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Text Questions to Twitter Account

JenniferE CF
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Example Code in R

All the R Code is Hosted –includes additional code examples–

www.clickfox.com/ds rcode
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Data Science a Brief Overview
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What is Data Science?

The meticulous process of iterative testing,
proving, revising, retesting, resolving, redoing,

programming (because you got smart here and thought automate),
debugging, recoding, debugging, tracing, more debugging,

documenting (maybe should have started here...)
analyzing results, some tweaking, some researching,

some hacking, and start over.
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Data Science at Clickfox
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Data Science at Clickfox

Software Development

Activly engaged in development of product capabilities in ClickFox
Experience Analytics Platform (CEA).

Client Specific Analytics

Engagements in client specific projects.

Force Multipliers

Focus on enabling everyone to be more effective at using data to make
decisions.
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Will it Rain Tomorrow?
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Data Preparation
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Receive the Data

Raw Data
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Data Munging

Begin Creating Analytic Data Set
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Data Munging

Data Munging and Meta Data Creation
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Data Preparation

Checking that Data Quality has been Preserved
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Bad Data

Types of bad data

missing, unknown, does not exist

inaccurate, invalid, inconsistent - false records, or wrong information

corrupt, wrong character encoding

poor interpretation, often because lack of context.

polluted - too much data and overlook what is important
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Bad Data

A lot can go wrong in the data collection process, the data storage
process, and the data analysis process.

Nephew and the movie survey

Protection troops and flooded with information, overlooked that the
group gathering nearby was women and children aka. Civilians.

Manufacturing with acceptable variance, but every so often the
measurement machine was bumped, causing miss measurements

Chemists were meticulous about data collection, but inconsistent with
data storage. Used flat files and spreadsheets. They did not have a
central data center. The data base grew over time. e.g. Threshold
limits listed as zero and less than some threshold number.
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Bad Data

Parrot helping you write code...
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Not to mention all the things that we can do to really
screw things up.
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“The combination of some data and an aching
desire for an answer does not ensure that a
reasonable answer can be extracted from a given
body of data”

˜John Tukey
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Final Analytic Data Set
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Will it Rain Tomorrow?

Will it Rain Tomorrow?

Example (Variables)

1 > names(ds)

2 [1] "Date" "Location" "MinTemp" "MaxTemp"

3 [5] "Rainfall" "Evaporation" "Sunshine" "WindGustDir"

4 [9] "WindGustSpeed" "WindDir9am" "WindDir3pm" "WindSpeed9am"

5 [13] "WindSpeed3pm" "Humidity9am" "Humidity3pm" "Pressure9am"

6 [17] "Pressure3pm" "Cloud9am" "Cloud3pm" "Temp9am"

7 [21] "Temp3pm" "RainToday" "RISK_MM" "RainTomorrow"
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Will it Rain Tomorrow?

Example (First Four Rows of Data)
Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir

1 2007-11-01 Canberra 8.0 24.3 0.0 3.4 6.3 NW

2 2007-11-02 Canberra 14.0 26.9 3.6 4.4 9.7 ENE

3 2007-11-03 Canberra 13.7 23.4 3.6 5.8 3.3 NW

4 2007-11-04 Canberra 13.3 15.5 39.8 7.2 9.1 NW

WindGustSpeed WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am

1 30 SW NW 6 20 68

2 39 E W 4 17 80

3 85 N NNE 6 6 82

4 54 WNW W 30 24 62

Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm

1 29 1019.7 1015.0 7 7 14.4 23.6

2 36 1012.4 1008.4 5 3 17.5 25.7

3 69 1009.5 1007.2 8 7 15.4 20.2

4 56 1005.5 1007.0 2 7 13.5 14.1

RainToday RISK_MM RainTomorrow

1 No 3.6 Yes

2 Yes 3.6 Yes

3 Yes 39.8 Yes

4 Yes 2.8 Yes
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Data Checking

Make sure that the values make sense in the context of the field.

Dates are in the date field.

A measurement field has numerical values

Counts of occurrences should be zero or greater.
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head(ds)

Date Loca t i on MinTemp MaxTemp R a i n f a l l Evapo ra t i on Sunsh ine WindGustDir
1 2007−11−01 Canber ra 8 . 0 24 .3 0 .0 3 .4 6 .3 NW
2 2007−11−02 Canber ra 14 .0 26 .9 3 .6 4 .4 9 .7 ENE
3 2007−11−03 Canber ra 13 .7 23 .4 3 .6 5 .8 3 .3 NW
4 2007−11−04 Canber ra 13 .3 15 .5 39 .8 7 .2 9 .1 NW
5 2007−11−05 Canber ra 7 . 6 16 .1 2 .8 5 .6 10 .6 SSE
6 2007−11−06 Canber ra 6 . 2 16 .9 0 .0 5 .8 8 .2 SE

WindGustSpeed WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am
1 30 SW NW 6 20 68
2 39 E W 4 17 80
3 85 N NNE 6 6 82
4 54 WNW W 30 24 62
5 50 SSE ESE 20 28 68
6 44 SE E 20 24 70

Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm
1 29 1019 .7 1015 .0 7 7 14 .4 23 .6
2 36 1012 .4 1008 .4 5 3 17 .5 25 .7
3 69 1009 .5 1007 .2 8 7 15 .4 20 .2
4 56 1005 .5 1007 .0 2 7 13 .5 14 .1
5 49 1018 .3 1018 .5 7 7 11 .1 15 .4
6 57 1023 .8 1021 .7 7 5 10 .9 14 .8

RainToday RISK MM RainTomorrow
1 No 3 .6 Yes
2 Yes 3 .6 Yes
3 Yes 39 .8 Yes
4 Yes 2 .8 Yes
5 Yes 0 .0 No
6 No 0 .2 No
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Data Checking

There are numeric and categoric variables.
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Data Checking

Check the max/min do they make sense? What are the
ranges? Do the numerical values need to be normalized?
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summary(ds)

Date Loca t i on MinTemp MaxTemp
Min . :2007−11−01 Canber ra :366 Min . :−5.300 Min . : 7 .60
1 s t Qu.:2008−01−31 Ade l a i d e : 0 1 s t Qu . : 2 .300 1 s t Qu . : 1 5 . 0 3
Median :2008−05−01 Albany : 0 Median : 7 .450 Median : 1 9 . 6 5
Mean :2008−05−01 A lbury : 0 Mean : 7 .266 Mean : 2 0 . 5 5
3 rd Qu.:2008−07−31 A l i c e S p r i n g s : 0 3 rd Qu . : 1 2 . 5 0 0 3 rd Qu . : 2 5 . 5 0
Max . :2008−10−31 BadgerysCreek : 0 Max . : 2 0 . 9 00 Max . : 3 5 . 8 0

