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Abstract

Background: It has long been advised to account for baseline covariates in the analysis of confirmatory randomised
trials, with the main statistical justifications being that this increases power and, when a randomisation scheme
balanced covariates, permits a valid estimate of experimental error. There are various methods available to account for
covariates but it is not clear how to choose among them.

Methods: Taking the perspective of writing a statistical analysis plan, we consider how to choose between the three
most promising broad approaches: direct adjustment, standardisation and inverse-probability-of-treatment weighting.

Results: The three approaches are similar in being asymptotically efficient, in losing efficiency with mis-specified
covariate functions and in handling designed balance. If a marginal estimand is targeted (for example, a risk difference
or survival difference), then direct adjustment should be avoided because it involves fitting non-standard models that
are subject to convergence issues. Convergence is most likely with IPTW. Robust standard errors used by IPTW are
anti-conservative at small sample sizes. All approaches can use similar methods to handle missing covariate data. With
missing outcome data, each method has its own way to estimate a treatment effect in the all-randomised population.
We illustrate some issues in a reanalysis of GetTested, a randomised trial designed to assess the effectiveness of an
electonic sexually transmitted infection testing and results service.

Conclusions: No single approach is always best: the choice will depend on the trial context. We encourage trialists to
consider all three methods more routinely.

Keywords: Covariate adjustment, Estimands, Standardisation, Inverse probability of treatment weighting,
Randomised controlled trials, Clinical trials, Missing data

Background
Randomised controlled trials are designed to estimate
average treatment effects. This article considers the han-
dling of covariates in the analysis of individually ran-
domised trials. By covariates, we mean measurements on
participants recorded at baseline that are thought to be
prognostic. Typical examples are age at randomisation
and disease severity at randomisation.
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Confounding does not affect trials that are properly
randomised, since confounding is a systematic bias and
any imbalances in covariates in randomised trials are due
to chance, which introduces non-systematic error that is
reflected in inference [1]. However, it remains desirable
from a statistical perspective to account for covariates in
the analysis of a trial.
Covariate adjustment is desirable because, if a covari-

ate predicts outcome, accounting for its effect on outcome
will improve power to detect a treatment effect [2–4]
unless none of the covariates in a model are prognostic
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[2]. This is sometimes explained as ‘accounting for chance
imbalance’, though we view this differently: a large imbal-
ance (as might be expected in an observational study) can
make inference less precise; adjustment gains power by
acknowledging chance covariate balance.
Covariate adjustment is also desirable because, if a

covariate is balanced by the randomisation scheme, for
example by using stratified block randomisation or min-
imisation, adjustment is necessary to obtain a valid esti-
mate of experimental error. An unadjusted analysis mis-
takenly assumes that chance imbalance in covariates could
have occurred; an extremely useful property for covariates
that were unmeasured. However, when randomisation has
been balanced according to measured covariates, the fact
that imbalance could not have occurred must be acknowl-
edged in our statistical inference [5]. This was pointed out
by Fisher almost a century ago but is frequently ignored in
practice [6, 7].
It has further been argued that it is illegitimate to ignore

covariates that have been measured; see ‘myth 6’ of refer-
ence [1].
A premise of this article is therefore that accounting for

covariates in the analysis of trials is a good idea. We are
concerned with how trial statisticians and clinical inves-
tigators should agree on a method before seeing the data.
This perspective is taken to help statisticians working on
trials make sensible, informed decisions when writing a
statistical analysis plan.
We will focus most heavily on binary outcome data

since this is where some of the issues are most acute.
When the outcome measure is continuous and the analy-
sis aims to estimate a difference in means, some— though
not all — of the considerations of this paper become
redundant. In particular, the discussion below about non-
collapsibility is not relevant to the mean difference, which
is collapsible (which will be discussed further for binary
outcomes). Desirable properties of analysis of covariance
using ordinary least squares for continuous outcomes are
well appreciated, particularly when treatment–covariate
interactions are assumed to be negligible (discussed fur-
ther below).
For adjustment to be worthwhile, the covariates to be

