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Quantum machine learning is a rapidly evolving area that could facilitate important applications
for quantum computing and significantly impact data science. In our work, we argue that a single
Kerr mode might provide some extra quantum enhancements when using quantum kernel methods
based on various reasons from complexity theory and physics. Furthermore, we establish an ex-
perimental protocol, which we call quantum Kerr learning based on circuit QED. A detailed study
using the kernel method, neural tangent kernel theory, first-order perturbation theory of the Kerr
non-linearity, and non-perturbative numerical simulations, shows quantum enhancements could hap-
pen in terms of the convergence time and the generalization error, while explicit protocols are also
constructed for higher-dimensional input data.

Introduction.—Quantum machine learning, i.e., com-
bining machine learning with the computational power
of quantum devices, is an exciting, emerging direction
for modern information technology [1–4]. In the present
Noisy Intermediate-Scale Quantum (NISQ) era [5], there
has been significant progress on quantum machine learn-
ing based on variational quantum circuits [6–15]. How-
ever, it is still not completely clear, both in theory and
practice, if and how a true quantum advantage relative
to completely classical-computer based approaches will
be achieved [15, 16].

The kernel methods developed in machine learning
over many years [17] could have natural connections to
quantum mechanics. In the spirit of a kernel method,
nonlinear machine learning problems could be trans-
formed towards linear models in a sufficiently high di-
mensional Hilbert space. In the classical machine learning
context, the corresponding Hilbert space of a given kernel
is abstract, while in the quantum computing setup, the
Hilbert space could be physical, such as the state vector
space of a quantum device [18]. Complex quantum sys-
tems could produce complicated enough kernels that are
hard to simulate using classical computers, providing a
potential regime of quantum advantage in quantum ma-
chine learning [3].

Thus, how could we produce complicated kernels in a
quantum system? In the quantum kernel method, the
kernel is evaluated from quantum measurement. For in-
stance, if we consider a Hamiltonian with the real time
evolution, H(t), one could construct the kernel as

K =

∣∣∣∣
〈
ψ

∣∣∣∣T̄ exp

[
i

~
∫ T ′

0
H(t′)dt′

]

× T exp

[
− i
~
∫ T
0
H(t)dt

] ∣∣∣∣ψ
〉∣∣∣∣

2

.

(1)

Here, we are measuring the inner product of two quantum
states, starting from |ψ〉, and evolving with the Hamil-
tonian H(t) during time T and T ′ respectively, where T
denotes time ordering in quantum mechanics. The more
complicated the Hamiltonian is, the harder it is for a
classical computer to simulate. Here, the kernel K is a
matrix where the matrix element is specified by the input
data x and x′. The vectors x or x′ could be made from
parameters of Hamiltonians or the evolution time.
Model setup.—In this paper, we consider a single-mode

quantum system with Kerr non-linearity that could po-
tentially provide computational benefits compared to its
classical counterparts. Such systems can be easily re-
alized in circuit QED experiments where the Kerr non-
linearity can be obtained from Josephson junctions or
the kinetic inductance of a superconducting resonator
[19, 20]. We propose and describe the experimental real-
ization in the Supplemental Material (SM). The effective
Hamiltonian of the system is

H = H0 +Ht +HI = Hf +HI ,

H0

~
= ωm

(
b†b+

1

2

)
,
Ht

~
= Ω

(
be−iωLt + b†eiωLt

)
,

HI

~
= −Kerrb

†b†bb ,Hf = H0 +Ht . (2)

We define the real vector x = (x)3i=1 = (Ω, ωL, T )
as the encoded data for simplicity (namely, our super-
vised learning task has three-dimensional inputs), and
we fix (ωm,Kerr) as constants. When the Kerr non-
linearity is turned off, the system Hamiltonian reduces
to a quadratic form in the rotating frame. If we turn
on the Kerr non-linearity and when Kerr is much smaller
than Ω, the kernel could be predicted by perturbation
theory (see SM for detailed calculations). On the other
hand, when Kerr is much larger than Ω, the non-linear
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resonator can be approximated as a qubit with negligible
excitations at energy levels higher than the first excited
state (see SM). However, for a general Kerr in the regime
of Kerr/Ω ∼ O(1), we do not have analytic predictions
and the system must be simulated by quantum or classi-
cal computers.

We argue that quantum enhancements could be
achieved from our Kerr non-linear quantum system (here,
the word “quantum enhancements” indicate benefits in
computation provided by the Kerr non-linearity, which
are not the same as “quantum advantage” claimed by
the rigorous complexity theory statements). We give the
following four reasons.

First, a general real-time evolution of a quantum sys-
tem could be formulated in the complexity class BQP,
which is the class of problems solved by quantum com-
puters with bounded error and polynomial time. More
precisely, the problem is BQP-complete. As long as
BQP is not equal to P, the problem will be hard to
simulate in general for classical computers [21–23]. In
the bosonic system, the quadratic Hamiltonian is simu-
latable by classical computers in polynomial time, based
on the celebrated Gottesman-Knill theorem [24] in the
bosonic case with the Gaussian initial states [25]. Thus,
since our Hamiltonian includes Kerr non-linearity, by the
inverse statement of the bosonic Gottesman-Knill theo-
rem, we suggest that our Hamiltonian Eq. (2) might be
challenging to simulate for classical computers for large
scale simulations, and for our analog quantum system,
one could evaluate the kernel efficiently within the poly-
nomial time.

Second, the physical systems will naturally set the ul-
traviolet cutoff by the energy scale of the devices, and
we do not need to set the cutoff scale Λ just like what
one did in classical simulations. Classically we have to
truncate the Hamiltonian of the bosonic system to ensure
that the cutoff is sufficient where interesting non-linear
physics will happen and will accurately predict the real
dynamics, and there will be limited principles to deter-
mine the proper range of Λ because of our computational
power. However, in our circuit QED system, the system
naturally provides the cutoff by the energy scale of pho-
tons and electrons, so we could get quantum enhance-
ment there, especially when the required Λ is large.

Third, although in the bulk of our paper, we keep Ω as
a constant, we could also make it time-dependent. For
the time-dependent Ω(t), it is shown that the Hamilto-
nian in Eq. (2) could simulate universal quantum com-
puting in the polynomial time, and the whole class BQP
[26], even for small Kerr couplings. Thus, we expect that
a combination of Ω and Kerr will provide quantum en-
hancements.

Fourth, although the bulk of our paper is about sin-
gle modes, we briefly give some statements about mul-
timodes. A multimode Hamiltonian in our circuit QED
setup will include several free bosonic modes that are

interacting with another Kerr mode. Through the cou-
pling, those free modes will have more complicated dy-
namics, and we expect that it might present stronger
quantum enhancements. An analog of the multiple mode
system, will be a zero-dimensional λφ4 quantum field the-
ory on the lattice with the system size N (note that the
Kerr term is also quartic), where we have the theoreti-
cal predictions when the bare coupling λ is either zero
or infinity. The non-perturbative corrections will hap-
pen around the critical point, and the strong coupling
regime, where we have a Z2 symmetry which is sponta-
neously broken, and we expect a quantum speedup to
simulate the non-perturbative dynamics [27–29].