( Other ) : 0
R a i n f a l l Evapo ra t i on Sunsh ine WindGustDir

Min . : 0 .000 Min . : 0 .200 Min . : 0 .000 NW : 73
1 s t Qu . : 0 .000 1 s t Qu . : 2 .200 1 s t Qu . : 5 .950 NNW : 44
Median : 0 .000 Median : 4 .200 Median : 8 .600 E : 37
Mean : 1 .428 Mean : 4 .522 Mean : 7 .909 WNW : 35
3 rd Qu . : 0 .200 3 rd Qu . : 6 .400 3 rd Qu . : 1 0 . 5 0 0 ENE : 30
Max . : 3 9 . 8 00 Max . : 1 3 . 8 00 Max . : 1 3 . 6 00 ( Other ) : 1 44

NA’ s : 3 NA’ s : 3
WindGustSpeed WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm
Min . : 1 3 . 0 0 SE : 47 WNW : 61 Min . : 0 .000 Min . : 0 .00
1 s t Qu . : 3 1 . 0 0 SSE : 40 NW : 61 1 s t Qu . : 6 .000 1 s t Qu . : 1 1 . 0 0
Median : 3 9 . 0 0 NNW : 36 NNW : 47 Median : 7 .000 Median : 1 7 . 0 0
Mean : 3 9 . 8 4 N : 31 N : 30 Mean : 9 .652 Mean : 1 7 . 9 9
3 rd Qu . : 4 6 . 0 0 NW : 30 ESE : 27 3 rd Qu . : 1 3 . 0 0 0 3 rd Qu . : 2 4 . 0 0
Max . : 9 8 . 0 0 ( Other ) : 1 51 ( Other ) : 1 39 Max . : 4 1 . 0 00 Max . : 5 2 . 0 0
NA’ s : 2 NA’ s : 31 NA’ s : 1 NA’ s : 7
Humidity9am Humidity3pm Pressure9am Pressure3pm

Min . : 3 6 . 0 0 Min . : 1 3 . 0 0 Min . : 996 .5 Min . : 996 .8
1 s t Qu . : 6 4 . 0 0 1 s t Qu . : 3 2 . 2 5 1 s t Qu . : 1 0 1 5 . 4 1 s t Qu . : 1 0 1 2 . 8
Median : 7 2 . 0 0 Median : 4 3 . 0 0 Median : 1 020 . 1 Median : 1 017 . 4
Mean : 7 2 . 0 4 Mean : 4 4 . 5 2 Mean : 1 019 . 7 Mean : 1 016 . 8
3 rd Qu . : 8 1 . 0 0 3 rd Qu . : 5 5 . 0 0 3 rd Qu . : 1 0 2 4 . 5 3 rd Qu . : 1 0 2 1 . 5
Max . : 9 9 . 0 0 Max . : 9 6 . 0 0 Max . : 1 035 . 7 Max . : 1 033 . 2

Cloud9am Cloud3pm Temp9am Temp3pm RainToday
Min . : 0 . 0 0 0 Min . : 0 . 0 0 0 Min . : 0 .100 Min . : 5 .10 No :300
1 s t Qu . : 1 . 0 0 0 1 s t Qu . : 1 . 0 0 0 1 s t Qu . : 7 .625 1 s t Qu . : 1 4 . 1 5 Yes : 66
Median : 3 . 5 0 0 Median : 4 . 0 0 0 Median : 1 2 . 5 50 Median : 1 8 . 5 5
Mean : 3 . 8 9 1 Mean : 4 . 0 2 5 Mean : 1 2 . 3 58 Mean : 1 9 . 2 3
3 rd Qu . : 7 . 0 0 0 3 rd Qu . : 7 . 0 0 0 3 rd Qu . : 1 7 . 0 0 0 3 rd Qu . : 2 4 . 0 0
Max . : 8 . 0 0 0 Max . : 8 . 0 0 0 Max . : 2 4 . 7 00 Max . : 3 4 . 5 0

RISK MM RainTomorrow
Min . : 0 .000 No :300
1 s t Qu . : 0 .000 Yes : 66
Median : 0 .000
Mean : 1 .428
3 rd Qu . : 0 .200
Max . : 3 9 . 8 00
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Data Checking

Plot variables against one another.
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R Code

Example (Scatterplot)

pairs(~MinTemp+MaxTemp+Rainfall+Evaporation, data = ds,

main="Simple Scatterplot Matrix")
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Simple Scatterplot Matrix
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Data Checking

Create a histogram of numerical values in a data field,
or kernel density estimate.
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R Code

Example (Histogram)

histogram(ds$MinTemp, breaks=20, col="blue")
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R Code

Example (Kernel Density Plot)

plot(density(ds$MinTemp))
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Data Checking

Kernel Density Plot for all Numerical Variables
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Data Checking

There are missing values in ’Sunshine’ and ’Wind-
Speed9am’.
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Data Checking

Missing and Incomplete

A common pitfall is to assume that you are working with data that is
correct and complete. Usually a round of simple checks will reveal any
problems; such as counting records, aggregating totals, plotting and
comparing to known quantities.
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Data Checking

Spillover of time-bound data

Check for duplicates - do not expect that data is perfectly partitioned.
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Algorithms
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“All models are wrong, some are useful.”

˜George Box
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Movie Selection Explanation

Difference between Decision Trees and Random Forest
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Movie Selection Explanation

Willow is a decision tree.
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Movie Selection Explanation

Willow does not generalize well, so you want to ask a few more friends.
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Random Friend

Rainbow Dash
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Random Friend

Cartman
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Random Friend

Stay Puff Marshmallow
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Random Friend

Professor Cat
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Movie Selection Explanation

Your friends are an ensebmble of decision trees. But you dont want them
all having the same information and giving the same answer.

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 67 / 164



Good and Bad Predictiors

Willow thinks you like vampire movies more than you do

Stay Puff thinks you like candy

Rainbowdash thinks you can fly

Cartman thinks you just hate everything

Professor Cat wants a cheeseburger
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Movie Selection Explanation

Thus, your friends now form a bagged (bootstrap aggregated) forest of
your movie preferences.
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Movie Selection Explanation

There is still one problem with your data. You don’t want all your friends
asking the same questions and basing their decisions on whether a movies
is scary or not. So when each friend asks a question, only a random subset
of the possible questions is allowed. About the square root of all variables.
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Conclusion

Random forest is just an ensemble of decision trees. Really bad, over-fit
beasts. A whole lot of trees that really have no idea about what is going
on, but we let them vote anyways. Their votes all cancel each other out.
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Random Forest Voting

Theorem (Bad Predictors Cancel Out)

Willow + Cartman + StayPuff + ProfCat + Rainbowdash =
AccutatePrediction
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Boosting and Bagging Technique

Bagging decision trees, an early ensemble method, builds multiple decision
trees by repeatedly resampling training data with replacement, and voting
the trees for a consensus prediction.
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Decision Trees
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There are a lot of tree algorithm choices in R.
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Trees in R

rpart (CART)

tree (CART)

ctree (conditional inference tree)

CHAID (chi-squared automatic interaction detection)

evtree (evolutionary algorithm)

mvpart (multivariate CART)

knnTree (nearest-neighbor-based trees)

RWeka (J4.8, M50, LMT)

LogicReg (Logic Regression)