included in the analysis must be prognostic: adjustment
for a covariate that is not prognostic is essentially equiv-
alent to an unadjusted analysis, though it can lose power
in small samples. It is not the purpose of this article
to discuss which covariates to choose. The Committee
for Proprietary Medicinal Products Points to consider on
adjustment for baseline covariates document gives some
guidance [8]. It does caution against approaches that
select covariates most strongly associated with the out-
come in the trial; however, subsequent work (for example
[9, 10]) has shown that such a procedure can be pre-
specified in a principled manner.

Part of the motivation for this article is that statistical
research papers have frequently recommended covariate
adjustment due to improvements in power, with little
thought given to the implications of different adjustment
methods (TPM being one culpable author). The approach
generally favoured in clinical trials is direct adjustment
using an outcome regression model. This is so prevalent
that reviews of practice have not needed to discuss which
methods were actually used [7, 11]. This article works
through the implications and aims to contrast its proper-
ties with two other methods of adjustment better known
in the epidemiology literature: standardisation and inverse
probability of treatment weighting.

Methods
Motivating example: the GetTested trial
The GetTested trial was designed to assess the effective-
ness of an Internet-accessed sexually transmitted infec-
tion (STI) testing and results service (chlamydia, gonor-
rhoea, HIV, and syphilis) on STI testing uptake and STI
cases diagnosed.
Briefly, 2072 participants were recruited in the London

boroughs of Southwark and Lambeth. Participants were
randomised to an invitation to use an Internet-based STI
testing and results service (intervention) or a standard test
from a walk-in sexual health clinic (control).
Treatment allocation involved a minimisation proce-

dure balancing for gender (male/female/trans), number of
sexual partners in the 12 months before randomisation
(categorised as 1, 2+; note that one-or-more was part of
the eligibility criteria) and sexual orientation (men who
have sex withmen vs. other groups). Each of the covariates
was weighted equally when determining marginal imbal-
ance and intervention or control were assigned at random
with 80% probability of assignment to the favoured arm.
The two outcomes of principal interest were both

binary. The first was whether participants took an STI
test within 6 weeks of randomisation, with the control
arm proportion anticipated to be around 10%. The sec-
ond outcome, and the outcome for which sample size
was calculated, was STI diagnosis (following a positive
STI test) within 6 weeks of randomisation, with control
arm proportion anticipated to be around 0.6%. The pri-
mary analysis was planned to account for the following
covariates: gender, age, number of sexual partners in the
12 months before randomisation (10 categories where the
final category is> 10), sexual orientation (four categories)
and ethnicity (five categories) [12]. The chosen covariates
were all assumed to be prognostic.

Three broad approaches to accounting for covariates
Three broad approaches to covariate adjustment are
described below. We outline the generic procedures for
estimation in this section and discuss their properties
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in the next section. Note that the estimand targeted is
discussed there.

Direct adjustment
‘Direct adjustment’ refers to fitting an outcome regres-
sion model including terms for randomised treatment Z
(an indicator equal to 1 if assigned to treatment and 0 if
assigned to control) and covariates X, but no interaction
between Z and X. The treatment effect and its standard
error are estimated directly as the treatment coefficient
from the model. This might be done, for example, using
a generalised linear model, which may be standard (with
canonical link function) or non-standard, or a Cox model
[13, 14].

Standardisation
Standardisation fits an outcome regression model includ-
ing Z and X, possibly including interactions with Z, and
then standardises the results by summing or integrating
over the distribution of covariates observed in the trial.
One intuitive way to achieve this is by making predic-
tions if all participants were assigned to the intervention
arm and then if all participants were assigned to the con-
trol arm and forming a suitable contrast of the predictions
[15–18]. Standardisation builds on outcome regression by
fixing the summary of the treatment effect but allowing
flexible modelling to estimate it; for example, a risk ratio
can be estimated using logistic regression. Standardisation
is sometimes termed marginalisation or G-computation
and is implemented in Stata’s margins command and R’s
stdReg package [19].

