
Probabilistic Matrix Factorization for Automated
Machine Learning

Nicoló Fusi
Microsoft Research

Cambridge, MA, USA
fusi@microsoft.com

Huseyn Melih Elibol
Microsoft Research

Cambridge, MA, USA
v-huelib@microsoft.com

Abstract

In order to achieve state-of-the-art performance, modern machine learning tech-
niques require careful data pre-processing and hyperparameter tuning. Moreover,
given the ever increasing number of machine learning models being developed,
model selection is becoming increasingly important. Automating the selection and
tuning of machine learning pipelines consisting of data pre-processing methods and
machine learning models, has long been one of the goals of the machine learning
community. In this paper, we tackle this meta-learning task by combining ideas
from collaborative filtering and Bayesian optimization. Using probabilistic matrix
factorization techniques and acquisition functions from Bayesian optimization,
we exploit experiments performed in hundreds of different datasets to guide the
exploration of the space of possible pipelines. In our experiments, we show that
our approach quickly identifies high-performing pipelines across a wide range of
datasets, significantly outperforming the current state-of-the-art.

1 Introduction

Machine learning models often depend on hyperparameters that require careful fine-tuning. For
example, deep neural networks need to have a specific number of hidden layers of a determined size
and an initial learning rate at the beginning of training. These hyperparameters can be learned by
cross-validation (or holdout set performance) over a grid of values, or by randomly sampling the
hyperparameter space [Bergstra & Bengio, 2012], but these approaches ignore any continuity in
parameter space. More recently, Bayesian optimization has emerged as a promising alternative to
these approaches [Srinivas et al., 2009, Hutter et al., 2011, Osborne et al., 2009, Bergstra et al., 2011,
Snoek et al., 2012, Bergstra et al., 2013]. In Bayesian optimization, the loss (e.g. root mean square
error) is modeled as a function of the hyperparameters. A regression model (usually a Gaussian
process) and an acquisition function are then used to iteratively decide which hyperparameter setting
should be evaluated next. More formally, the goal of Bayesian optimization is to find the vector of
hyperparameters θ that corresponds to

arg min
θ

L (M(x;θ), y),

whereM(x |θ) are the predictions generated by a machine learning modelM (e.g. a DNN, random
forest, etc.) with hyperparameters θ on some inputs x; y are the targets/labels and L is a loss function.
Usually, the hyperparameters are a subset of RD, although in practice many hyperparameters can be
discrete (e.g. the number of layers in a neural network) or categorical (e.g. the loss function to use in
a gradient boosted regression tree).

Bayesian optimization techniques have been shown to be very effective in practice and sometimes
identify better hyperparameters than human experts, leading to state-of-the-art performance in
computer vision tasks Snoek et al. [2012]. One drawback of these techniques is that they are known

ar
X

iv
:1

70
5.

05
35

5v
1

 [
st

at
.M

L
]

 1
5

M
ay

 2
01

7

Latent dimension 1

La
te

n
t

d
im

e
n
si

o
n
 2

0.54

0.60

0.66

0.72

0.78

0.84

0.90

0.96

Figure 1: Two-dimensional embedding of 5,000 ML pipelines across 576 OpenML datasets. Each
point corresponds to a pipeline and is colored by the AUROC obtained by that pipeline in one of the
OpenML datasets (OpenML dataset id 943).

to suffer in high-dimensional hyperparameter spaces and often perform comparably to random search
[Li et al., 2016]. This limitation has both been shown in practice [Li et al., 2016], as well as studied
theoretically [Srinivas et al., 2009, Grünewälder et al., 2010] and is due to the necessity of sampling
enough hyperparameter configurations to get a good estimate of the predictive posterior over a
high-dimensional space. In practice, this is not an insurmountable obstacle to the fine-tuning of a
handful of parameters in a single model, but it’s increasingly becoming impractical as the focus
of the community shifts from identifying individual parameters to identifying entire ML pipelines
consisting of data pre-processing methods, machine learning models and their parameters [Feurer
et al., 2015].