In this paper, further solid theoretical and numerical
evidence are given to show that larger Kerr non-linearity
will provide more significant enhancement of quantum
kernels. We qualify the performance of kernels based
on the theory of the kernel method [17] and the neu-
ral tangent kernel theory for linear models [15, 30–37].
Better kernels will have flatter eigenspectra with more
non-trivial kernel eigenvalues, which will lead to faster
convergence speed [37] (see discussions in SM) and less
generalization error for good enough alignments [38–42].
These features are observable through the numerical re-
sults in the kernel trick and the gradient descent dynam-
ics. We find that non-trivial Kerr might generically lead
to better performance in all those criteria, at least in our
data distribution within the allowed experimental range.
A by-product of our work is that we compute the leading
order perturbation of our kernel function K (see SM).
Since perturbation theory gives closed-form formulas, we
could evaluate the kernel efficiently through analytic for-
mulas, instead of numerical simulations of our bosonic
quantum systems up to a given truncation. Our per-
turbation theory formula is well-tested through numerics
and is valid in the perturbative range of Kerr.

Kernel Statistics.—In our analysis, we randomly gen-
erate the training input data x = (Ω, ωL, T ) through
uniform distributions within experimentally feasible
data range. We set the data range from (0, 0, 0)
to (Ωrange, ωrange

L , T range) ∼ (300 MHz × 2π, 10 GHz ×
2π, 0.05µs). Moreover, we fix ωm at around 10 GHz× 2π
for a typical superconducting microwave resonator.

The property of the kernel function K, or more pre-
cisely the neural tangent kernel (NTK) KH = K2 of the
linear model (see SM), plays an important role in the
performance of the machine learning algorithm. In Fig.
1, we study the change of the kernel eigenspectra when
turning on the Kerr coupling. We measure the complex-
ity of the kernel by looking at the kernel effective dimen-
sion (number of eigenvalues that are not small, where we
set the criterion to be > 10−7) and the maximal kernel
eigenvalues. As shown in Fig. 1, we find that generically
when we turn on the Kerr coupling towards the non-
perturbative regime, the kernel spectra have the tendency
to be flatter, inferred from the increasing kernel effective
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dimension. This suggests that better performance can be
achieved in generic numerical optimization experiments
for larger Kerr non-linearity. In fact, a flatter spectrum
means that the distribution has longer tails towards the
higher values of the NTK eigenvalue parameters, which
might indicate faster convergence and less generalization
error for sufficient alignments.

This tendency could even be observed in the perturba-
tive regime, where the kernel properties are predictable
through the perturbation theory. We verify the validity
of our perturbation theory prediction, comparing to the
numerical simulation for truncated Hilbert space dimen-
sions, in Fig. 2.

FIG. 1. Kernel statistics when turning on Kerr non-linearity.
We generate O(100) data vectors when evaluating the ker-
nel statistics using the perturbation theory (red), and O(10)
data vectors when evaluating the kernel statistics using the
numerical exact simulation with 100 truncated bosonic energy
levels (blue). As evidence of where nontrivial Kerr coupling
complexifies the kernel, we count the number of eigenvalues
of KH that are larger than 10−7 (the kernel effective dimen-
sion) when turning on the Kerr coupling (up), and evaluate
the maximal eigenvalues of KH depending on Kerr. Note that
when Kerr ≥ O(10) MHz × 2π, we start entering the regime
of non-perturbative dynamics where perturbative theory pre-
dictions may not be trustable.

FIG. 2. The statistics of the relative error of matrix elements
|(Kt −Ke)/Ke| for the perturbation theory prediction of the
kernel Kt and the numerical simulation Ke among O(100)
randomly generated data inputs x (the red points). We set
Kerr = O(0.01) MHz× 2π.

Optimization Simulations.—The property of kernel
statistics could be directly examined through the actual
gradient descent dynamics. Here, we consider a linear
model (the kernel method) to perform a supervised learn-
ing task (see SM). For our randomly generated x, we as-
sign them with one-dimensional outputs y(x). The resid-
ual training error ε(x) = z(x) − y(x), where z(x) is the
kernel method prediction, enters in the formula of the
mean-square loss function L = 1

2

∑
x ε

2(x). We use the
gradient descent algorithm to minimize L. In the ker-
nel method, the optimization process is exactly solvable,
and the decay of the residual training error is exponential
when the learning rate is small, where the decay rate can
be predicted by kernel eigenvalues (see SM).

In Fig. 3, we perform different gradient descent pro-
cesses for increasing Kerr. We find that the increasing
Kerr non-linearity will generically accelerate the gradient
descent dynamics, consistent with our findings of kernel
eigenspectra.

FIG. 3. We perform 30 different gradient descent processes,
increasing Kerr from 0 to O(103) MHz × 2π with a logarith-
mic scale and a fixed learning rate 10−3. The plots show the
relative residual training error |ε(t)/ε(0)| depending on the
iteration step t from 0 towards 500, in the eigenvector direc-
tion of K with the largest kernel eigenvalue. The theory (see
SM) shows that this plot is independent of the choices of the
supervised learning label y.

Generalization Error.—Moreover, one could quantify
the performance of the machine learning models. As an
example, we split half of the data as the training set, and
we evaluate the loss function on the remaining half as
the test set after we train the model. We consider learn-
ing a function y(x) =

∑3
i=1 sin2(x2

i ) instead, where our
time T is rescaled to be O(1) and other components in
T are set by dimensional analysis accordingly. In Figure
4, we find that generalization error has non-trivial be-
havior for growing Kerr non-linearity, and for large Kerr
values in the non-perturbative regime, it decays signifi-
cantly. According to Refs. 38–42, generalization errors
could be related to neural tangent kernel eigenvalues, and
the kernel method is generalized well from good enough
alignments. Thus, our finding provides good evidence
that quantum Kerr learning will provide extra enhance-
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ment in algorithm performances. See more detail in the
SM.

FIG. 4. Evaluating the algorithm performance through the
generalization error. We set the training set T to be the first
half of the previous training set A, and we denote the second
half as the test set B. We evaluate the generalization error
using LB = 1

2|B|
∑

x∈B ε(x)2 for different Kerr coefficients.

Higher dimensions.—We can perform higher-
dimensional regression by using two quantum systems,
instead of one, each encoding a subset of the data,

K =

∣∣∣∣
〈
ψ ⊗ φ

∣∣∣∣T̄ exp

[
i

~
∫ T ′

0
H(t′)dt′

]

× T exp

[
− i
~
∫ T
0
H(t)dt

] ∣∣∣∣ψ ⊗ φ
〉∣∣∣∣

2

.