Inverse probability of treatment weighting
Inverse probability of treatment weighting (IPTW)
involves fitting two models. The first uses participants’
covariate values to predict the probability of being ran-
domised to the arm they were in fact randomised to. The
second then fits a simple model contrasting the treat-
ment arms, weighted according to the inverse probability
of treatment estimated by the first model. This effec-
tively creates a weighted trial sample (pseudo-population)
in which both trial arms have the same distribution of
observed covariate values. This may sound odd since, if we
have used simple randomisation, we know that the ‘true’
weight for all participants is identical, so trying to predict
it with covariates appears futile [20]. However, the goal is
not to obtain an estimate of this probability but instead to
either reweight to a better balanced trial or acknowledge
the balance observed.
The method is computationally the same as using

propensity scores in observational data but the motiva-
tion and considerations for variable inclusion are different
(just as the motivation for covariate adjustment would be
different in randomised trials vs. observational studies).

Comments onmethods
There are many possible specific ways to implement each
of the three broad approaches. For example, Tsiatis and
colleagues used a form of standardisation but the within-
arm outcome models are defined to yield ‘as good predic-
tions as possible without concerns over bias’. However, for
the purposes of this article, we will generally refer to or use
simple implementations of the three broad approaches.
For standardisation with binary outcomes, we will (by
default) use a logistic regression working model fitting
main effects of covariates to produce predictions. For
IPTW, we will use a logistic regression including only the
main effects of covariates to model the probability of ran-
domised group given covariates. For direct adjustment,
we will use generalised linear models with a link func-
tion that permits parameter estimation on the scale of the
summarymeasure of interest, for example a binomial gen-
eralised linear model with identity link function for a risk
difference.
Besides the three broad approaches, there exist hybrid

methods; in particular, estimators based on the influ-
ence function target marginal summaries and include
both a model for treatment (as does IPTW) and a model
for outcome (as does standardisation). Furthermore, the
superficial relationship between this form of IPTW and
propensity scores suggests other estimators, for exam-
ple matching rather than weighting. However, we regard
the possibility of discarding data from some randomised
individuals as unpalatable and we do not consider it
further.

Results
We nowwork through some properties that are important
to consider when writing a statistical analysis plan. These
properties are mainly — but not solely — statistical. We
also report results of applying the different methods to the
GetTested trial.

Summarymeasure of the estimand:marginal or conditional
The topic of estimands has become increasingly promi-
nent in clinical trials since the publication of the
ICH E9(R1) addendum [21]. The addendum lists five
attributes of an estimand: the treatment condition of
interest, target population, outcome variable, handling of
intercurrent events and population-level summary. Here,
we focus on the population-level summary (the later
section on handling missing data will focus on the tar-
get population). Table 1 lists some population-level sum-
maries commonly used in clinical trials and, in partic-
ular, notes whether conditional and marginal estimands
coincide.
It is not our purpose to argue for any particular sum-

mary measure but it would be remiss to pass over how
the choice should be made. Some statisticians assume that
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Table 1 Some population-level summaries commonly used in clinical trials with binary outcome measures

Outcome type Summary measures Collapsible?*

Continuous Mean difference Yes

Binary Risk difference Yes

Risk ratio Yes

Odds ratio No

Time-to-event Hazard ratio No

Restricted mean survival time difference Yes

*Do conditional and marginal summary measures always coincide?