One way to address this problem is to take advantage of experiments performed on multiple related
datasets. To this end, Swersky et al. [2013] have proposed a multi-task Bayesian optimization
approach leveraging multiple related datasets in order to find the best hyperparameter setting for a
new task. For instance, they suggested using a smaller dataset to tune the hyperparameters of a bigger
dataset that is more expensive to evaluate. More recently, Feurer et al. [2015] used optimization
"traces" from related dataset as initialization to warm-start the Bayesian optimization algorithm. In
particular, they compute meta-features of both the dataset under examination as well as a variety of
OpenML datasets. These meta-features include for example the number of classes or the number of
samples in each dataset. They measure similarity between datasets by computing the L1 norm of the
meta-features and use the optimization runs from the nearest datasets to warm-start the optimization.

Similar to what was done in Feurer et al. [2015], our goal in this paper is not only to tune the hyper-
parameters of a given model, but also to identify which model to use and how to pre-process the data.
We do so by leveraging experiments performed in datasets already analyzed D = {D1, . . . ,DD} to
solve the optimization problem

arg min
M,P, θm, θp

L (M(P(x;θp);θm), y),

where M is the ML model with hyperparameters θm and P is the pre-processing method with
hyperparameters θp. In the rest of the paper, we refer to the combination of pre-processing method,
machine learning model and their hyperparameters as a machine learning pipeline. Some of the
dimensions in ML pipeline space are continuous, some are discrete, some are categorical (e.g. the
“model” dimension can be a choice between a random forest or a DNN), and some are conditioned
on another dimension (e.g. “the number of trees” dimension in a random forest). The mixture of

2

discrete, continuous and conditional dimensions in ML pipelines make modeling continuity in this
space particularly challenging. For this reason, unlike previous work, we consider “instantiations” of
pipelines, meaning that we fix the set of pipelines ahead of training. For example, an instantiated
pipeline can consist in computing the top 5 principal components of the input data and then applying
a random forest with 1000 trees. We show that the problem of predicting the performance of ML
pipelines on a new dataset can be cast as a collaborative filtering problem that can be solved with
probabilistic matrix factorization techniques. The approach we follow in the rest of this paper, based
on Gaussian process latent variable models [Lawrence & Urtasun, 2009, Lawrence, 2005], embeds
different pipelines in a latent space based on their performance across different datasets. For example,
Figure 1 shows the first two dimensions of the latent space of ML pipelines identified by our model on
OpenML [Vanschoren et al., 2013] datasets. Each dot corresponds to an ML pipeline and is colored
depending on the AUROC (in the rest of the paper simply called AUC) achieved on a holdout set
for a given OpenML dataset. Since our probabilistic approach produces a full predictive posterior
distribution over the performance of the ML pipelines considered, we can use it in conjunction
with acquisition functions commonly used in Bayesian optimization to guide the exploration of
the ML pipeline space. Through extensive experiments, we show that our method significantly
outperforms the current state-of-the-art in automated machine learning in the vast majority of datasets
we considered.

2 AutoML as probabilistic matrix factorization

One of the main problems with current automated machine learning (AutoML) techniques (other
than the two mentioned in the introduction) is that they treat each new dataset as a completely new
problem, with no transfer of information from experiments performed on datasets analyzed previously.
In this paper, we develop a method that can draw information from all of the datasets for which
experiments are available, whether they are immediately related (e.g. a smaller version of the current
dataset) or not. The idea behind our approach is that if two datasets have similar (i.e. correlated)
results for a few pipelines, it’s likely that the remaining pipelines will produce results that are similar
as well. This is somewhat reminiscent of a collaborative filtering problem for movie recommendation,
where if two users liked the same movies in the past, it’s more likely that they will like similar ones
in the future.