, (3)

where we have assumed that we initially start in a prod-
uct state. H(t) could, again, be a general Hamiltonian.
If H(t) includes terms that couple the two subsystems,
|ψ〉 and |φ〉, this could potentially create entanglement
between the two systems, increasing the complexity and
making it harder for a classical computer to compute. It
is also interesting to look at the case when H(t) does not
couple the two subsystems. For example, the Hamilto-
nian could represent two uncoupled Kerr resonators as

H(t) = H ⊗ I + I ⊗H, (4)

where H is the Hamiltonian described in eq. (2) and I
is identity. In this initially unentangled and uncoupled
example, our kernel reduces to a Hadamard product of
the two uncoupled kernels,

K = Kα ◦Kβ , (5)

where Kα (Kβ) is the single-system Kerr kernel discussed
in previous sections, and the subscript (α, β) represents
two independent subsystems. Because kernels are sym-
metric, positive definite matrices, we can bound the prop-
erties of the eigenvalues of K using the spectra of K. For
example, we have the following bound on the spectral
radius, ρ, of the product kernel [43]

ρ(K) ≤ ρ(Kα)ρ(Kβ). (6)

This bound is known to be rather loose, and tighter
bounds have been derived [43]. As shown in Fig. 1,
the maximum kernel eigenvalues of the single system
grow with increasing Kerr. For multiple unentangled
and uncoupled systems, we can expect that the maxi-
mal eigenvalues of this product kernel grow faster, lead-
ing to increased performance in higher-dimensional data
sets compared with the non-Kerr kernel. This can be
extended to the product of many kernels, allowing for
the learning of arbitrary dimensional data with collec-
tions of single oscillators. It is likely that the addition
of entanglement, through a Hamiltonian term that cou-
ples the various systems, will further increase the perfor-
mance [11].
Conclusion and outlooks.—Our paper opens up a novel

direction by exploring the potential of quantum machine
learning through circuit QED devices with non-trivial
Kerr non-linearity. We find theoretical and numerical
evidence where non-trivial Kerr coupling could signifi-
cantly enhance the performance of the quantum kernel
method, based on solid evaluations of kernel statistics
and numerical optimization experiments. We strengthen
our claims by applying the neural tangent kernel the-
ory in machine learning, arguments from the theory of
quantum complexity, and generalizations towards higher
dimensions. Here, we suggest the following directions for
future research.

a. Experimental implementation. It will be interesting
to implement the proposal in our paper in the laboratory.
When working with actual hardware, measurement noise
and errors need to be considered. A combined design be-
tween theory and experiments could be obtained based
on the theory of the kernel method, including trade-offs
among the learning rate, the experimental precision for
estimating the residual training error ε, and the number
of gradient descent steps we could perform in the labo-
ratory.

b. Extensions to multiple modes. One could generalize
the above work to multiple modes, where we expect the
coupling between different bosonic modes will strengthen
the complexity of the kernel. It will be interesting to see if
our approach will realize the power of multimode devices
towards hard problems in quantum machine learning.

c. Theoretical considerations. It will be interesting to
explore further the complexity foundations of our claims.
The argument about the Kerr non-linearity and complex-
ity, although promising, is not proven rigorously. A more
solid statement about complexity might deepen our un-
derstanding of the algorithmic potential of the Kerr non-
linearity.
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I. KERNEL METHOD AND THE GRADIENT DESCENT DYNAMICS

Here we provide a self-contained introduction to the basic methodology we use. For more details about kernel methods and
neural tangent kernels, see [1–3].

We consider a simple supportive vector machine model. We start from a series of data (xα̃, yα̃), where α̃ denotes the index of
data from the training set A, and we are in a supervised learning task with the output label yα̃. We wish to fit the answer with
the linear model,

zδ = z(xδ) =
∑

α̃∈A
θα̃K(xα̃, xδ) , (S1)

whereK is the kernel, xδ is a general input and δ denotes the index of data from the whole input data set D (so we have A ⊂ D),
and θδ is a trainable variable. In the quantum kernel method [4], K is evaluated using the quantum measurement. We set the
loss function

LA =
1

2

∑

α̃∈A
(zα̃ − yα̃)

2
=

1

2

∑

α̃∈A
ε2α̃ . (S2)

Here, ε is the residual training error. We consider the simplest gradient descent dynamics,

δθα̃ = θα̃(t+ 1)− θα̃(t) = −η dLA
dθα̃

= −η
∑

β̃∈A

dεβ̃
dθα̃

εβ̃ . (S3)

Moreover, since our model is linear, we have

δεα̃ =
∑

β̃∈A

dεα̃
dθβ̃

δθβ̃ = −η
∑

β̃,γ̃∈A

dεα̃
dθβ̃

dεγ̃
dθβ̃

εγ̃ . (S4)

∗ junyuliu@uchicago.edu
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We define

KH,α̃γ̃ =
∑

β̃∈A

dεα̃
dθβ̃

dεγ̃
dθβ̃

. (S5)

So we get

δεα̃ =
∑

β̃∈A

dεα̃
dθβ̃

δθβ̃ = −η
∑

γ̃∈A
KH,α̃γ̃εγ̃ . (S6)

The quantity KH is called the neural tangent kernel (NTK) [3, 5–11]. In the supportive vector machine case, KH is a constant,

dεα̃
dθβ̃

= K(xβ̃ , xα̃) ,

KH,α̃γ̃ =
∑

β̃∈A

dεα̃
dθβ̃

dεγ̃
dθβ̃

=
∑

β̃∈A

K(xβ̃ , xα̃)K(xβ̃ , xγ̃) =
∑

β̃∈A

K(xα̃, xβ̃)K(xβ̃ , xγ̃) . (S7)

Here, we have used the fact that K is symmetric. If we use the compact matrix notation in the sample space, we have

KH = K2 . (S8)

The solution is analytically solved since KH or K are constants,

εα̃(t) =
(
(1− ηKH)

t
)
α̃β̃
εβ̃(0) . (S9)

The properties of matrix H = K2 would affect the efficiency and performance of the gradient descent. Say that we diagonalize
the matrix K by

Kα̃β̃ = (VKV T )α̃β̃ . (S10)

Here V is the matrix of eigenvectors of K, and K is the matrix K in the eigenspace,

K = diag (κα̃) ,
Kα̃β̃ = κα̃δα̃β̃ . (S11)

We have

εα̃(t) =
(
V (1− ηK2)

t
V T
)
α̃β̃
εβ̃(0) . (S12)

We define

uα̃ = V T
α̃β̃
εβ̃ , (S13)

so we get

uα̃(t) = (1− ηκ2α̃)
tuα̃(0) . (S14)

Thus the spectrum of K gives the characteristic decaying time of the residual training error in the inertial frame, u. More
precisely, in the small η limit, we get

uα̃(t) ≈ e−ηκ2
α̃tuα̃(0) . (S15)

Thus, a larger absolute value of κα̃ will lead to a faster decay rate. If our kernel is Gaussian, there will be a sufficiently large
amount of eigenvalues accumulated around zero, because of the long tails of the distribution. Thus, if our spectra of KH or K
are flatter, our performance is expected to be better.

Finally, we make a short discussion about the generalization error. For a general input data xδ , the output at the end of training
is given by [2, 3],

zδ(∞) = zδ(0)−
∑

α̃,α̃1∈A
Hδα̃H̃

α̃α̃1εα̃1(0) . (S16)
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Here, we use the notation where H̃ α̃1α̃2 = (H)−1
α̃1α̃2

, the inverse of the matrixH restricted at the subspace A ⊂ D. For example,
in the main text in practice we take the initial trainable weights W (0) = 0, so we get

zδ(∞) =
∑

α̃,α̃1∈A
Hδα̃H̃

α̃α̃1yα̃1
. (S17)

Specifically, if we take a data point inside the space A, we get

zδ̃(∞) =
∑

α̃,α̃1∈A
Hδ̃α̃H̃

α̃α̃1yα̃1
=
∑

α̃1∈A
δα̃1

δ̃
yα̃1

= yδ̃ , (S18)

by the definition of matrix inverse. One could define the generalization error as

LB =
1

2 |B|
∑

β∈B
(zβ − yβ)

2
=

1

2 |B|
∑

β∈B
ε2β . (S19)

Here, B ⊂ D is a test set and B ̸= A.