the correct approach must be to choose a measure as a
parameter of a model that might have generated the data.
Permutt argues that the choice of scale should be ‘linear in
utility’: a hypothetical value of treatment effect of 2 should
be twice as attractive as 1 whatever the potential outcome
on control [22]. Others argue for a measure that can be
easily interpreted. We regard the first view as misguided
even if the true model were known and the second as too
strict, since it rules out any relative measure. The choice of
measure should be a trial-specific tradeoff between ease
of interpretation, close relation to average patient benefit
and potential transportability to other settings.
The following discussion relates to non-collapsible sum-

maries [23]. For readers not familiar with this term, we
provide a numerical example in Table 2. The reader should
suppose that the frequencies given are ‘true’ in the sense
that, had we recruited a very large sample size, the cells of
Table 2 would contain exact multiples of the frequencies
shown.
Consider a trial in a condition that includes partici-

pants from two measurable strata, A and B, which have
a substantial effect on prognosis. The trial team recruits
40 participants — 20 from each stratum — and, within
strata, randomises 10 to intervention and 10 to control.
In stratum A, the odds of dying on the control arm is
5/5 = 1. In stratum B, the outlook is far more favourable,
with the odds of dying on the control arm just 1/9.
Despite these differences, the treatment effect (a condi-
tional odds ratio) is 9 in each stratum. We might have
conducted a trial recruiting patients from just one of the
strata or from both. If we put all 40 people together, as
shown at the right-most block of Table 2 (hence the term

marginal), the odds of dying in the control arm becomes
(1 + 5)/(5 + 9) = 3/7 and the marginal odds ratio
is 5.4.
At first sight, this is astonishing! Both strata have odds

ratios equal to 9 but, when put together, the odds ratio
changes. It is not a weighted average of the within-stratum
odds ratios. Treatment is exactly balanced within strata,
so this is not due to imbalance. Neither is it effect mod-
ification, since the log odds ratio is identical in both
strata.
The general phenomenon is known as ‘non-

collapsibility’, which describes the relationship between
the marginal and conditional summary measure: the
true marginal odds ratio is attenuated towards 1 com-
pared with the conditional odds ratio. It occurs because
the average of the logit is not the logit of the average.
While the odds ratio is non-collapsible, the risk ratio
and risk difference are collapsible. For insights into why
non-collapsibility occurs, see Daniel, Zhang and Farewell
[23]; see also [24] and [25] for more technical discussions,
particularly into the relation between collapsibility and
confounding.
Rather than collapsing our strata into ‘both’, as in

the right-hand panel of Table 2, it is possible to adjust
for strata and recover the conditional odds ratio of 9
(using logistic regression adjusted for strata, or stratified
Mantel–Haenszel).
Note that non-collapsibility is not ‘bias’ as sometimes

supposed, but a case of different estimands. The odds ratio
of 9 is a within-stratum or conditional estimand formed
by comparing the effect of treatment within a stratum,
relating to the question ‘what would be the odds ratio for

Table 2 An illustration of non-collapsibility of the odds ratio

Stratum

A B Both

Allocation Dead Alive Dead Alive Dead Alive

Intervention 9 1 5 5 14 6

Control 5 5 1 9 6 14

Odds ratio 9 9 5.4
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treatment comparing people in the same stratum?’ The
odds ratio of 5.4 is a between-strata or ‘marginal’ estimand
formed by comparing the effect of treatment for groups
made up of half stratum A and half B, relating to the ques-
tion ‘what would be the odds ratio in a population made
up of half stratum A and half stratum B’.
Had the notional trial recruited a different proportion

of patients from each stratum, the conditional odds ratio
would have remained 9 but the marginal odds ratio would
not have remained 5.4. For example, suppose that in stra-
tum A we had recruited three times as many people (so
that the numbers in that row are all multiplied by three).
The marginal odds ratio would then be 6. Its true value
depended on the proportion of participants in each stra-
tum. In general, a marginal summary depends on the
covariate distribution when we have non-collapsibility.
This is uncomfortable; after all, regression models con-
dition on covariate values rather than modelling their
distribution, but we see that the distribution nonetheless
matters.
This discomfort may lead us to conclude that the condi-