More formally, given N machine learning pipelines and D datasets, we train each pipeline on part of
each dataset and we evaluate it on an holdout set. This gives us a matrix Y ∈ RN×D summarizing
the performance of each pipeline in each dataset. In the rest of the paper, we will assume that Y
is a matrix of AUCs and that we want to maximize the AUC for a new dataset, but our approach
can be used with any loss function (e.g. RMSEs, accuracies, etc.). For most applications, we expect
Y to be very sparse, since it can be impractical to run and evaluate all pipelines on all datasets.
Having observed the performance of different pipelines on different datasets, the task of predicting
the performance of any of them on a new dataset can be cast as a matrix factorization problem.

Specifically, we are seeking a low rank decomposition such that Y ≈ XW, where X ∈ RN×Q and
W ∈ RQ×D, where Q is the dimensionality of the latent space. As done in Lawrence & Urtasun
[2009] and Salakhutdinov & Mnih [2008], we consider the probabilistic version of this task, known
as probabilistic matrix factorization

p(Y |X,W, σ2) =

N∏
i=1

N (yi |xiW, σ2I), (1)

where xi is a row of the latent variables X and yi is a vector of measured performances for pipeline
i. In this setting both X and W are unknown and must be inferred.

2.1 Non-linear matrix factorization with Gaussian Process priors

The probabilistic matrix factorization approach just introduced assumes that the entries of Y are
linearly related to the latent variables. In nonlinear probabilistic matrix factorization [Lawrence
& Urtasun, 2009], the elements of Y are given by a nonlinear function of the latent variables,

3

yn,d = fd(xn) + ε, where ε is independent Gaussian noise. This gives a likelihood of the form

p
(
Y |X, f , σ2

)
=

N∏
n=1

D∏
d=1

N
(
yn,d|fd (xn) , σ2

)
, (2)

Following Lawrence & Urtasun [2009], we place a Gaussian Process prior over fd(xn) so that any
vector f is governed by a joint Gaussian density, p (f |X) = N (f |0,K) , where K is a covariance
matrix, and the elements Ki,j = k(xi,xj) encode the degree of correlation between two samples
as a function of the latent variables. If we use the covariance function k (xi,xj) = x>i xj , which is
a prior corresponding to linear functions, we recover a model equivalent to (1). Alternatively, we
can choose a prior over non-linear functions, such as a squared exponential covariance function with
automatic relevance determination (ARD, one length-scale per dimension),

k (xi,xj) = α exp
(
−γq

2
||xi − xj ||2

)
, (3)

where α is a variance (or amplitude) parameter and γq are length-scales. The squared exponential
covariance function is infinitely differentiable and hence is a prior over very smooth functions. In
practice, such a strong smoothness assumption can be unrealistic and is the reason why the Matern
class of kernels is sometimes preferred [Williams & Rasmussen, 2006]. In the rest of this paper we
use the squared exponential kernel and leave the investigation of the performance of Matern kernels
to future work.

After specifying a GP prior, we can get the marginal likelihood by integrating out the function f
under the prior

p(Y |X,θ, σ2) =

∫
p(Y |X, f) p(f |X) df (4)

=

D∏
d=1

N (y:,d |0, K(X,X) + σ2I), (5)

where θ = {α, γ1, . . . , γq}.

2.2 Inference with missing data

As we mentioned before, we expect Y to be a sparse matrix, so we need to be able to perform
inference with missing data. Given that the marginal likelihood in equation 5 follows a multivariate
Gaussian distribution, marginalizing over missing values is straightforward and simply requires
"dropping" the missing observations from the mean and covariance. More formally, we define an
indexing function e(d) : N → Nm that given a dataset index d returns the list of m pipelines that
have been evaluated on d. We can then rewrite equation 5 as

p(Y |X,θ, σ2) =

D∏
d=1

N (ye(d),d |0, Cd), (6)

where Cd = K(Xe(d),Xe(d)) + σ2I.

