re-
quirements of real-time stream processing,” SIGMOD Rec.,
vol. 34, no. 4, pp. 42–47, 2005.

[12] S. Schroedl, A. Kesari, and L. Neumeyer, “Personalized ad
placement in web search,” in ADKDD ’10: Proceedings of
the 4th Annual International Workshop on Data Mining and
Audience Intelligence for Online Advertising, 2010.

[13] R. K. Karmani, A. Shali, and G. Agha, “Actor frameworks
for the JVM platform: a comparative analysis,” in PPPJ ’09:
Proceedings of the 7th International Conference on Principles
and Practice of Programming in Java. New York, NY, USA:
ACM, 2009, pp. 11–20.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,
“ZooKeeper: wait-free coordination for internet-scale sys-
tems,” in USENIXATC’10: Proceedings of the 2010 USENIX
conference on USENIX annual technical conference. Berke-
ley, CA, USA: USENIX Association, 2010, pp. 11–11.

[15] K. Gopalakrishna, G. Hu, and P. Seth, “Communication layer
using ZooKeeper,” Yahoo! Inc., Tech. Rep., 2009.

[16] Apache ZooKeeper. http://hadoop.apache.org/zookeeper/.

[17] J. Malkin, S. Schroedl, A. Nair, and L. Neumeyer, “Tuning
Hyperparameters on Live Traffic with S4,” in TechPulse 2010:
Internal Yahoo! Conference, 2010.

[18] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer Journal, vol. 7, pp. 308–313, 1965.

[19] The S4 Open Source Project. http://s4.io/.