tional odds ratio is obviously preferable. This is misled for
two reasons. First, suppose there were a second covariate
to stratify on Table 2 that also strongly predicted out-
come but it was unknown (or at least unmeasured). The
true value of the conditional odds ratio still depends on
the distribution of a covariate, but since the covariate is
unmeasured its distribution is unknown: we cannot know
what we are marginalising over. Second, this example is
contrived such that the conditional odds ratios within
strata were identical. When there is effect modification
on the scale of the population summary measure, the true
value of the conditional measure will also depend on the
distribution of observed covariates.
Either a marginal or conditional estimand may be desir-

able and this depends on context. For example, a patient
may wish to know ‘what would happen if someone similar
to me were to choose this intervention vs. not?’ Mean-
while, for policy makers, the average difference an inter-
vention would make if offered to a group of people might
be of more interest, though they might equally wish to
know about the effect for specific groups. Note that a dif-
ferent covariate distribution in the target group changes
the value of the marginal estimand. Some authors have
explored on how to extend inference to a different tar-
get population [26, 27]. Interestingly, marginal estimands
appear to be favoured for causal inference from observa-
tional data: Hernán and Robins define a population causal
effect as ‘a contrast of any functional of the marginal
distributions of counterfactual outcomes under different
actions or treatment values’ (emphasis added) [15]. By this
definition, the within-stratum odds ratio of 9 would not
target a population causal estimand, since it is a contrast

of conditional distributions, though the word marginal is
a preference rather than necessary to the definition.
In non-inferiority studies, where the null is a non-zero

difference between arms on some scale, it is frequently
argued that the margin of non-inferiority is easier to
understand, define and interpret on amarginal than a con-
ditional scale. This is in line with our own experiences in
collaborations.
The choice of marginal or conditional estimand is

clearly not simple: the true value of the estimand may
depend on the distribution of observed covariates (always
marginal and sometimes conditional), on which covariates
are conditioned-on in the model (conditional), and fur-
ther on the distribution of omitted prognostic covariates
(both). Note that these aspects have implications for the
quantities being combined inmeta-analysis and for appar-
ent heterogeneity in meta-analysis. We will not comment
further on these points here.
For non-inferiority studies with a non-collapsible sum-

mary measure, it is worth noting the scale on which the
non-inferiority margin is defined. Suppose the margin is
specified as a marginal hazard ratio, then the correspond-
ing non-inferiority margin on the scale of the conditional
hazard ratio is further from 1. If this fact is forgotten and a
conditional hazard ratio is estimated without changing the
margin, we could expect to lose power compared with an
unadjusted analysis (which targets a marginal estimand).
In terms of the three broad methods considered, direct

adjustment always targets a conditional summary mea-
sure; standardisation typically — but not necessarily —
targets a marginal summary measure; and IPTW always
targets a marginal summarymeasure. Standardisation and
IPTW are rarely used in trials but receive more atten-
tion in the epidemiological literature. One justification
given for this seems be that the notional ‘target trial’
would always target a marginal summary [15]. Ironically,
trials which do adjust for covariates tend to use direct
adjustment and so target a conditional summary.

Convergence
Having defined an estimand, we require an estimator to
compute an estimate. For many estimators, parameter
estimation proceeds through some iterative technique. In
maximum likelihood estimation, for example, an algo-
rithm is used to find parameters that maximise the likeli-
hood of the data. This involves finding parameter values
that maximise a function. Once an algorithm has found a
maximum, it is said to have ‘converged’. It sometimes hap-
pens that the algorithm fails to converge to a maximum or
that the maximum to which it converges is local (that is, a
small bump rather than the true maximum) or not unique.
This is clearly an issue.
In the analysis of randomised trials, non-convergence

tends to occur for one of two reasons: first, problems that
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occur with certain models (e.g. generalised linear mod-
els with binomial outcome distribution and identity- or
log-link function); second, including too many parame-
ters compared with the effective sample size (e.g. fitting
fixed centre intercepts with few participants per centre)
[28]. Essentially, the observed data are not consistent with
a model that fits within the given constraints.
We are concerned with choosing a procedure for analy-