As done in Lawrence & Urtasun [2009], we infer the parameters θ, σ and latent variables X by
minimizing the log-likelihood using stochastic gradient descent. We do so by presenting the entries
Ye(d),d one at a time and updating Xe(d), θ and σ for each dataset d. The negative log-likelihood of
the model can be written as

L =

D∑
d=1

−const.− Nd
2

log|Cd| −
1

2
(y>e(d),dC

−1
d ye(d),d), (7)

where Nd is the number of pipelines evaluated for dataset d. For every dataset j we update the global
parameters θ as well as the latent variables Xe(d) by evaluating at the t-th iteration:

θt+1 = θt − η ∂L
∂θ

(8)

Xt+1
e(d) = Xt

e(d) − η
∂L

∂Xe(d)
, (9)

4

where η is a learning rate parameter. In the rest of the paper, we will use a global η for all parameters,
but it’s also possible to specify a different learning rate per parameter (i.e. η is a vector) and, for
example, use RMSprop [Tieleman & Hinton, 2012] to tune the learning rate at each iteration.

2.3 Predictions

Predictions from the model can be easily computed by following the standard derivations for Gaussian
Process [Williams & Rasmussen, 2006] regression. The predicted performance y∗m,j of pipeline m
for a new dataset j is given by

p(y∗m,d |X,θ, σ) = N (y∗m,d |µm,d, vm,d) (10)

µm,d = k>e(d),mC−1d ye(d),d

vm,d = km,m + σ2 − k>e(d),mC−1d ke(d),m,

remembering that Cd = K(Xe(d),Xe(d))+σ2I and defining ke(d),m = K(Xe(d),Xm) and km,m =
K(Xm,Xm).

The computational complexity for generating these predictions is largely determined by the number
of pipelines already evaluated for a test dataset and is again due to the inversion of a Nj × Nj
matrix. This is not particularly onerous because the typical number of evaluations is likely to be in
the hundreds, given the cost of training each pipeline and the risk of overfitting to the validation set if
too many pipelines are evaluated.

2.4 Acquisition functions

The model described so far can be used to predict the expected performance of each ML pipeline as a
function of the pipelines already evaluated, but does not yet give any guidance as to which pipeline
should be tried next. A simple approach to pick the next pipeline to evaluate is to iteratively pick the
maximum predicted performance

arg max
m

(µm,d),

but such a utility function, also known as acquisition function, would discard information about the
uncertainty of the predictions. One of the most used acquisition functions is the expected improvement
(EI) [Močkus, 1975], which given by the expectation of the improvement function

I(y∗m,d, ybest) , (y∗m,d − ybest)I(y∗m,d > ybest)

EIm,d , E[I(y∗m,d, ybest)],

where ybest is the best result observed. Since y∗m,j is Gaussian distributed (see Equation 10), this
expectation can be computed analytically

EIm,d = vm,d [γm,dΦ(γm,d +N (γm,d | 0, 1))] ,

where Φ is the cumulative distribution function of the standard normal and γm,j is defined as

γm,d =
µm,d − ybest − ξ

vm,d
,

where ξ is a free parameter to encourage exploration. After computing the expected improvement for
each pipeline, the next pipeline to evaluate is simply given by

arg max
m

(EIm,d).

The expected improvement is just one of many possible acquisition functions, and different problems
may require different acquisition functions. See [Shahriari et al., 2016] for a review.

3 Experiments

In this section, we compare our method to a series of baselines as well as to auto-sklearn [Feurer
et al., 2015], the current state-of-the-art approach. We ran all of the experiments on 576 OpenML
[Vanschoren et al., 2013] datasets, selected by filtering for binary and multi-class classification
problems with no more than 10, 000 samples and no missing values.

5

0 25 50 75 100 125 150 175 200
Iteration

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

ra
nk

random
average
L1
auto-sklearn
PMF

Figure 2: Average rank of all the approaches we considered as a function of the number of iterations.
For each dataset, the methods are ranked based on AUC obtained on a validation set at each iteration.
The ranks are then averaged across datasets. Lower is better. The shaded areas represent the standard
error for each method.