BayesTree

TWIX (with extra splits)

party (conditional inference trees, model-based trees)
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There are a lot of forest algorithm choices in R.
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Forests in R

randomForest(CART-based random forests)

randomSurvivalForest(for censored responses)

party(conditional random forests)

gbm(tree-based gradient boosting)

mboost(model-based and tree-based gradient boosting)
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There are a lot of other ensemble methods and useful
packages in R.
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Other Useful R Packages

library(rattle) #Fancy tree plot, nice graphical interface

library(rpart.plot) #Enhanced tree plots

library(RColorBrewer) #Color selection for fancy tree plot

library(party) #Alternative decision tree algorithm

library(partykit) #Convert rpart object to BinaryTree

library(doParallel)

library(caret)

library(ROCR)

library(Metrics)

library(GA) #genetic algorithm, this is the most popular EA
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R Code

Example (Useful Commands)
1 #summary functions

2 dim(ds)

3 head(ds)

4 tail(ds)

5 summary(ds)

6 str(ds)

7

8 #list functions in package party

9 ls(package:party)

10

11 #save plots as pdf

12 pdf("plot.pdf")

13 fancyRpartPlot(model)

14 dev.off()

15
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Knowing your Algorithm
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Classification and Regression Tree

Choose the best split from among the candidate set. Rank order each
splitting rule on the basis of some quality-of-split criterion ‘purity’
function. The most frequently used ones are:

Entropy reduction (nominal / binary targets)

Gini-index (nominal / binary targets)

Chi-square tests (nominal / binary targets)

F-test (interval targets)

Variance reduction (interval targets)
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CART

Locally-Optimal Trees

Commonly use a greedy heuristic, where split rules are selected in a
forward stepwise search. The split rule at each internal node is selected to
maximize the homogeneity of only its child nodes.
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Example Code in R
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Example Code in R

Example (R Packages Used for Example Code)

1 library(rpart) #Popular decision tree algorithm

2 library(rattle) #Fancy tree plot, nice graphical interface

3 library(rpart.plot) #Enhanced tree plots

4 library(RColorBrewer) #Color selection for fancy tree plot

5 library(party) #Alternative decision tree algorithm

6 library(partykit) #Convert rpart object to BinaryTree

7 library(RWeka) #Weka decision tree J48

8 library(evtree) #Evolutionary Algorithm, builds the tree from the bottom up

9 library(randomForest)

10 library(doParallel)

11 library(CHAID) #Chi-squared automatic interaction detection tree

12 library(tree)

13 library(caret)
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R Code

Example (Data Prep)

1 data(weather)

2 dsname <- "weather"

3 target <- "RainTomorrow"

4 risk <- "RISK_MM"

5 ds <- get(dsname)

6 vars <- colnames(ds)

7 (ignore <- vars[c(1, 2, if (exists("risk")) which(risk==vars))])

8 #names(ds)[1]==‘‘Date’’

9 #names(ds)[2]==‘‘Location’’
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R Code

Example (Data Prep)

1 vars <- setdiff(vars, ignore)

2 (inputs <- setdiff(vars, target))

3 (nobs <- nrow(ds))

4 dim(ds[vars])

5

6 (form <- formula(paste(target, "~ .")))

7 set.seed(1426)

8 length(train <- sample(nobs, 0.7*nobs))

9 length(test <- setdiff(seq_len(nobs), train))
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Note

It is okay to split the data set like this if the outcome
of interest is not rare. If the outcome of interest occurs
in some small fraction of cases, use a different technique
so that 30% or so of cases with the outcome are in the
training set.
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Example Code in R

Example (rpart Tree)

model <- rpart(formula=form, data=ds[train, vars])
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Note

The default parameter for predict is na.action = na.pass.
If there are Na’s in the data set, rpart will use surrogate
splits.
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Example Code in R

Example (rpart Tree Object)

1 print(model)

2 summary(model)
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print(model)

n= 256

node ) , s p l i t , n , l o s s , yva l , ( yprob )
∗ denote s t e rm i n a l node

1) r oo t 256 38 No (0 .85156250 0 .14843750)
2) Humidity3pm< 71 238 25 No (0 .89495798 0 .10504202)

4) Pressure3pm >=1010.25 208 13 No (0 .93750000 0 .06250000) ∗
5) Pressure3pm< 1010.25 30 12 No (0 .60000000 0 .40000000)
10) Sunsh ine >=9.95 14 1 No (0 .92857143 0 .07142857) ∗
11) Sunsh ine< 9 .95 16 5 Yes (0 .31250000 0 .68750000) ∗

3) Humidity3pm>=71 18 5 Yes (0 .27777778 0 .72222222) ∗
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summary(model)

Ca l l :
r p a r t ( f o rmu la = form , data = ds [ t r a i n , v a r s ] )

n= 256

CP n s p l i t r e l e r r o r x e r r o r x s t d
1 0.21052632 0 1.0000000 1.000000 0.1496982
2 0.07894737 1 0.7894737 1.052632 0.1528809
3 0.01000000 3 0.6315789 1.052632 0.1528809

Va r i a b l e impor tance
Humidity3pm Sunsh ine Pressure3pm Temp9am Pressure9am Temp3pm

25 17 14 9 8 8
Cloud3pm MaxTemp MinTemp

7 6 5

Node number 1 : 256 ob s e r v a t i o n s , c omp l e x i t y param=0.2105263
p r e d i c t e d c l a s s=No expec t ed l o s s =0.1484375 P( node ) =1

c l a s s count s : 218 38
p r o b a b i l i t i e s : 0 .852 0 .148

l e f t son=2 (238 obs ) r i g h t son=3 (18 obs )
Pr imary s p l i t s :

Humidity3pm < 71 to the l e f t , improve =12.748630 , (0 m i s s i n g )
Pressure3pm < 1010.65 to the r i g h t , improve =11.244900 , (0 m i s s i n g )
Cloud3pm < 6 .5 to the l e f t , improve =11.006840 , (0 m i s s i n g )
Sunsh ine < 6 .45 to the r i g h t , improve= 9.975051 , (2 m i s s i n g )
Pressure9am < 1018.45 to the r i g h t , improve= 8.380711 , (0 m i s s i n g )

Su r r oga t e s p l i t s :
Sunsh ine < 0 .75 to the r i g h t , ag r e e =0.949 , ad j =0.278 , (0 s p l i t )
Pressure3pm < 1001.55 to the r i g h t , ag r e e =0.938 , ad j =0.111 , (0 s p l i t )
Temp3pm < 7 .6 to the r i g h t , ag r e e =0.938 , ad j =0.111 , (0 s p l i t )
Pressure9am < 1005 .3 to the r i g h t , ag r e e =0.934 , ad j =0.056 , (0 s p l i t )

Node number 2 : 238 ob s e r v a t i o n s , c omp l e x i t y param=0.07894737
p r e d i c t e d c l a s s=No expec t ed l o s s =0.105042 P( node ) =0.9296875

c l a s s count s : 213 25
p r o b a b i l i t i e s : 0 .895 0 .105

l e f t son=4 (208 obs ) r i g h t son=5 (30 obs )
Pr imary s p l i t s :