II. THE HAMILTONIAN AND THE PERTURBATION THEORY

A. Problem setup

We deal with the Hamiltonian,

H = H0 +Ht +HI = Hf +HI , (S20)

where

H0

ℏ
= ωm

(
b†b+

1

2

)
,

Ht

ℏ
= Ω

(
be−iωLt + b†eiωLt

)
,

HI

ℏ
= Kerrb

†b†bb . (S21)

Now we wish to evaluate

K =
∣∣∣
〈
ψ
∣∣∣
(
T exp

[
i
ℏ
∫ T

0
H(Ω, ωL)dt

]
× T exp

[
− i

ℏ
∫ T ′

0
H(Ω′, ω′

L)dt
] )∣∣∣ψ

〉∣∣∣
2

. (S22)

Note that we wish ωm to be fixed.

B. Free theory

Now we use the rotation frame method to simplify the problem. For an arbitrary quantum system generated by

iℏ
d

dt
|ϕ(t)⟩ = H(t) |ϕ(t)⟩ . (S23)

We assume a rotation frame such that

|ψ(t)⟩ = UR(t) |ϕ(t)⟩ . (S24)

We get

iℏ
d

dt
|ψ(t)⟩ = HR(t) |ψ(t)⟩ , (S25)

where

HR(t) = iℏU̇R(t)U
†(t) + UR(t)H(t)U†

R(t) . (S26)
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HR is, in a sense, a rotated definition of the Hamiltonian. Without Kerr non-linearity, we could apply it to

Hf (t) = H0 +Ht(t) = ℏωm

(
b†b+

1

2

)
+ ℏΩ

(
be−iωLt + b†eiωLt

)
, (S27)

with

UR(t) = eiωLtb†b . (S28)

So we have

HR(t) = iℏU̇R(t)U
†
R(t) + UR(t)Hf (t)U

†
R(t)

= ℏ (ωm − ωL)
(
b†b
)
+

1

2
ℏωm + ℏΩ(b+ b†) . (S29)

In fact, we find HR is static. Now, remember that our feature map is

|ϕ(x)⟩ = T exp

[
− i

ℏ

∫ T

0

Hfdt

]
|ψ⟩ , (S30)

which is driven by the Hamiltonian,

d |ϕ(x)⟩
dT

= − i

ℏ
Hf (T ) |ϕ(x)⟩ . (S31)

So we define

|ψ(x)⟩ = UR(T ) |ϕ(x)⟩ , (S32)

and we have

|ψ(x)⟩ = T exp

[
− i

ℏ

∫ T

0

HRdt

]
|ψ⟩ = exp

[
− i

ℏ
HRT

]
|ψ⟩ . (S33)

Basically, we just prove,

UR(T )T exp

[
− i

ℏ

∫ T

0

Hfdt

]
= exp

[
− i

ℏ
HRT

]
. (S34)

Now, we could write down the kernel formula as

K(x,x′) = |⟨ϕ(x)|ϕ(x′)⟩|2 =
∣∣∣
〈
ψ(x)|UR(x)U

†
R(x

′)|ψ(x′)
〉∣∣∣

2

. (S35)

Here we denote

UR(x) = UR(T ) = exp
(
iωLTb

†b
)
. (S36)

Now we start to compute ψ(x). We have

HR = ℏ (ωm − ωL)
(
b†b
)
+

1

2
ℏωm + ℏΩ

(
b+ b†

)

= −ℏ∆L

(
b†b
)
+ ℏΩ

(
b+ b†

)
+

1

2
ℏωm

= ℏQL

(
b†b
)
+ ℏΩ

(
b+ b†

)
+

1

2
ℏωm , (S37)

where we define ∆L = ωL − ωm = −QL. We could perform the transformation,

b = a− λ ,

b† = a† − λ , (S38)
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where we assume that λ is real. In this case we have

b†b = a†a− λ(a† + a) + λ2

= a†a− λ(b† + b+ 2λ) + λ2

= a†a− λ(b† + b)− λ2 . (S39)

We notice that we have [a, a†] = 1. And we have

HR = ℏQL

(
b†b
)
+ ℏΩ

(
b+ b†

)
+

1

2
ℏωm

= ℏQLa
†a− λℏQL

(
b+ b†

)
− ℏQLλ

2 + ℏΩ
(
b+ b†

)
+

1

2
ℏωm . (S40)

We set

λQL = Ω . (S41)

So we have

HR = ℏQLa
†a− ℏQLλ

2 +
1

2
ℏωm . (S42)

For simplicity, we assume that the initial state is expanded in the coherent state basis,

|ψ⟩ =
∑

α

f(α)|α⟩b , (S43)

where |α⟩b is the coherent state corresponding to the creation operator b†. Note that

|α⟩b ≡ |α′⟩a = |α+ λ⟩a , (S44)

since

b|α⟩b = (a− λ)|α⟩b = (α′ − λ)|α⟩b = α|α⟩b ,
a|α⟩b = a|α′⟩a = α′|α′⟩a = (α+ λ)|α⟩b . (S45)

The above equation is not precise, since the equation should be up to a global factor. A more precise calculation shows,

|α+ λ⟩a = e(α+λ)a†−(α∗+λ)a|0⟩a = e(α+λ)a†−(α∗+λ)ae−λb†+λb|0⟩b
= e(α+λ)(b†+λ)−(α∗+λ)(b+λ)e−λb†+λb|0⟩b , (S46)

since,
[
(α+ λ)(b† + λ)− (α∗ + λ)(b+ λ),−λb† + λb

]

= −λ(α− α∗) . (S47)

Using the BCH formula, we get

|α+ λ⟩a = e(iImα)λ|α⟩b . (S48)

Thus,

|α+ λ⟩a = e(iImα)λ|α⟩b ,
|α⟩a = e(iImα)λ|α− λ⟩b . (S49)

So we have

|ψ⟩ =
∑

α

f(α)|α⟩b =
∑

α

f(α)e−(iImα)λ|α+ λ⟩a =
∑

α

f(α− λ)e−(iImα)λ|α⟩a . (S50)
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Thus, we get

exp

[
− i

ℏ
HRT

]
|ψ⟩ = exp

[
− iT

ℏ

(
ℏQLa

†a− ℏQLλ
2 +

1

2
ℏωm

)]
|ψ⟩

= e−
1
2 iωmT+iQLλ2T

∑

α′

f(α− λ)e−(iImα)λ exp
[
−iQLT

(
a†a
)]

|α⟩a

= e−
1
2 iωmT+iQLλ2T

∑

α

f(α− λ)e−(iImα)λ
∣∣αe−iQLT

〉
a

= e−
1
2 iωmT+iQLλ2T

∑

α

f(α− λ)eiIm(α(e−iQLT−1))λ
∣∣αe−iQLT − λ

〉
b

= e−
1
2 iωmT+iQLλ2T

∑

β

f((β + λ)eiQLT − λ)eiλIm[(β+λ)(1−eiQLT )]|β⟩b

= e−
1
2 iωmT+iQLλ2T+iλIm[λ(1−eiQLT )]