3.1 Generation of training data

We generated training data for our method by splitting each OpenML dataset in 80% training
data, 10% validation data and 10% test data, running 20, 000 ML pipelines on each dataset and
measuring the AUC on the validation set. We generated the pipelines by sampling a combination
of pre-processors P = {P 1, P 2, ..., Pn}, machine learning modelsM = {M1,M2, ...,Mm}, and
their corresponding hyperparameters ΘP = {θ1P , ..., θnP } and ΘM = {θ1M , ..., θmM} from the entries
in Supplementary Table 1. All of the models and pre-processing methods we considered were
implemented in scikit-learn [Pedregosa et al., 2011]. We sampled the parameter space by using
functions provided in the auto-sklearn library Feurer et al. [2015]. Similar to what was done in [Feurer
et al., 2015], we limited the maximum training time of each individual model within a pipeline to 30
seconds and its memory consumption to 16GB. Because of network failures and cluster running out
of memory, the resulting matrix Y was not fully sampled and had roughly 30% missing entries. As
pointed out in the previous section, this is not a problem for our method, since it can easily handle
sparse data.

3.2 Parameter settings

We trained our model (described in section 2) on 527 of the datasets and we evaluated its performance
on the remaining 49, picked at random. We set the number of latent dimensions Q = 20, the initial
learning rate to η = 1e−6, the momentum to ω = 0.9 and we initialized the latent space using PCA.
Finally, we configured the acquisition function with ξ = 0.01. All of these parameters were tuned on
an independent holdout set of 10 OpenML datasets with a random subset of 5,000 pipelines.

3.3 Results

We compared the following models:

• Random. For each test dataset, we performed a random search by sampling each pipeline
to be evaluated from the set of 20,000 at random without replacement.

• L1. For all the datasets in the training set, we computed meta-features as done in Feurer et al.
[2015]. The set of meta-features includes, for example, the number of samples, number of
classes, skewness and entropy of the labels (a full list is given as supplementary material in
Feurer et al. [2015]). At test time, we computed the L1 distance between the meta-features
of the training datasets and the test dataset. Finally, we took the closest training dataset

6

0 25 50 75 100 125 150 175 200
Iteration

0.10

0.15

0.20

0.25

0.30

AU
C b

es
t -

 A
UC

ite
ra

tio
n

random
average
L1
auto-sklearn
PMF

Figure 3: Difference between the maximum AUC observed on the test set and the AUC obtained by
each method at each iteration. Lower is better. The shaded areas represent the standard error for each
method.

in L1 space and we evaluated the pipelines ordered by performance (in this case, AUC)
achieved in the training dataset. The idea behind this strawman method is that the ordering
of pipelines in terms of loss function should be similar across related datasets. In all our
experiments, we use this method to pick the first pipeline. We then use our method and
acquisition function to select subsequent pipelines.

• Average. We computed the average performance of each pipeline across all datasets in the
training set and evaluated them in order starting from the one with the highest AUC.

• auto-sklearn [Feurer et al., 2015]. We ran auto-sklearn for 1.5 hours per dataset and set to
optimize AUC on a holdout set. We disabled the automated ensembling of models in order
to obtain a fair comparison to the other non-ensembling methods.

• PMF. The model described in this paper.

This set of alternative methods includes baselines that completely ignore any experience gained in
the analysis of previous datasets (i.e. "random"), methods that incorporate such information in a
basic way (i.e., "average", "L1") and methods that integrate such information and exploit traditional
Bayesian Optimization techniques (i.e. "auto-sklearn").