Pressure3pm < 1010.25 to the r i g h t , improve =5.972899 , (0 m i s s i n g )
Cloud3pm < 6 .5 to the l e f t , improve =4.475485 , (0 m i s s i n g )
Pressure9am < 1019.75 to the r i g h t , improve =4.279291 , (0 m i s s i n g )
WindGustSpeed < 64 to the l e f t , improve =3.249967 , (1 m i s s i n g )
Sunsh ine < 6 .45 to the r i g h t , improve =2.650559 , (2 m i s s i n g )

Su r r oga t e s p l i t s :
Pressure9am < 1012.65 to the r i g h t , ag r e e =0.950 , ad j =0.600 , (0 s p l i t )
Temp9am < 22 .7 to the l e f t , ag r e e =0.887 , ad j =0.100 , (0 s p l i t )
Humidity3pm < 14 .5 to the r i g h t , ag r e e =0.882 , ad j =0.067 , (0 s p l i t )
MaxTemp < 33 .5 to the l e f t , ag r e e =0.878 , ad j =0.033 , (0 s p l i t )
R a i n f a l l < 16 .8 to the l e f t , ag r e e =0.878 , ad j =0.033 , (0 s p l i t )

Node number 3 : 18 o b s e r v a t i o n s
p r e d i c t e d c l a s s=Yes expec t ed l o s s =0.2777778 P( node ) =0.0703125

c l a s s count s : 5 13
p r o b a b i l i t i e s : 0 .278 0 .722

Node number 4 : 208 o b s e r v a t i o n s
p r e d i c t e d c l a s s=No expec t ed l o s s =0.0625 P( node ) =0.8125

c l a s s count s : 195 13
p r o b a b i l i t i e s : 0 .938 0 .062

Node number 5 : 30 ob s e r v a t i o n s , c omp l e x i t y param=0.07894737
p r e d i c t e d c l a s s=No expec t ed l o s s =0.4 P( node ) =0.1171875

c l a s s count s : 18 12
p r o b a b i l i t i e s : 0 .600 0 .400

l e f t son=10 (14 obs ) r i g h t son=11 (16 obs )
Pr imary s p l i t s :

Sunsh ine < 9 .95 to the r i g h t , improve =5.667857 , (0 m i s s i n g )
Temp9am < 17 .55 to the r i g h t , improve =4.789140 , (0 m i s s i n g )
Humidity3pm < 35 .5 to the l e f t , improve =3.471429 , (0 m i s s i n g )
MaxTemp < 31 .25 to the r i g h t , improve =2.921739 , (0 m i s s i n g )
Temp3pm < 30 .25 to the r i g h t , improve =2.921739 , (0 m i s s i n g )

Su r r oga t e s p l i t s :
Temp9am < 17 .8 to the r i g h t , ag r e e =0.867 , ad j =0.714 , (0 s p l i t )
Cloud3pm < 4 .5 to the l e f t , ag r e e =0.833 , ad j =0.643 , (0 s p l i t )
MinTemp < 14 .15 to the r i g h t , ag r e e =0.767 , ad j =0.500 , (0 s p l i t )
MaxTemp < 29 .15 to the r i g h t , ag r e e =0.767 , ad j =0.500 , (0 s p l i t )
Temp3pm < 30 .25 to the r i g h t , ag r e e =0.767 , ad j =0.500 , (0 s p l i t )

Node number 10 : 14 o b s e r v a t i o n s
p r e d i c t e d c l a s s=No expec t ed l o s s =0.07142857 P( node ) =0.0546875

c l a s s count s : 13 1
p r o b a b i l i t i e s : 0 .929 0 .071

Node number 11 : 16 o b s e r v a t i o n s
p r e d i c t e d c l a s s=Yes expec t ed l o s s =0.3125 P( node ) =0.0625

c l a s s count s : 5 11
p r o b a b i l i t i e s : 0 .312 0 .688
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Example Code in R

Example (rpart Tree Object)

printcp(model) #printcp for rpart objects

plotcp(model)
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plotcp(model)

●

●

●

cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

Inf 0.13 0.028

1 2 4

size of tree

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 96 / 164



Example Code in R

Example (rpart Tree Object)

plot(model)

text(model)
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plot(model)
text(model)

|
Humidity3pm< 71

Pressure3pm>=1010

Sunshine>=9.95
No 

No Yes

Yes

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 98 / 164



Example Code in R

Example (rpart Tree Object)

fancyRpartPlot(model)
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fancyRpartPlot(model)

yes no

1

2

4

5

10 11 3
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.28  .72

7%
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Rattle 2014−Jan−02 11:59:47 jevans
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Example Code in R

Example (rpart Tree Object)

prp(model)

prp(model, type=2, extra=104, nn=TRUE, fallen.leaves=TRUE,

faclen=0, varlen=0, shadow.col="grey", branch.lty=3)
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prp(model)

Humidity < 71

Pressure >= 1010

Sunshine >= 9.9No

No Yes

Yes

yes no
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prp(model, type=2, extra=104, nn=TRUE, fallen.leaves=TRUE,
faclen=0, varlen=0, shadow.col=”grey”, branch.lty=3)

yes no
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Example Code in R

Example (rpart Tree Predictions)

pred <- predict(model, newdata=ds[test, vars], type="class")

pred.prob <- predict(model, newdata=ds[test, vars], type="prob")
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Example Code in R

Example (Na values and pruning)

1 table(is.na(ds))

2 ds.complete <- ds[complete.cases(ds),]

3 (nobs <- nrow(ds.complete))

4 set.seed(1426)

5 length(train.complete <- sample(nobs, 0.7*nobs))

6 length(test.complete <- setdiff(seq_len(nobs), train.complete))

7

8 #Prune tree

9 model$cptable[which.min(model$cptable[,"xerror"]),"CP"]

10 model <- rpart(formula=form, data=ds[train.complete, vars], cp=0)

11 printcp(model)

12 prune <- prune(model, cp=.01)

13 printcp(prune)
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Example Code in R

Example (Random Forest)

1 #Random Forest from library(randomForest)

2 table(is.na(ds))

3 table(is.na(ds.complete))

4

5 #subset(ds, select=-c(Humidity3pm, Humidity9am, Cloud9am, Cloud3pm))

6 setnum <- colnames(ds.complete)[16:19]

7 ds.complete[,setnum] <- lapply(ds.complete[,setnum],

8 function(x) as.numeric(x))

9

10 ds.complete$Humidity3pm <- as.numeric(ds.complete$Humidity3pm)

11 ds.complete$Humidity9am <- as.numeric(ds.complete$Humidity9am)
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Note

Variables in the randomForest algorithm must be either
factor or numeric, factors can not have more than 32
levels.
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Example Code in R

Example (Random Forest)

1 begTime <- Sys.time()

2 set.seed(1426)

3 model <- randomForest(formula=form,data=ds.complete[train.complete,vars])

4 runTime <- Sys.time()-begTime

5 runTime

6 #Time difference of 0.3833725 secs
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Note

Na values must be imputed, removed or otherwise fixed.
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Random Forest

Bagging

Given a standard training set D of size n, bagging generates m new
training sets D i, each of size n’, by sampling from D uniformly and with
replacement. By sampling with replacement, some observations may be
repeated in each D i. If n’=n, then for large n the set D i is expected to
have the fraction (1 - 1/e) (63.2) of the unique examples of D, the rest
being duplicates.
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Random Forest