∑

β

f((β + λ)eiQLT − λ)eiλIm[β(1−eiQLT )]|β⟩b . (S51)

So we have

U†
R |ψ(x)⟩
= e−

1
2 iωmT+iQLλ2T+iλIm[λ(1−eiQLT )]

∑

β

f
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]e−iωLTb†b|β⟩b

= e−
1
2 iωmT+iQLλ2T+iλIm[λ(1−eiQLT )]

∑

β

f
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]∣∣e−iωLTβ

〉
b

= e−
1
2 iωmT+iQLλ2T−iλ2 sin(QLT )

∑

β

f
((
eiωLTβ + λ

)
eiQLT − λ

)
eiλIm[βe

iωLT (1−eiQLT )]|β⟩b . (S52)

We could re-write it by
(
eiωLTβ + λ

)
eiQLT − λ = eiωmTβ −

(
1− eiQLT

) Ω

QL
,

ωL = ωm −QL . (S53)

Now we visit a specific situation, where

|ψ⟩ =
∑

α

f(α)|α⟩b ⇒
∫
dαf(α)|α⟩b =

∫
dαδ(α− αi)|α⟩b = |αi⟩b , (S54)

and we visit the case where αi is real. So we impose

eiωmTβ −
(
1− eiQLT

) Ω

QL
= αi . (S55)

And we have

β = e−iωmTαi +
(
1− eiQLT

) Ω

QL
e−iωmT . (S56)

So we get

U†
R |ψ(x)⟩ = e

− 1
2 iωmT+i Ω2

QL
T−i

Ω(αiQL+Ω)

Q2
L

sin(QLT )
∣∣∣∣e−iωmTαi +

(
1− eiQLT

) Ω

QL
e−iωmT

〉

b

∝
∣∣∣∣e−iωmTαi +

(
1− eiQLT

) Ω

QL
e−iωmT

〉

b

. (S57)

C. Perturbation theory

We could use a similar trick to study the perturbation theory of the Kerr non-linearity. First, we notice that

HI = ℏKerrb
†b†bb = ℏKerrb

†bb†b+ ℏKerrb
† [b†, b

]
b

= ℏKerrb
†bb†b− ℏKerrb

†b = ℏKerrN
2 − ℏKerrN , (S58)
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So we have

HR(t) = HR = ℏQL

(
b†b
)
+

1

2
ℏωm + ℏKerrb

†b†bb+ ℏΩ
(
b+ b†

)
. (S59)

Moreover, using the Feynman’s disentangling formula,

exp (T (A+B)) = exp (TA)T exp

[∫ T

0

B̃ (τ) dτ

]
, (S60)

where

B̃(τ) ≡ exp (−τA)B exp (τA) . (S61)

So we get

exp

[
− i

ℏ
HRT

]
|ψ⟩

= exp

[
− i

ℏ

(
ℏQL

(
b†b
)
+

1

2
ℏωm + ℏΩ

(
b+ b†

))
T

]
T exp

[
− i

ℏ

∫ T

0

H̃I (τ) dτ

]
|ψ⟩

= e−
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))T

(
1− i

ℏ

∫ T

0

H̃I (τ) dτ +O(K2
err)

)
|ψ⟩ , (S62)

where

H̃I(τ) = ℏKerre
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ b†b†bbe−
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ . (S63)

We could write

|ψ(x)⟩ = exp

[
− i

ℏ
HRT

]
|ψ⟩ = |ψ0(x)⟩+ |δψ(x)⟩ , (S64)

where

|ψ0(x)⟩ = e−
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))T |ψ⟩ , (S65)

which has been computed before, and

|δψ(x)⟩ = − i

ℏ
e−

i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))T
∫ T

0

H̃I (τ) |ψ⟩ dτ = −iKerre
− i

ℏ (ℏQL(b†b)+ 1
2ℏωm+ℏΩ(b+b†))T

∫ T

0

e
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ b†b†bbe−
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ |ψ⟩ dτ . (S66)

Moreover, we have

H̃I(τ) = ℏKerre
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ b†b†bbe−
i
ℏ (ℏQL(b†b)+ 1

2ℏωm+ℏΩ(b+b†))τ

= ℏKerre
i
ℏ (ℏQL(b†b)+ℏΩ(b+b†))τ b†b†bbe−

i
ℏ (ℏQL(b†b)+ℏΩ(b+b†))τ

= ℏKerre
i
ℏ (ℏQLa†a−ℏQLλ2)τ b†b†bbe−

i
ℏ (ℏQLa†a−ℏQLλ2)τ

= ℏKerre
i
ℏ (ℏQLa†a)τ b†b†bbe−

i
ℏ (ℏQLa†a)τ . (S67)

We will use the identity:

be−
i
ℏ (ℏQLa†a)τ = (a− λ)e−

i
ℏ (ℏQLa†a)τ = ae−

i
ℏ (ℏQLa†a)τ − λe−

i
ℏ (ℏQLa†a)τ

= e−iQLτe−
i
ℏ (ℏQLa†a)τa− e−

i
ℏ (ℏQLa†a)τλ = e−iQLτe−

i
ℏ (ℏQLa†a)τ (b+ λ)− e−

i
ℏ (ℏQLa†a)τλ

= e−iQLτe−
i
ℏ (ℏQLa†a)τ b+ e−iQLτe−

i
ℏ (ℏQLa†a)τλ− e−

i
ℏ (ℏQLa†a)τλ

= e−iQLτe−
i
ℏ (ℏQLa†a)τ b+ (e−iQLτ − 1)e−

i
ℏ (ℏQLa†a)τλ . (S68)
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And similarly

b†e−
i
ℏ (ℏQLa†a)τ = (a† − λ)e−

i
ℏ (ℏQLa†a)τ = a†e−

i
ℏ (ℏQLa†a)τ − λe−

i
ℏ (ℏQLa†a)τ

= eiQLτe−
i
ℏ (ℏQLa†a)τa† − e−

i
ℏ (ℏQLa†a)τλ = eiQLτe−

i
ℏ (ℏQLa†a)τ (b† + λ)− e−

i
ℏ (ℏQLa†a)τλ

= eiQLτe−
i
ℏ (ℏQLa†a)τ b† + eiQLτe−

i
ℏ (ℏQLa†a)τλ− e−

i
ℏ (ℏQLa†a)τλ

= eiQLτe−
i
ℏ (ℏQLa†a)τ b† + (eiQLτ − 1)e−

i
ℏ (ℏQLa†a)τλ . (S69)

We have

H̃I(τ) = ℏKerre
−iQLτe

i
ℏ (ℏQLa†a)τ b†b†be−

i
ℏ (ℏQLa†a)τ b+ λℏKerr(e

−iQLτ − 1)e
i
ℏ (ℏQLa†a)τ b†b†be−

i
ℏ (ℏQLa†a)τ . (S70)

Finally, we get

H̃I(τ) = ℏKerrb
†b†bb

+ λℏKerr(e
iQLτ − 1)e−iQLτ b†bb

+ λℏKerr(e
iQLτ − 1)e−2iQLτe

i
ℏ (ℏQLa†a)τ b†e−

i
ℏ (ℏQLa†a)τ bb

+ λℏKerr(e
−iQLτ − 1)e−iQLτe

i
ℏ (ℏQLa†a)τ b†b†e−

i
ℏ (ℏQLa†a)τ b

+ λℏKerr(e
−iQLτ − 1)e

i
ℏ (ℏQLa†a)τ b†b†be−

i
ℏ (ℏQLa†a)τ . (S71)