Figure 2 shows the average rank for each method as a function of the number of iterations (i.e. the
number of pipelines evaluated). Starting from the first few iterations, our approach consistently
achieves the best average rank. L1 performs well in the first few iterations, but its performance
resembles random search as more pipelines are evaluated. Surprisingly, auto-sklearn performed
worse than random in our datasets. To further investigate this issue, we ran auto-sklearn using the
default parameters settings (which performs ensembling of models). With these settings, auto-sklearn
considers a larger set of pre-processing algorithms and models than our method. The results are
shown in supplementary figures 1 and 2.

Rank plots such as Figure 2 are useful to understand the relative performance of a set of models,
but they don’t give any information about the magnitude of the difference in performance. For this
reason, we measured the difference between the maximum AUC obtained by any pipeline in each
dataset and the AUC obtained by the pipeline selected at each iteration. Given the range of possible
AUCs in our test datasets, this metric has very high variance, but we still found it informative. The
results summarized in Figure 3 show that our method still outperforms all the others. Random search
is the second best method especially in the last few iterations, although we expect its performance to
deteriorate as more and more pipelines are considered (i.e. considering 100,000 pipelines instead of
our 20,000), because of the increase in the size of the search space.

7

0 25 50 75 100 125 150 175 200
#pipelines evaluated

0.08

0.09

0.10

0.11

0.12
RM

SE

(a)

0 25 50 75 100 125 150 175 200
#pipelines evaluated

0.06

0.08

0.10

0.12

Po
st

er
io

r s
ta

nd
ar

d
de

vi
at

io
n

(b)

Figure 4: (a) Root mean square error between predicted and observed AUCs in the test set as a
function of the number of iterations. Lower is better. RMSE is averaged across all 49 datasets. (b)
Posterior predictive standard deviation as a function of the number of iterations and averaged across
all 49 datasets. Shaded area shows two standard errors around the mean.

Next, we investigated how quickly our model is able to improve its predictions as more pipelines
are evaluated. Figure 4a shows the root mean square error computed on a test set of 1000 pipelines
across 49 test datasets as a function of the number of evaluations. Figure 4b shows the uncertainty of
the model (specifically, the posterior standard deviation) as a function of the number of evaluations.
Overall, Figure 4 a and b support that as more evaluations are performed, the model becomes less
uncertain and the accuracy of the predictions increases.

4 Discussion

We have presented a new approach to automatically build predictive ML pipelines for a given dataset,
automating the selection of data pre-processing method and machine learning model as well as the
tuning of their hyperparameters. Our approach combines techniques from collaborative filtering
and ideas from Bayesian optimization to intelligently explore the space of ML pipelines, exploiting
experiments performed in previous datasets. We have benchmarked our approach against the state-of-
the-art in 49 OpenML datasets with different sample sizes, number of features and number of classes.
Overall, our results show that our approach outperforms both the state-of-the-art as well as a set of
strong baselines.

One potential concern with our method is that it requires sampling (i.e. instantiating pipelines) from
a potentially high-dimensional space and thus could require exponentially many samples in order
to explore all areas of this space. We have found this not to be a problem for three reasons. First,
many of the dimensions in the space of pipelines are conditioned on the choice of other dimensions.
For example, the number of trees or depth of a random forest are parameters that are only relevant
if a random forest is chosen in the "model" dimension. This reduces the effective search space
significantly. Second, in our model we treat every pipeline as an additional sample, so increasing
the sampling density also results in an increase in sample size (and similarly, adding a dataset also
increases the effective sample size). Finally, very dense sampling of the pipeline space is only needed
if the performance is very sensitive to small parameter changes, something that we haven’t observed
in practice. If this is a concern, we advise using our approach in conjunction with traditional Bayesian
optimization methods (such as Snoek et al. [2012]) to further fine-tune the parameters.