sis prior to seeing data, so it would be unwise to jeopardise
the analysis by choosing a procedure that may not con-
verge [29, 30].While it may be possible to specify a backup
procedure, it would need to target the same estimand.
This may prompt the question why not specify the backup
procedure as the first choice (one good reason may be due
to lower power).
Convergence requires particular attention when infer-

ence relies on (for example) bootstrapping or re-
randomisation tests. Both involve augmenting the data
using simulation and analysing the resulting dataset. We
now need to be confident that not only will conver-
gence be achieved in one dataset but in every dataset
constructed by the procedure.
Direct adjustment and standardisation may involve fit-

ting different outcome models. For example, to estimate
a risk difference, direct adjustment may use a generalised
linear model with binomial outcome with identity link
function. In terms of convergence, this would be a risky
plan. It is possible to estimate an adjusted risk difference
using other methods. This could use standardisation fol-
lowing estimation through a logistic regression model,
which comes with the guarantee of converging to a unique
maximum. A popular technique for estimating the risk
ratio without incurring convergence problems is to use
a Poisson model with robust standard errors [31], where
convergence is likely due to the canonical link function.
IPTW involves specifying a model for treatment

P(Z | X) to estimate weights. This may be any model for
binary data (regardless of the trial outcome type). Due to
randomisation, it is always true that P(Z | X) = P(Z).
This means that the model for a binary treatment would
not be misspecified regardless of how covariates X are
modelled, provided parameters were not constrained to
be wrong. Allocation ratios in trials are most frequently
1:1 but rarely more extreme than 1:2. For 1:1 allocation,
the ‘outcome’ proportion in the treatment model will be
approximately 50%, and never near 0 or 1, and its distri-
bution given covariates is random, making ‘separation’ (or
‘perfect prediction’) unlikely [32]. All this means that the
treatment model has a good chance of converging. The
subsequent outcome model has no covariates and so is
certain to converge.
IPTW therefore seems to be the safest broad approach if

convergence is anticipated to be an issue, while standard-

isation may mitigate possible issues associated with direct
adjustment (given the same estimand such as a risk ratio).

Efficiency/precision/power
A key reason to account for covariates in the analysis is
to increase power. Note that for non-collapsible summary
measures it is wrong to attempt to compare precision
of marginal and conditional estimators but in general
it is possible to compare power when the null is zero
difference, since collapsibility then holds [23]. Marginal
adjusted estimators have been shown to be more efficient
than marginal unadjusted estimators [33, 34].
Because adjustment separates the effect of a treatment

from the effects of covariates, we can typically infer the
effect of a treatment with a little more precision, though it
is possible to lose precision in small samples with non- or
weakly prognostic covariates. It is therefore usually desir-
able to use an efficient method of accounting for covariate
effects, or the potential gains in power may not be fully
realised.
While it is sometimes argued that weighting estima-

tors are inefficient,Williamson,White and Forbes showed
that, in the trial context with a continuous outcome mea-
sure, IPTW is asymptotically as efficient as direct adjust-
ment [20], backed up by simulation results using finite
samples. Any ‘inefficiency’ of IPTW tends to arise due to
extreme weights, just as the variance reduction it achieves
is a result of similar estimated weights for all individuals.
As with convergence, thinking about the weighting model
makes clear that this will not be a problemwhen using this
method in the analysis of trials. Note that a closely related
method, overlap weighting, has recently been shown to be
more efficient in finite samples and is worth consideration
for covariate adjustment [35, 36]. At the time of writing,
the lack of a general implementation in statistical software
means, here, we do not further consider this otherwise
attractive approach.