Moreover, similar techniques could be used to deal with terms with λ. We have

λℏKerr

(
eiQLτ − 1

)
e−2iQLτe

i
ℏ (ℏQLa†a)τ b†e−

i
ℏ (ℏQLa†a)τ bb

= λℏKerr

(
eiQLτ − 1

)
e−iQLτ b†bb+ λ2ℏKerr

(
eiQLτ − 1

)2
e−2iQLτ bb , (S72)

and

λℏKerr

(
e−iQLτ − 1

)
e−iQLτe

i
ℏ (ℏQLa†a)τ b†b†e−

i
ℏ (ℏQLa†a)τ b

= λℏKerr

(
e−iQLτ − 1

)
e

i
ℏ (ℏQLa†a)τ b†e−

i
ℏ (ℏQLa†a)τ b†b

+ λ2ℏKerr

(
e−iQLτ − 1

)
e−iQLτ

(
eiQLτ − 1

)
e

i
ℏ (ℏQLa†a)τ b†e−

i
ℏ (ℏQLa†a)τ b

= λℏKerr

(
e−iQLτ − 1

)
eiQLτ b†b†b

+ 2λ2ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)
b†b

+ λ3ℏKerr

(
e−iQLτ − 1

)
e−iQLτ

(
eiQLτ − 1

)2
b , (S73)

and

λℏKerr

(
e−iQLτ − 1

)
e

i
ℏ (ℏQLa†a)τ b†b†be−

i
ℏ (ℏQLa†a)τ

= λℏKerr

(
e−iQLτ − 1

)
eiQLτ b†b†b

+ λ2ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)
b†b+ λ2ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)
b†b

+ λ2ℏKerr

(
e−iQLτ − 1

)2
e2iQLτ b†b†

+ λ3ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)2
e−iQLτ b

+ 2λ3ℏKerr

(
e−iQLτ − 1

)2 (
eiQLτ − 1

)
eiQLτ b†

+ λ4ℏKerr

(
e−iQLτ − 1

)2(
eiQLτ − 1

)2
. (S74)
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Thus, collecting all the terms, we have

O(λ0) : ℏKerrb
†b†bb ,

O(λ1) : 2λℏKerr

(
1− e−iQLτ

)
b†bb+ 2λℏKerr

(
1− eiQLτ

)
b†b†b ,

O(λ2) : λ2ℏKerr

(
eiQLτ − 1

)2
e−2iQLτ bb+ λ2ℏKerr

(
e−iQLτ − 1

)2
e2iQLτ b†b†

+ 4λ2ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)
b†b ,

O(λ3) : 2λ3ℏKerr

(
e−iQLτ − 1

) (
eiQLτ − 1

)2
e−iQLτ b

+ 2λ3ℏKerr

(
e−iQLτ − 1

)2 (
eiQLτ − 1

)
eiQLτ b† ,

O(λ4) : λ4ℏKerr

(
e−iQLτ − 1

)2(
eiQLτ − 1

)2
. (S75)

After reorganizing terms and performing integrals, we get

− i

ℏ

∫ T

0

H̃I(τ)dτ |ψ⟩ =
∑

α

g0(α)|α⟩b +
∑

α

g1(α)b
†|α⟩b +

∑

α

g2(α)b
†b†|α⟩b , (S76)

where

g0(α) = Kerr
λ2e−2iTQL

2QL

(
(α+ λ)2 + e2iTQL

(
3α(α+ 2λ)− 2iT

(
α2 + 6αλ+ 6λ2

)
QL

)

+4λ(α+ 2λ)e3iTQL − 4(α+ λ)(α+ 2λ)eiTQL + λ2
(
−e4iTQL

)
)
f(α) ,

g1(α) = Kerr
λe−iTQL

QL

(
−2(α+ λ)2 + eiTQL

(
2α2 − 3λ2 − 2iT (α+ λ)(α+ 3λ)QL

)

+2λ(2α+ 3λ)e2iTQL + λ2
(
−e3iTQL

)
)
f(α) ,

g2(α) =
Kerr

2QL

(
λ
(
−1 + eiTQL

) (
4α− λ

(
−3 + eiTQL

))
− 2iT (α+ λ)

2
QL

)
f(α) . (S77)

Moreover, we know that

|δψ(x)⟩ = e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLTa†a

∑

α

g0(α)|α⟩b + e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLTa†a

∑

α

g1(α)b
†|α⟩b

+ e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLTa†a

∑

α

g2(α)b
†b†|α⟩b . (S78)

Since

e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLTa†a

∑

α

g0(α)|α⟩b

= e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]∑

β

g0
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]|β⟩b . (S79)

Furthermore, using the identity,

e−iQLTa†ab† = e−iQLT b†e−iQLTa†a +
(
e−iQLT − 1

)
e−iQLTa†aλ , (S80)

we have

e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLa†aT

∑

α

g1(α)b
†|α⟩b

= e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLT

∑

α

g1(α)b
†e−iQLTa†a|α⟩b

+ λe
iT

(
Ω2

ωm−ωL
− 1

2ωm

) (
e−iQLT − 1

)∑

α

g1(α)e
−iQLTa†a|α⟩b

= e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]e−iQLT

∑

β

g1
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]b†|β⟩b

+ λe
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )] (e−iQLT − 1

)∑

β

g1
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]|β⟩b , (S81)
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and we have

e−iQLTa†ab†b† = e−iQLT b†e−iQLTa†ab† + λ
(
e−iQLT − 1

)
e−iQLTa†ab†

= e−iQLT b†
(
e−iQLT b†e−iQLTa†a +

(
e−iQLT − 1

)
e−iQLTa†aλ

)

+ λ
(
e−iQLT − 1

) (
e−iQLT b†e−iQLTa†a +

(
e−iQLT − 1

)
e−iQLTa†aλ

)

= e−2iQLT b†b†e−iQLTa†a + 2λ
(
e−2iQLT − e−iQLT

)
b†e−iQLTa†a

+ λ2
(
e−2iQLT − 2e−iQLT + 1

)
e−iQLTa†a . (S82)

So we have

e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−iQLTa†a

∑

α

g2(α)b
†b†|α⟩b

= e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
e−2iQLT

∑

α

g2(α)b
†b†e−iQLTa†a|α⟩b

+ e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
2λ
(
e−2iQLT − e−iQLT

)∑

α

g2(α)b
†e−iQLTa†a|α⟩b

+ e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
λ2
(
e−2iQLT − 2e−iQLT + 1

)∑

α

g2(α)e
−iQLTa†a|α⟩b

= e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]e−2iQLT

∑

β

g2
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]b†b†|β⟩b

+ e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]2λ

(
e−2iQLT − e−iQLT

)
∑

β

g2
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]b†|β⟩b

+ e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]λ2

(
e−2iQLT − 2e−iQLT + 1

)
∑

β

g2
(
(β + λ)eiQLT − λ

)
eiλIm[β(1−eiQLT )]|β⟩b . (S83)