We are currently investigating several extensions of this work. First, we would like to include more
pipeline- and dataset-specific information in our model. As discussed in section 2, the only data taken
into account by our model is the performance of each method in each dataset. Similarity between
different pipelines is induced by having correlated performance across multiple datasets, and ignores
potentially relevant metadata about both datasets and pipelines, such as the sample size or number
of classes. We are currently working on including such information by extending our model with
both a kernel including model information and a kernel including dataset information. Second, we
are interested in using acquisition functions that include a factor representing the computational

8

cost of running a given pipeline [Snoek et al., 2012]. The machine learning models we used for our
experiments were constrained not to exceed a certain runtime, but this could be impractical in real
applications. Finally, we are planning to experiment with different probabilistic matrix factorization
models based on variational autoencoders.

References
Bergstra, James and Bengio, Yoshua. Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(Feb):281–305, 2012.

Bergstra, James, Yamins, Daniel, and Cox, David D. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. Proceedings of the
International Conference on Machine Learning, 28:115–123, 2013.

Bergstra, James S, Bardenet, Rémi, Bengio, Yoshua, and Kégl, Balázs. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing Systems, pp. 2546–2554,
2011.

Feurer, Matthias, Klein, Aaron, Eggensperger, Katharina, Springenberg, Jost, Blum, Manuel, and
Hutter, Frank. Efficient and robust automated machine learning. In Advances in Neural Information
Processing Systems, pp. 2962–2970, 2015.

Grünewälder, Steffen, Audibert, Jean-Yves, Opper, Manfred, and Shawe-Taylor, John. Regret bounds
for gaussian process bandit problems. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, pp. 273–280, 2010.

Hutter, Frank, Hoos, Holger H, and Leyton-Brown, Kevin. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pp. 507–523. Springer, 2011.

Lawrence, Neil. Probabilistic non-linear principal component analysis with gaussian process latent
variable models. Journal of Machine Learning Research, 6(Nov):1783–1816, 2005.

Lawrence, Neil and Urtasun, Raquel. Non-linear matrix factorization with gaussian processes.
Proceedings of the International Conference on Machine Learning, 2009.

Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh, Afshin, and Talwalkar, Ameet. Efficient
hyperparameter optimization and infinitely many armed bandits. arXiv preprint arXiv:1603.06560,
2016.

Močkus, J. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pp. 400–404. Springer, 1975.

Osborne, Michael A, Garnett, Roman, and Roberts, Stephen J. Gaussian processes for global
optimization. In 3rd International Conference on Learning and Intelligent Optimization (LION3),
pp. 1–15, 2009.

Pedregosa, Fabian, Varoquaux, Gaël, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand,
Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent, Vanderplas,
Jake, Passos, Alexandre, Cournapeau, David, Brucher, Matthieu, Perrot, Matthieu, and Duchesnay,
Édouard. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

Salakhutdinov, Ruslan and Mnih, Andriy. Bayesian probabilistic matrix factorization using markov
chain monte carlo. In Proceedings of the 25th International Conference on Machine Learning, pp.
880–887, 2008.

Shahriari, Bobak, Swersky, Kevin, Wang, Ziyu, Adams, Ryan P, and de Freitas, Nando. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pp. 2951–2959, 2012.

9

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M, and Seeger, Matthias. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Swersky, Kevin, Snoek, Jasper, and Adams, Ryan P. Multi-task bayesian optimization. In Advances
in Neural Information Processing Systems, pp. 2004–2012, 2013.

Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4(2), 2012.

Vanschoren, Joaquin, van Rijn, Jan N., Bischl, Bernd, and Torgo, Luis. Openml: Networked science
in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Williams, Christopher KI and Rasmussen, Carl Edward. Gaussian processes for machine learning.
The MIT Press, Cambridge, MA, USA, 2006.