Handling covariates balanced by design
There are many methods of balancing covariates at the
design stage. The most popular seem to be stratified
blocks and minimisation [7]. When a covariate-balancing
method is used, it is necessary to account for the randomi-
sation scheme in the analysis, or the estimated standard
error for the treatment effect will be biased upwards, pro-
ducing confidence intervals that are too wide (meaning
they have greater than 1 − α coverage) and miscalibrated
p-values [5].
For some intuition, suppose a trial uses stratified blocks,

with stratification by a single, binary, prognostic covari-
ate. That covariate will then always be distributed equally
across the randomised groups (provided each block is
completed). It is then impossible for any difference seen
to be due to this covariate. Effectively, the variability in
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the treatment effect due to possible chance imbalances
is eliminated, since imbalances can never occur under
this design. An analysis that ignores this systematic bal-
ance will assume that imbalance in a covariate could have
occurred by chance and calculate a standard error accord-
ingly. This would be too large, since an imbalance in this
particular covariate could not in fact have occurred [1].
Adjustment for the covariate separates the effect of covari-
ate/s on outcome from the effect of treatment on outcome,
and this is acknowledged in calculation of the standard
error.
There is literature on this going back at least to Fisher,

who seemed to regard the point as obvious for analysis
of variance in agricultural experiments [6]. It is gener-
ally accepted that direct adjustment and standardisation
can be specified to provide valid standard errors. This
also holds for IPTW, though has not previously been
commented on. Suppose we again have a single binary
covariate which is perfectly balanced across treatment
groups and estimate P(Z = z | X = x). Then this prob-
ability will be identical for every individual in the trial.
Fitting the weighted regression to contrast the treatment
effect will then return an identical estimate to amodel that
ignores the covariate. What is perhaps surprising is that
the IPTW estimator still has a smaller standard error than
the unweighted model. The variance formula, which does
not say anything about the design, effectively ‘sees’ and
acknowledges the balance after estimating the weights and
rewards itself accordingly [20]. It is also clear that this hap-
pens by analogy to direct adjustment, since asymptotically
the two methods have the same standard errors.

Variance estimation
Some variance formulas rely on approximations and some
are asymptotic. For direct adjustment based on maxi-
mum likelihood estimation, formulas are available for all
commonly used models. For standardisation, the standard
error from a fitted model is transformed using the delta
method (asymptotic) [37]. Due to non-linearity, this could
lead to p-values and confidence intervals that do not quite
agree, if the p-value is taken from themodel on the estima-
tion scale; one possibility is to use test-based confidence
intervals for measures with the same null. For example,
suppose the outcome model is a logistic regression and
the summary measure of the treatment effect is a risk dif-
ference. The logistic regression returns a test-statistic of z
for treatment. A 95% confidence interval for the risk dif-
ference can then be constructed by taking ±1.96/z times
the distance between the estimated risk difference and 0,
and adding the result to the estimated risk difference.
IPTW estimators use robust standard errors that

acknowledge the estimation of weights in the first step.
These robust standard errors are asymptotically valid but
recent work has demonstrated that they can produce

slight undercoverage in small samples [38]. In this type of
setting, non-parametric bootstrap may be required, until
a closed variance formula with a small-sample correction
has been developed.
While non-parametric bootstrap is a useful tool, we

regard it as not being ideal due to inherent Monte Carlo
error — though it may sometimes be the only option.
Monte Carlo error can be made small with a suitably large
number of bootstrap repetitions. An important but often
neglected point about the bootstrap is that the resam-
pling procedure must mimic the sampling used in the
study itself. A simple bootstrap procedure invokes simple
randomisation and will return upwardly biased standard
errors or confidence intervals that are too wide if the trial
did not in fact use simple randomisation. So, if the trial
used blocked randomisation within strata, the bootstrap
procedure should be restricted to do the same, else it tar-
gets the wrong sampling distribution. Ensuring that the
bootstrap procedure mimics the design actually used may
be awkward if for example the trial used minimisation.