Sampling with replacement (default)

VS

Sampling without replacement (sample size equals 1-1/e = .632)
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Example Code in R

Example (Random Forest, sampling without replacement)

1 begTime <- Sys.time()

2 set.seed(1426)

3 model <- randomForest(formula=form, data=ds.complete[train, vars],

4 ntree=500, replace = FALSE, sampsize = .632*.7*nrow(ds),

5 na.action=na.omit)

6 runTime <- Sys.time()-begTime

7 runTime

8 #Time difference of 0.2392061 secs
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print(model)

Ca l l :
randomForest ( f o rmu la = form , data = ds . complete [ t r a i n , v a r s ] ,

n t r e e = 500 , r e p l a c e = FALSE ,
samps i ze = 0.632 ∗ 0 .7 ∗ nrow ( ds ) ,
na . a c t i o n = na . omit )

Type o f random f o r e s t : c l a s s i f i c a t i o n
Number o f t r e e s : 500

No . o f v a r i a b l e s t r i e d at each s p l i t : 4

OOB e s t ima t e o f e r r o r r a t e : 11.35%
Con fu s i on mat r i x :

No Yes c l a s s . e r r o r
No 186 4 0.02105263
Yes 22 17 0.56410256
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summary(model)

Length C l a s s Mode
c a l l 7 −none− c a l l
t ype 1 −none− c h a r a c t e r
p r e d i c t e d 229 f a c t o r numer ic
e r r . r a t e 1500 −none− numer ic
c o n f u s i o n 6 −none− numer ic
v o t e s 458 mat r i x numer ic
oob . t imes 229 −none− numer ic
c l a s s e s 2 −none− c h a r a c t e r
impor tance 20 −none− numer ic
importanceSD 0 −none− NULL
l o c a l Impo r t a n c e 0 −none− NULL
p r o x im i t y 0 −none− NULL
n t r e e 1 −none− numer ic
mtry 1 −none− numer ic
f o r e s t 14 −none− l i s t
y 229 f a c t o r numer ic
t e s t 0 −none− NULL
inbag 0 −none− NULL
terms 3 terms c a l l
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str(model)

L i s t o f 19
$ c a l l : l anguage randomForest ( f o rmu la = form , data = ds . complete [ t r a i n , v a r s ] , n t r e e = 500 ,

r e p l a c e = FALSE , samps i ze = 0.632 ∗ 0 .7 ∗ nrow ( ds ) , na . a c t i o n = na . omit )
$ type : ch r ” c l a s s i f i c a t i o n ”
$ p r e d i c t e d : Fac to r w/ 2 l e v e l s ”No” ,” Yes ” : 1 2 1 1 1 1 1 1 2 1 . . .
..− a t t r (∗ , ”names”)= chr [ 1 : 2 2 9 ] ”1” ”305” ”299” ”161” . . .

$ e r r . r a t e : num [ 1 : 5 0 0 , 1 : 3 ] 0 .25 0 .197 0 .197 0 .203 0 .193 . . .
..− a t t r (∗ , ”dimnames”)= L i s t o f 2
. . . . $ : NULL
. . . . $ : ch r [ 1 : 3 ] ”OOB” ”No” ”Yes”

$ c on f u s i o n : num [ 1 : 2 , 1 : 3 ] 186 22 4 17 0 .0211 . . .
..− a t t r (∗ , ”dimnames”)= L i s t o f 2
. . . . $ : ch r [ 1 : 2 ] ”No” ”Yes”
. . . . $ : ch r [ 1 : 3 ] ”No” ”Yes” ” c l a s s . e r r o r ”

$ vo t e s : mat r i x [ 1 : 2 2 9 , 1 : 2 ] 0 .821 0 .373 0 .993 0 .938 0 .648 . . .
..− a t t r (∗ , ”dimnames”)= L i s t o f 2
. . . . $ : ch r [ 1 : 2 2 9 ] ”1” ”305” ”299” ”161” . . .
. . . . $ : ch r [ 1 : 2 ] ”No” ”Yes”
..− a t t r (∗ , ” c l a s s ”)= chr [ 1 : 2 ] ”mat r i x ” ” vo t e s ”

$ oob . t imes : num [ 1 : 2 2 9 ] 156 158 153 162 145 163 144 140 162 156 . . .
$ c l a s s e s : ch r [ 1 : 2 ] ”No” ”Yes”
$ impor tance : num [ 1 : 2 0 , 1 ] 1 .942 2 .219 0 .812 1 .66 4 .223 . . .
..− a t t r (∗ , ”dimnames”)= L i s t o f 2
. . . . $ : ch r [ 1 : 2 0 ] ”MinTemp” ”MaxTemp” ” R a i n f a l l ” ” Evapo ra t i on ” . . .
. . . . $ : ch r ”MeanDecreaseGin i ”

$ importanceSD : NULL
$ l o c a l Impo r t a n c e : NULL
$ p r o x im i t y : NULL
$ n t r e e : num 500
$ mtry : num 4
$ f o r e s t : L i s t o f 14
. . $ n d b i g t r e e : i n t [ 1 : 5 0 0 ] 55 59 47 41 45 45 41 45 45 53 . . .
. . $ node s t a t u s : i n t [ 1 : 6 7 , 1 : 5 0 0 ] 1 1 1 1 1 1 1 1 1 −1 . . .
. . $ b e s t v a r : i n t [ 1 : 6 7 , 1 : 5 0 0 ] 12 15 11 16 6 3 7 10 17 0 . . .
. . $ treemap : i n t [ 1 : 6 7 , 1 : 2 , 1 : 5 0 0 ] 2 4 6 8 10 12 14 16 18 0 . . .
. . $ nodepred : i n t [ 1 : 6 7 , 1 : 5 0 0 ] 0 0 0 0 0 0 0 0 0 1 . . .
. . $ x b e s t s p l i t : num [ 1 : 6 7 , 1 : 5 0 0 ] 87 .5 1016 14 1 .5 14 .5 . . .
. . $ p i d : num [ 1 : 2 ] 1 1
. . $ c u t o f f : num [ 1 : 2 ] 0 . 5 0 . 5
. . $ ncat : Named num [ 1 : 2 0 ] 1 1 1 1 1 1 1 1 1 1 . . .
. . ..− a t t r (∗ , ”names”)= chr [ 1 : 2 0 ] ”MinTemp” ”MaxTemp” ” R a i n f a l l ” ” Evapo ra t i on ” . . .
. . $ maxcat : num 2
. . $ n rnodes : i n t 67
. . $ n t r e e : num 500
. . $ n c l a s s : i n t 2
. . $ x l e v e l s : L i s t o f 20
. . . . $ MinTemp : num 0
. . . . $ MaxTemp : num 0
. . . . $ R a i n f a l l : num 0
. . . . $ Evapo ra t i on : num 0
. . . . $ Sunsh ine : num 0
. . . . $ WindGustDir : ch r [ 1 : 1 6 ] ”N” ”NNE” ”NE” ”ENE” . . .
. . . . $ WindGustSpeed : num 0
. . . . $ WindDir9am : ch r [ 1 : 1 6 ] ”N” ”NNE” ”NE” ”ENE” . . .
. . . . $ WindDir3pm : ch r [ 1 : 1 6 ] ”N” ”NNE” ”NE” ”ENE” . . .
. . . . $ WindSpeed9am : num 0
. . . . $ WindSpeed3pm : num 0
. . . . $ Humidity9am : num 0
. . . . $ Humidity3pm : num 0
. . . . $ Pressure9am : num 0
. . . . $ Pressure3pm : num 0
. . . . $ Cloud9am : num 0
. . . . $ Cloud3pm : num 0
. . . . $ Temp9am : num 0
. . . . $ Temp3pm : num 0
. . . . $ RainToday : ch r [ 1 : 2 ] ”No” ”Yes”