10

Supplementary material for ”Probabilistic Matrix

Factorization for Automated Machine Learning”

ML / PP Algorithm Parameter Range
Polynomial Features degree [2, 3]

Polynomial Features interaction_only {False, True}

Polynomial Features include_bias {True, False}

Principal Component Analysis keep_variance [0.5, 0.9999]

Principal Component Analysis whiten {False, True}

Linear Discriminant Analysis shrinkage {None, auto, manual}

Linear Discriminant Analysis n_components [1, 250]

Linear Discriminant Analysis tol [1e-05, 0.1]

Linear Discriminant Analysis shrinkage_factor [0.0, 1.0]

Extreme Gradient Boosting max_depth [1, 10]

Extreme Gradient Boosting learning_rate [0.01, 1.0]

Extreme Gradient Boosting n_estimators [50, 500]

Extreme Gradient Boosting subsample [0.01, 1.0]

Extreme Gradient Boosting min_child_weight [1, 20]

Quadratic Discriminant Analysis reg_param [0.0, 10.0]

Extra Trees criterion {gini, entropy}

Extra Trees max_features [0.5, 5.0]

Extra Trees min_samples_split [2, 20]

Extra Trees min_samples_leaf [1, 20]

Extra Trees bootstrap {True, False}

Decision Tree criterion {gini, entropy}

Decision Tree max_depth [0.0, 2.0]

Decision Tree min_samples_split [2, 20]

Decision Tree min_samples_leaf [1, 20]

Gradient Boosted Decision Trees learning_rate [0.01, 1.0]

Gradient Boosted Decision Trees n_estimators [50, 500]

Gradient Boosted Decision Trees max_depth [1, 10]

Gradient Boosted Decision Trees min_samples_split [2, 20]

Gradient Boosted Decision Trees min_samples_leaf [1, 20]

Gradient Boosted Decision Trees subsample [0.01, 1.0]

Gradient Boosted Decision Trees max_features [0.5, 5.0]

K Neighbors n_neighbors [1, 100]

K Neighbors weights {uniform, distance}

1

K Neighbors p {1, 2}

Multinomial Naive Bayes alpha [0.01, 100.0]

Multinomial Naive Bayes fit_prior {True, False}

Support Vector Machine C [0.03125, 32768.0]

Support Vector Machine kernel {rbf, poly, sigmoid}

Support Vector Machine gamma [3.05176e-05, 8.0]

Support Vector Machine shrinking {True, False}

Support Vector Machine tol [1e-05, 0.1]

Support Vector Machine coef0 [-1.0, 1.0]

Support Vector Machine degree [1, 5]

Random Forest criterion {gini, entropy}

Random Forest max_features [0.5, 5.0]

Random Forest min_samples_split [2, 20]

Random Forest min_samples_leaf [1, 20]

Random Forest bootstrap {True, False}

Bernoulli Naive Bayes alpha [0.01, 100.0]

Bernoulli Naive Bayes fit_prior {True, False}

Table S1: List of preprocessing methods, ML models/algorithms
and parameters considered.

1 Results using auto-sklearn with default pa-
rameters

2

0 25 50 75 100 125 150 175 200
Iteration

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

ra
nk

random
average
L1
auto-sklearn
PMF

Figure S1: Average rank of all the approaches we considered as a function of the
number of iterations. For each datasets, the methods are ranked based on AUC
obtained on a validation set at each iteration. The ranks are then averaged
across datasets. Lower is better. The shaded areas represent the standard error
for each method.

0 25 50 75 100 125 150 175 200
Iteration

0.10

0.15

0.20

0.25

0.30

AU
C b

es
t -

 A
UC

ite
ra

tio
n

random
average
L1
auto-sklearn
PMF

Figure S2: Difference between the maximum AUC observed on the test set and
the AUC obtained by each method at each iteration. Lower is better. The
shaded areas represent the standard error for each method.

3

2 Reproducing our auto-sklearn results

The raw data and code we used to run all of the auto-sklearn experiments is
available here: https://github.com/elibol/amle

4

	1 Introduction
	2 AutoML as probabilistic matrix factorization
	2.1 Non-linear matrix factorization with Gaussian Process priors
	2.2 Inference with missing data
	2.3 Predictions
	2.4 Acquisition functions

	3 Experiments
	3.1 Generation of training data
	3.2 Parameter settings
	3.3 Results

	4 Discussion