Thus, we could define

|δψ(x)⟩ =
∑

β

h0(β)|β⟩b +
∑

β

h1(β)b
†|β⟩b +

∑

β

h2(β)b
†b†|β⟩b , (S84)

where

h0(β) = e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )]g0

(
(β + λ)eiQLT − λ

)

+ λe
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )] (e−iQLT − 1

)
g1
(
(β + λ)eiQLT − λ

)

+ λ2e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )] (e−2iQLT − 2e−iQLT + 1

)
g2
(
(β + λ)eiQLT − λ

)
,

h1(β) = e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )]e−iQLT g1

(
(β + λ)eiQLT − λ

)

+ 2λe
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )] (e−2iQLT − e−iQLT

)
g2
(
(β + λ)eiQLT − λ

)
,

h2(β) = e
iT

(
Ω2

ωm−ωL
− 1

2ωm

)
+iλIm[λ(1−eiQLT )]eiλIm[β(1−eiQLT )]e−2iQLT g2

(
(β + λ)eiQLT − λ

)
. (S85)

Thus we have

|δϕ(x)⟩ = e−iωLTb†b |δψ(x)⟩ =
∑

β

s0(β)|β⟩b +
∑

β

s1(β)b
†|β⟩b +

∑

β

s2(β)b
†b†|β⟩b , (S86)
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where

s0(β) = h0
(
βeiωLT

)
,

s1(β) = h1
(
βeiωLT

)
e−iTωL ,

s2(β) = h2
(
βeiωLT

)
e−2iTωL . (S87)

Now, consider the kernel function,

K (x,x′) = |⟨ϕ(x)|ϕ (x′)⟩|2

= |(⟨ϕ0(x)|+ ⟨δϕ(x)|) (|ϕ0 (x′)⟩+ |δϕ(x′)⟩)|2

= |⟨ϕ0(x)|ϕ0 (x′)⟩+ ⟨δϕ(x)| |ϕ0 (x′)⟩+ ⟨ϕ0(x)| |δϕ(x′)⟩+ ⟨δϕ(x)| |δϕ(x′)⟩|2

= (⟨ϕ0(x)|ϕ0 (x′)⟩+ ⟨δϕ(x)| |ϕ0 (x′)⟩+ ⟨ϕ0(x)| |δϕ(x′)⟩+ ⟨δϕ(x)| |δϕ(x′)⟩)
(⟨ϕ0 (x′) |ϕ0(x)⟩+ ⟨ϕ0 (x′)| |δϕ(x)⟩+ ⟨δϕ(x′)| |ϕ0(x)⟩+ ⟨δϕ(x′)| |δϕ(x)⟩)
= |⟨ϕ0(x)|ϕ0 (x′)⟩|2 + ⟨δϕ(x)| |ϕ0 (x′)⟩ ⟨ϕ0 (x′) |ϕ0(x)⟩
+ ⟨ϕ0(x)| |δϕ(x′)⟩ ⟨ϕ0 (x′) |ϕ0(x)⟩+ ⟨ϕ0(x)|ϕ0 (x′)⟩ ⟨ϕ0 (x′)| |δϕ(x)⟩
+ ⟨ϕ0(x)|ϕ0 (x′)⟩ ⟨δϕ(x′)| |ϕ0(x)⟩+O(K2

err)

= κ0(x,x
′) + ⟨δϕ(x)| |ϕ0 (x′)⟩ ⟨ϕ0 (x′) |ϕ0(x)⟩

+ ⟨ϕ0(x)| |δϕ(x′)⟩ ⟨ϕ0 (x′) |ϕ0(x)⟩+ ⟨ϕ0(x)|ϕ0 (x′)⟩ ⟨ϕ0 (x′)| |δϕ(x)⟩
+ ⟨ϕ0(x)|ϕ0 (x′)⟩ ⟨δϕ(x′)| |ϕ0(x)⟩+O(K2

err) . (S88)

We only need to compute a single term, and other terms would follow the symmetric and hermitian operations. We know from
the previous analysis

|ϕ0(x)⟩ = e−
1
2 iωmT+iQLλ2T−iλ2 sin(QLT )

∑

β

f
((
eiωLTβ + λ

)
eiQLT − λ

)
eiλIm[βe

iωLT (1−eiQLT )]|β⟩b . (S89)

Finally we have

⟨ϕ0 (x̄) |δϕ(x)⟩ =
∑

β,β̄

G(β, β̄;x, x̄)eb(β, β̄) , (S90)

where

eb(β1, β2) = ⟨β1|β2⟩b = eβ
∗
1β2−|β1|2/2−|β2|2/2 , (S91)

and

G(β, β̄;x, x̄) = e
−iT̄

(
Ω̄2

ωm−ω̄L
− 1

2ωm

)
e
i Ω̄2

(ωm−ω̄L)2
sin((ωm−ω̄L)T̄)

e
−i Ω̄

(ωm−ω̄L)
Im[β̄eiω̄LT̄ (1−ei(ωm−ω̄L)T̄ )]

f∗
(
eiωmT̄ β̄ − Ω̄

(ωm − ω̄L)

(
1− ei(ωm−ω̄L)T̄

))
s0(x, β)

+ β̄e
−iT̄

(
Ω̄2

ωm−ω̄L
− 1

2ωm

)
e
i Ω̄2

(ωm−ω̄L)2
sin((ωm−ω̄L)T̄)

e
−i Ω̄

(ωm−ω̄L)
Im[β̄eiω̄LT̄ (1−ei(ωm−ω̄L)T̄ )]

f∗
(
eiωmT̄ β̄ − Ω̄

(ωm − ω̄L)

(
1− ei(ωm−ω̄L)T̄

))
s1(x, β)

+ β̄2e
−iT̄

(
Ω̄2

ωm−ω̄L
− 1

2ωm

)
e
i Ω̄2

(ωm−ω̄L)2
sin((ωm−ω̄L)T̄)

e
−i Ω̄

(ωm−ω̄L)
Im[β̄eiω̄LT̄ (1−ei(ωm−ω̄L)T̄ )]

f∗
(
eiωmT̄ β̄ − Ω̄

(ωm − ω̄L)

(
1− ei(ωm−ω̄L)T̄

))
s2(x, β) . (S92)

Moreover, if we assume

⟨ϕ0(x̄)|ϕ0(x)⟩ = G0(x, x̄) , (S93)

we get

K (x,x′) = K0 (x,x
′) + δK (x,x′) +O

(
K2

err

)
, (S94)
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and,

δK (x, x̄) =


∑

β,β̄

G∗
0(x, x̄)G(β, β̄;x, x̄)eb(β, β̄)


+


∑

β,β̄

G∗
0(x, x̄)G

∗(β̄, β; x̄,x)eb(β, β̄)




+


∑

β,β̄

G0(x, x̄)G
∗(β, β̄;x, x̄)eb(β, β̄)


+


∑

β,β̄

G0(x, x̄)G(β̄, β; x̄,x)eb(β, β̄)


 . (S95)

Moreover, we use the setup again where α = αi. We have

|ϕ0(x)⟩ = e
− 1

2 iωmT+i Ω2

QL
T−i

Ω(αiQL+Ω)
Q2

L

sin(QLT )
∣∣∣∣e−iωmTαi +

(
1− eiQLT

) Ω

QL
e−iωmT

〉

b

,

⟨ϕ0(x̄)| = e
1
2 iωmT̄−i Ω̄2

Q̄L
T̄+i

Ω̄(αiQ̄L+Ω̄)
Q̄2

L

sin(Q̄LT̄)
〈
e−iωmT̄αi +

(
1− eiQ̄LT̄

) Ω̄

Q̄L
e−iωmT̄

∣∣∣∣
b

. (S96)