$ y : Fac to r w/ 2 l e v e l s ”No” ,” Yes ” : 2 2 1 1 1 1 2 1 1 1 . . .
..− a t t r (∗ , ”names”)= chr [ 1 : 2 2 9 ] ”1” ”305” ”299” ”161” . . .

$ t e s t : NULL
$ inbag : NULL
$ terms : C l a s s e s ’ terms ’ , ’ fo rmula ’ l e n g t h 3 RainTomorrow ˜ MinTemp + MaxTemp + R a i n f a l l + Evapo ra t i on + Sunsh ine +

WindGustDir + WindGustSpeed + WindDir9am + WindDir3pm + WindSpeed9am + . . .
. . ..− a t t r (∗ , ” v a r i a b l e s ”)= language l i s t ( RainTomorrow , MinTemp , MaxTemp , R a i n f a l l , Evapora t ion , Sunsh ine , WindGustDir ,

WindGustSpeed , WindDir9am , WindDir3pm , WindSpeed9am , WindSpeed3pm , . . .
. . ..− a t t r (∗ , ” f a c t o r s ”)= i n t [ 1 : 2 1 , 1 : 2 0 ] 0 1 0 0 0 0 0 0 0 0 . . .
. . . . ..− a t t r (∗ , ”dimnames”)= L i s t o f 2
. . . . . . . . $ : ch r [ 1 : 2 1 ] ”RainTomorrow” ”MinTemp” ”MaxTemp” ” R a i n f a l l ” . . .
. . . . . . . . $ : ch r [ 1 : 2 0 ] ”MinTemp” ”MaxTemp” ” R a i n f a l l ” ” Evapo ra t i on ” . . .
. . ..− a t t r (∗ , ” term . l a b e l s ”)= chr [ 1 : 2 0 ] ”MinTemp” ”MaxTemp” ” R a i n f a l l ” ” Evapo ra t i on ” . . .
. . ..− a t t r (∗ , ” o r d e r ”)= i n t [ 1 : 2 0 ] 1 1 1 1 1 1 1 1 1 1 . . .
. . ..− a t t r (∗ , ” i n t e r c e p t ”)= num 0
. . ..− a t t r (∗ , ” r e s pon s e ”)= i n t 1
. . ..− a t t r (∗ , ” . Env i ronment”)=<env i ronment : R GlobalEnv>
. . ..− a t t r (∗ , ” p r e d v a r s ”)= language l i s t ( RainTomorrow , MinTemp , MaxTemp , R a i n f a l l , Evapora t ion , Sunsh ine , WindGustDir ,

WindGustSpeed , WindDir9am , WindDir3pm , WindSpeed9am , WindSpeed3pm , . . .
. . ..− a t t r (∗ , ” d a t aC l a s s e s ”)= Named chr [ 1 : 2 1 ] ” f a c t o r ” ” numer ic ” ” numer ic ” ” numer ic ” . . .
. . . . ..− a t t r (∗ , ”names”)= chr [ 1 : 2 1 ] ”RainTomorrow” ”MinTemp” ”MaxTemp” ” R a i n f a l l ” . . .
− a t t r (∗ , ” c l a s s ”)= chr [ 1 : 2 ] ” randomForest . f o rmu la ” ” randomForest ”
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importance(model)

MeanDecreaseGin i
MinTemp 1.94218091
MaxTemp 2.21923946
R a i n f a l l 0 .81216780
Evapo ra t i on 1.65985367
Sunsh ine 4.22307365
WindGustDir 1 .28737544
WindGustSpeed 2.86639513
WindDir9am 1.32291299
WindDir3pm 0.98640540
WindSpeed9am 1.45308318
WindSpeed3pm 2.03903384
Humidity9am 2.57789758
Humidity3pm 4.01479068
Pressure9am 3.39200505
Pressure3pm 5.47003943
Cloud9am 1.19459943
Cloud3pm 3.52867349
Temp9am 1.87205125
Temp3pm 2.43780114
RainToday 0.09530246
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Example Code in R

Example (Random Forest, predictions)

1 pred <- predict(model, newdata=ds.complete[test.complete, vars])
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Note

Random Forest in parallel.
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Example Code in R

Example (Random Forest in parallel)
1 #Random Forest in parallel

2 library(doParallel)

3 ntree = 500; numCore = 4

4 rep <- 125 # tree / numCore

5 registerDoParallel(cores=numCore)

6 begTime <- Sys.time()

7 set.seed(1426)

8 rf <- foreach(ntree=rep(rep, numCore), .combine=combine,

9 .packages=’randomForest’) %dopar%

10 randomForest(formula=form, data=ds.complete[train.complete, vars],

11 ntree=ntree,

12 mtry=6,

13 importance=TRUE,

14 na.action=na.roughfix, #can also use na.action = na.omit

15 replace=FALSE)

16 runTime <- Sys.time()-begTime

17 runTime

18 #Time difference of 0.1990662 secs
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Note

mtry in model is 4, mtry in rf is 6, length(vars) is 24
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importance(model)

MeanDecreaseGin i
MinTemp 1.94218091
MaxTemp 2.21923946
R a i n f a l l 0 .81216780
Evapo ra t i on 1.65985367
Sunsh ine 4.22307365
WindGustDir 1 .28737544
WindGustSpeed 2.86639513
WindDir9am 1.32291299
WindDir3pm 0.98640540
WindSpeed9am 1.45308318
WindSpeed3pm 2.03903384
Humidity9am 2.57789758
Humidity3pm 4.01479068
Pressure9am 3.39200505
Pressure3pm 5.47003943
Cloud9am 1.19459943
Cloud3pm 3.52867349
Temp9am 1.87205125
Temp3pm 2.43780114
RainToday 0.09530246
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importance(rf)

No Yes MeanDecreaseAccuracy MeanDecreaseGin i
MinTemp 4.3267184 1.95155029 4.99442421 2.86155742
MaxTemp 3.9312878 −0.09780772 3.90547258 1.48849836
R a i n f a l l 2 .2855083 −2.20735885 0.98774887 0.90515978
Evapo ra t i on 1.2689707 0.10371215 1.15792468 1.35614483
Sunsh ine 6.8039998 5.93794031 8.24985824 4.45780922
WindGustDir 1 .5872508 1.27680275 1.89144917 1.54086784
WindGustSpeed 3.0957164 0.70399353 3.06926945 1.97903808
WindDir9am 0.5213394 −0.57654051 0.02179805 0.88987541
WindDir3pm 0.1040497 −1.44770324 −0.54034743 0.89222294
WindSpeed9am −0.1505080 0.02852706 −0.13462800 1.04935574
WindSpeed3pm 0.1366695 −0.31714524 −0.09851747 1.41884397
Humidity9am 1.5489961 1.33257660 2.02454227 2.08965160
Humidity3pm 4.4863077 1.80261751 4.87818606 3.16858964
Pressure9am 4.2958737 −0.24148691 3.86763218 3.11008464
Pressure3pm 5.4833604 3.71822295 6.42073201 4.27664751
Cloud9am 1.0693219 1.13917891 1.48230288 0.80992904
Cloud3pm 4.9937359 4.99596404 6.86041634 4.23660266
Temp9am 3.1110895 0.65377234 3.15007711 1.77972882
Temp3pm 4.6953725 −0.93099648 4.11704265 1.54411562
RainToday 1.2889082 −0.69026060 0.95731681 0.07791137
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Example Code in R

Example (Random Forest)

pred <- predict(rf, newdata=ds.complete[test.complete, vars])

confusionMatrix(pred, ds.complete[test.complete, target])

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 123 / 164



confusionMatrix(pred, ds.complete[test.complete, target])

Con fus i on Matr i x and S t a t i s t i c s

Re f e r en c e
P r e d i c t i o n No Yes

No 73 11
Yes 4 11

Accuracy : 0 .8485
95% CI : ( 0 . 7624 , 0 .9126)

No I n f o rma t i o n Rate : 0 .7778
P−Value [ Acc > NIR ] : 0 .05355

Kappa : 0 .5055
Mcnemar ’ s Test P−Value : 0 .12134

S e n s i t i v i t y : 0 .9481
S p e c i f i c i t y : 0 .5000

Pos Pred Value : 0 .8690
Neg Pred Value : 0 .7333

P r e va l e n c e : 0 .7778
De t e c t i on Rate : 0 .7374

De t e c t i on P r e v a l e n c e : 0 .8485

’ P o s i t i v e ’ C l a s s : No
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Example Code in R

Example (Random Forest)
#Factor Levels

id <- which(!(ds$var.name %in% levels(ds$var.name)))

ds$var.name[id] <- NA

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 125 / 164



DANGER!!

How to draw a Random Forest?
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Random Forest Visualization
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Evaluating the Model
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Evaluating the Model

Methods and Metrics to Evaluate Model Performance

1 Resubstitution Estimate (internal estimate, biased)

2 Confusion matrix

3 ROC

4 Test Sample Estimation (independent estimate)

5 V-fold and N-fold Cross-Validation (resampling techniques)

6 RMSLE library(Metrics)

7 lift
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Example Code in R

Example (ctree in package party)
#Conditional Inference Tree

model <- ctree(formula=form, data=ds[train, vars])
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ctree: plot(model)
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print(model)

Model f o rmu la :
RainTomorrow ˜ MinTemp + MaxTemp + R a i n f a l l + Evapo ra t i on + Sunsh ine +

WindGustDir + WindGustSpeed + WindDir9am + WindDir3pm + WindSpeed9am +
WindSpeed3pm + Humidity9am + Humidity3pm + Pressure9am +
Pressure3pm + Cloud9am + Cloud3pm + Temp9am + Temp3pm + RainToday

F i t t e d pa r t y :
[ 1 ] r o o t
| [ 2 ] Sunsh ine <= 6.4
| | [ 3 ] Pressure3pm <= 1015 . 9 : Yes ( n = 29 , e r r = 24.1%)
| | [ 4 ] Pressure3pm > 1015 . 9 : No ( n = 36 , e r r = 8.3%)
| [ 5 ] Sunsh ine > 6 .4
| | [ 6 ] Cloud3pm <= 6
| | | [ 7 ] Pressure3pm <= 1009 . 8 : No ( n = 18 , e r r = 22.2%)
| | | [ 8 ] Pressure3pm > 1009 . 8 : No ( n = 147 , e r r = 1.4%)
| | [ 9 ] Cloud3pm > 6 : No ( n = 26 , e r r = 26.9%)

Number o f i n n e r nodes : 4
Number o f t e rm i n a l nodes : 5
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Difference between ctree and rpart

Both rpart and ctree recursively perform univariate splits of the dependent
variable based on values on a set of covariates.

rpart employs information measures (such as the Gini coefficient) for
selecting the current covariate.

ctree uses a significance test procedure in order to select variables instead
of selecting the variable that maximizes an information measure. This may
avoid some selection bias.
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Example Code in R

Example (ctree in package party)
1 #For class predictions:

2 library(caret)

3 pred <- predict(model, newdata=ds[test, vars])

4 confusionMatrix(pred, ds[test, target])

5 mc <- table(pred, ds[test, target])

6 err <- 1.0 - (mc[1,1] + mc[2,2]) / sum(mc) #resubstitution error rate
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ctree

Con fus i on Matr i x and S t a t i s t i c s

Re f e r en c e
P r e d i c t i o n No Yes

No 74 16
Yes 8 12

Accuracy : 0 .7818
95% CI : ( 0 . 6 93 , 0 . 8549)

No I n f o rma t i o n Rate : 0 .7455
P−Value [ Acc > NIR ] : 0 .2241

Kappa : 0 .3654
Mcnemar ’ s Test P−Value : 0 .1530

S e n s i t i v i t y : 0 .9024
S p e c i f i c i t y : 0 .4286

Pos Pred Value : 0 .8222
Neg Pred Value : 0 .6000

P r e va l e n c e : 0 .7455
De t e c t i on Rate : 0 .6727

De t e c t i on P r e v a l e n c e : 0 .8182

’ P o s i t i v e ’ C l a s s : No
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Example Code in R

Example (ctree in package party)
#For class probabilities:

pred.prob <- predict(model, newdata=ds[test, vars], type="prob")
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ctree

summary ( pred )
No Yes
90 20

summary ( pred . prob )
No Yes

Min . : 0 . 2 414 Min . : 0 . 01361
1 s t Qu . : 0 . 7 3 0 8 1 s t Qu . : 0 . 0 1 3 6 1
Median : 0 . 9 167 Median : 0 . 08333
Mean : 0 . 7 965 Mean : 0 . 20353
3 rd Qu . : 0 . 9 8 6 4 3 rd Qu . : 0 . 2 6 9 2 3
Max . : 0 . 9 864 Max . : 0 . 7 5862

e r r
[ 1 ] 0 . 2
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Example Code in R

Example (ctree in package party)
1 #For a roc curve:

2 library(ROCR)

3 pred <- do.call(rbind, as.list(pred))

4 summary(pred)

5 roc <- prediction(pred[,1], ds[test, target])

6 plot(performance(roc, measure="tpr", x.measure="fpr"), colorize=TRUE)

7

8 #For a lift curve:

9 plot(performance(roc, measure="lift", x.measure="rpp"), colorize=TRUE)

10

11 #Sensitivity/Specificity Curve and Precision/Recall Curve:

12 #Sensitivity(i.e True Positives/Actual Positives)

13 #Specifcity(i.e True Negatives/Actual Negatives)

14 plot(performance(roc, measure="sens", x.measure="spec"), colorize=TRUE)

15 plot(performance(roc, measure="prec", x.measure="rec"), colorize=TRUE)
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roc

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1
1.