Thus,

K0 (x, x̄) = |⟨ϕ0(x̄)|ϕ0(x)⟩|2 =
∣∣eb(β, β̄)

∣∣2 , (S97)

where

β = e−iωmTαi +
(
1− eiQLT

) Ω

QL
e−iωmT ,

β̄ = e−iωmT̄αi +
(
1− eiQ̄LT̄

) Ω̄

Q̄L
e−iωmT̄ , (S98)

and we define

p(x) = e
− 1

2 iωmT+i Ω2

QL
T−i

Ω(αiQL+Ω)
Q2

L

sin(QLT )
,

⟨ϕ0(x̄)|ϕ0(x)⟩ = p∗(x̄)p(x)eb(β, β̄) . (S99)

Moreover, we have

δK (x, x̄) =
∣∣eb(β, β̄)

∣∣2




p∗(x)s0(x, β)
+p∗(x)β̄s1(x, β)
+p∗(x)β̄2s2(x, β)
+c.c.
+(x ↔ x̄)
+ (x ↔ x̄, c.c.)




. (S100)

There is a further simplification for the phase factor. We could define

h̃0(β) = g0
(
(β + λ)eiQLT − λ

)
+ λ

(
e−iQLT − 1

)
g1
(
(β + λ)eiQLT − λ

)

+ λ2
(
e−2iQLT − 2e−iQLT + 1

)
g2
(
(β + λ)eiQLT − λ

)
,

h̃1(β) = e−iQLT g1
(
(β + λ)eiQLT − λ

)
+ 2λ

(
e−2iQLT − e−iQLT

)
g2
(
(β + λ)eiQLT − λ

)
,

h̃2(β) = e−2iQLT g2
(
(β + λ)eiQLT − λ

)
, (S101)

and

s̃0(β) = h̃0
(
βeiωLT

)
,

s̃1(β) = h̃1
(
βeiωLT

)
e−iTωL ,

s̃2(β) = h̃2
(
βeiωLT

)
e−2iTωL , (S102)

we have

δK(x, x̄) =
∣∣eb(β, β̄)

∣∣2


s̃0(x, β) + β̄s̃1(x, β) + β̄2s̃2(x, β)
+c.c.
+(x ↔ x̄)
+(x ↔ x̄, c.c.)


 . (S103)
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So,

δK(x, x̄)

K0(x, x̄)
=



s̃0(x, β) + β̄s̃1(x, β) + β̄2s̃2(x, β)
+c.c.
+(x ↔ x̄)
+(x ↔ x̄, c.c.)


 . (S104)

III. EXPERIMENTAL PROPOSALS

A. Threshold of Kerr non-linearity

As stated in the main text, we compare the Kerr coefficient with the drive amplitude to determined if the system is in the weak
or strong non-linear regime. The Kerr non-linearity effectively induces a photon number-dependent resonant frequency shift
ω′
m → (ωm − 2Kerrn) with n being the photon number; namely, every time a photon is added into the resonator, the resonant

frequency will shift by −2Kerr. If we consider an initially on-resonance drive with ωL = ωm, as more and more photons are
populated in the resonator, the drive will equivalently become more and more detuned. Strong non-linearity refers to the situation
that after the first photon enters the resonator, the drive detuning ∆L ≈ 2Kerr becomes large enough so that additional photons
at ωL can no longer populate the resonator. In other words, the anharmonic resonator now may be approximated as a two-level
qubit with negligible excitations in its higher energy levels. The intra-cavity photon number (n ≡ b†b) under a detuned drive
tone is given by

n =
Ω2

∆2
L + (κ2 )

2
, (S105)

where κ = κi+κe is the full linewidth of the resonator. In our theoretical analysis, we assumed the intrinsic loss of the resonator
is negligible κi ≈ 0 and the external coupling κe can also be kept sufficiently small. Therefore, the strong non-linearity regime
corresponds to Ω2/4K2

err ≪ 1, while the weak non-linearity regime corresponds to Ω2/4K2
err ≫ 1.

FIG. S1. (a) Measurement scheme for the overlap between two quantum state |Ψ⟩ and |Φ⟩. (b) Experimental setup of a circuit QED system
for the overlap measurement between the two modes supported by non-linear (NL) resonators A and B, respectively. Three transmon qubits
qA, qB, and qC are used for quantum state control and coupling of the two resonators.

B. Experimental setup

The kernel we defined in Eq. (1) in the main text relies on the measurement of the overlap between two states |Ψ⟩ ≡ |ψ(T )⟩
and |Φ⟩ ≡ |ψ(T ′)⟩. This can be realized by controlled-SWAP (CSWAP) gate using an auxiliary qubit [12]; the states of |Ψ⟩ and
|Φ⟩ are swapped when the qubit is in the excited (|e⟩) state, while kept unchanged when the qubit is in the ground (|g⟩) state.
The CSWAP can be decomposed into two 50:50 beam-splitter (BS) operations with a controlled phase gate (CPS) in the middle
(Fig. S1(a)). Therefore, if we first apply a Hadamard gate (H) to prepare the qubit to a superposition state (|g⟩+ |e⟩)/

√
2, then

apply the controlled SWAP gate, followed by a second Hadamard gate (H), the system state becomes

|g⟩ |Ψ⟩ |Φ⟩ H−→
√
2

2
(|g⟩+ |e⟩) |Ψ⟩ |Φ⟩ CSWAP−−−−−→

√
2

2
(|g⟩ |Ψ⟩ |Φ⟩+ |e⟩ |Φ⟩ |Ψ⟩)

H−→ 1

2
|g⟩ (|Ψ⟩ |Φ⟩+ |Φ⟩ |Ψ⟩) + 1

2
|e⟩ (|Ψ⟩ |Φ⟩ − |Φ⟩ |Ψ⟩).

(S106)

Therefore, if we measure the probability of the qubit final state in |g⟩ or |e⟩, we can get the overlap |⟨Ψ|Φ⟩|2

Pg =
1

2
(1 + |⟨Ψ|Φ⟩|2), Pe =

1

2
(1− |⟨Ψ|Φ⟩|2). (S107)
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Experimentally, these quantum operations and measurements can be done in circuit QED systems [13, 14]. As illustrated in
Fig. S1(b), we can use two nonlinear superconducting resonators (A and B) to prepare the states |Ψ⟩ and |Φ⟩. The Kerr non-
linearity can be realized by either Josephson junction elements or superconducting kinetic inductance devices [15, 16]. The drive
tone Ω can be directly sent to the cavities via a microwave port. In addition, each cavity is dispersively coupled to a transmon
qubit (qA and qB, respectively) for universal control and state readout. Importantly, a third transmon qC is simultaneously
coupled to A and B to mediate a bilinear interaction HBS ∝ (gab† + g∗a†b) under two microwave drive tones, which enables
the beam-splitter interaction. The CPS gate can be realized by harnessing the dispersive coupling, for example, between qB and
cavity B. Then we will be able to infer the state overlap by measuring the population of qB.
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