4
1.

8
2.

2
2.

6
3

Rate of positive predictions

Li
ft 

va
lu

e

0.2 0.4 0.6 0.8 1.0

1.
0

1.
4

1.
8

2.
2

1
1.

29
1.

57
1.

86

Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1
1.

4
1.

8
2.

2
2.

6
3

Recall

P
re

ci
si

on

0.5 0.6 0.7 0.8 0.9 1.0

0.
25

0.
35

0.
45

0.
55

1
1.

29
1.

57
1.

86

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 139 / 164



Example Code in R

Example (crossvalidation)
1 #Example of using 10-fold cross-validation to evaluation your model

2

3 model <- train(ds[, vars], ds[,target], method=’rpart’, tuneLength=10)

4

5 #cross validation

6 #example

7 n <- nrow(ds) #nobs

8 K <- 10 #for 10 validation cross sections

9 taille <- n%/%K

10 set.seed(5)

11 alea <- runif(n)

12 rang <- rank(alea)

13 bloc <- (rang-1)%/%taille +1

14 bloc <- as.factor(bloc)

15 print(summary(bloc))
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Example Code in R

Example (cross validation continued)

1 all.err <- numeric(0)

2 for(k in 1:K){

3 model <- rpart(formula=form, data = ds[train,vars], method="class")

4 pred <- predict(model, newdata=ds[test,vars], type="class")

5 mc <- table(ds[test,target],pred)

6 err <- 1.0 - (mc[1,1] +mc[2,2]) / sum(mc)

7 all.err <- rbind(all.err,err)

8 }

9 print(all.err)

10 (err.cv <- mean(all.err))
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p r i n t ( a l l . e r r )
[ , 1 ]

e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2
e r r 0 . 2

( e r r . cv <− mean ( a l l . e r r ) )
[ 1 ] 0 . 2
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caret Package

Check out the caret package if you’re building predictive models in R.

It implements a number of out-of-sample evaluation schemes, including
bootstrap sampling, cross-validation, and multiple train/test splits.

caret is really nice because it provides a unified interface to all the models,
so you don’t have to remember, e.g., that treeresponse is the function to
get class probabilities from a ctree model.
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Example Code in R

Example (Random Forest - cforest)

#Random Forest from library(party)

model <- cforest(formula=form, data=ds.complete[train.complete, vars])

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 144 / 164



cforest

Con fus i on Matr i x and S t a t i s t i c s

Re f e r en c e
P r e d i c t i o n No Yes

No 74 16
Yes 3 6

Accuracy : 0 .8081
95% CI : ( 0 . 7166 , 0 .8803)

No I n f o rma t i o n Rate : 0 .7778
P−Value [ Acc > NIR ] : 0 .277720

Kappa : 0 .2963
Mcnemar ’ s Test P−Value : 0 .005905

S e n s i t i v i t y : 0 .9610
S p e c i f i c i t y : 0 .2727

Pos Pred Value : 0 .8222
Neg Pred Value : 0 .6667

P r e va l e n c e : 0 .7778
De t e c t i on Rate : 0 .7475

De t e c t i on P r e v a l e n c e : 0 .9091

’ P o s i t i v e ’ C l a s s : No
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Best Model: randomForest with mty=4

Con fus i on Matr i x and S t a t i s t i c s

Re f e r en c e
P r e d i c t i o n No Yes

No 75 1
Yes 2 21

Accuracy : 0 .9697
95% CI : ( 0 . 9 14 , 0 . 9937)

No I n f o rma t i o n Rate : 0 .7778
P−Value [ Acc > NIR ] : 6 .393 e−08

Kappa : 0 .9137
Mcnemar ’ s Test P−Value : 1

S e n s i t i v i t y : 0 .9740
S p e c i f i c i t y : 0 .9545

Pos Pred Value : 0 .9868
Neg Pred Value : 0 .9130

P r e va l e n c e : 0 .7778
De t e c t i on Rate : 0 .7576

De t e c t i on P r e v a l e n c e : 0 .7677

’ P o s i t i v e ’ C l a s s : No
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Example Code in R

Example (Data for Today)
> Today

MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir WindGustSpeed

12.4 24.4 3.4 1.6 2.3 NNW 30

WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm

N NW 4 13 97 74

Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm RainToday

1015.8 1014.1 8 7 15.3 20.4 Yes

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 147 / 164



Example Code in R

Example (Random Forest - cforest)

> (predict(model, newdata=Today))

[1] Yes

Levels: No Yes

> (predict(model, newdata=Today, type="prob"))

$‘50‘

RainTomorrow.No RainTomorrow.Yes

[1,] 0.3942876 0.6057124
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Example Code in R

Example (Random Forest - randomForest)

> predict(model, newdata=Today)

50

Yes

Levels: No Yes

> predict(model, newdata=Today, type="prob")

No Yes

50 0.096 0.904

attr(,"class")

[1] "matrix" "votes"
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Will it Rain Tomorrow?

Yes, it will rain tomorrow. There is a ninety percent
chance of rain, and we are ninety-five percent confident
that we have a five percent chance of being wrong.

Jennifer Evans (Clickfox) Twitter: JenniferE CF January 14, 2014 150 / 164



Evaluating the Business Questions
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Evaluating the Business Questions

Is this of value?

Is it understandable?

How to communicate this to the business?

Are you answering the question asked...?
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“An approximate answer to the right problem
is worth a good deal more than an exact answer to
an approximate problem.”

˜John Tukey
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Kaggle and Random Forest
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Tip

Get the advantage with creativity, understanding the
data, data munging and meta data creation.
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“The best way to have a good idea is to have
a lot of ideas.”

˜Linus Pauling
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Tip

A lot of the data munging is done for you, you are given
a nice flat file to work with. Knowing and uderstanding
this process will enable you to find data leaks and holes
in the data set. What did their data scientists miss?
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Tip

Use some type of version control, write notes to yourself,
read the forum comments.
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Visualization
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Pie Chart

Visualization (Sometimes you really just need a Pie Chart)
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Recommended Reading

Christopher M. Bishop (2006)

Pattern Recognition and Machine Learning, Information Science and Statistics

Leo Breiman (1999)

Random Forest, http://www.stat.berkeley.edu/ breiman/random-forests.pdf

George Casella and Roger L. Berger

Statistical Inference

Rachel Schutt and Cathy O’Neil (2013)

Doing Data Science, Straight Talk from the Frontline

Q. Ethan McCallum (2013)

Bad Data Handbook, Mapping the World of Data Problems

Graham Williams (2013)

Decision Trees in R, http://onepager.togaware.com/DTreesR.pdf
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Questions
Twitter Account: Jen@JenniferE CF
Website for R Code: www.clickfox.com/ds rcode
Email: jennifer.evans@clickfox.com
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