Misspecification of the covariate model
We consider misspecification of the mean function relat-
ing covariates to outcome rather than misspecification
more generally. We illustrate the ideas using a continuous
outcome, which lends itself to this visual explanation, but
expect similar results for other outcome types.
Consider a study with a single covariate Xi, randomised

treatment Zi and the model that generates outcomes Yi is

Yi = α + θZi + γX2
i . (1)

Note that there is no residual error here; the mean func-
tion determines the outcome exactly. The analyst plans to
fit to the observed data a model (which is misspecified)
with mean function

yi = α̂ + θ̂zi + λ̂xi. (2)

Suppose that this notional study is run and the observed x
among those recruited is perfectly uniform on (−0.5, 0.5),
as depicted by the first horizontal grey bar at the top of
Fig. 1. When the misspecified model is fitted, λ̂ = 0. Next
consider a trial where observed xi values are uniform on
(0, 1) or (0.5, 1.5), also depicted by grey horizontal bars
in Fig. 1. It is now clear that when the analyst fits their
model (2), λ̂ > 0. In the first case, the sample correla-
tion of x with x2 is zero, but in second and third cases, it
is greater than zero. The analyst’s adjustment for x thus
partially adjusts for x2 despite the model being misspeci-
fied. This will generally be true when a covariate actually
adjusted for is correlated with covariates not adjusted for.
The lower panel of Fig. 1 gives the estimated stan-

dard errors after linear adjustment, showing that linear
adjustment is always as efficient as no adjustment.
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Fig. 1 Upper panel: Data from four notional trials where individuals recruited have different distributions of X. The two quadratic curves show the
data in the two arms. Lower panel: SE after no adjustment and after linear adjustment for each of the three trials

When using direct adjustment using the data in Fig. 1,
the model is misspecified. Meanwhile, when using IPTW,
the model used to form weights is by definition correctly
specified. Despite this, the two return nearly identical
results. The criteria for good specification of IPTW are
slightly different than usual: what matters is not the cor-
rectness of the specification of themodel forZ |X but how
well the model for Z | X models the predictors of Y ; doing
this better will result in a more suitable ‘rebalancing’. By
attempting to balanceX instead ofX2, the covariate will be
well balanced at certain points but less so at (for example)
particularly high or low values of X.

Handling data missing at randomwith the three
adjustment approaches
Some data will inevitably be missing for some partici-
pants in the majority of randomised trials. This is most
often in the outcome (unless ‘missing’ is somehow part of

the outcome definition) but sometimes occurs in one or
more covariates. Meanwhile, data on the randomised arm
should never be missing. We will first discuss the issues
when outcomes are incomplete and then when covari-
ates are incomplete, along with some solutions for each of
the three broad approaches. As with any inference from
incomplete data, it is important to understand the mech-
anisms under which bias will and will not be introduced
and so we discuss missingness dependent on randomised
arm, covariates and outcome separately.
With missing outcome data, a good starting point is

to consider implications of missingness for the simplest
analysis: including only those individuals with observed
outcomes (complete-case analysis). When the probability
of data being missing depends only on randomised arm, a
complete-case estimator is unbiased and efficient. When
missingness depends on the outcome, complete-case anal-
ysis and multiple imputation under missing-at-random
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are biased in general; we will return to this point under
sensitivity analysis.
When outcome missingness depends on the observed

value/s of covariates, a complete-case estimator may or
may not be biased. If the covariate/s were not adjusted for,
data would be missing not at random, which is a more dif-
ficult statistical problem; if the covariate/s causing miss-
ingness are adjusted for in the analysis, this becomes
a missing-at-random problem. It is sometimes said that
multiple imputation is not needed when outcomes are
missing-at-random. However, estimation based on the
complete cases is unbiased for a population represented
by the complete cases. This estimand does not in general
equal the estimand that targets the population actually
randomised, unless the treatment effect is the same for
these two populations, a potentially strong assumption.
Supposing that the all-randomised population is of inter-
est, a complete-cases estimator is then potentially biased,
though the magnitude of bias will be small in practice. For
a worked numerical example explaining this point, see the
supplementary material.
If the aim of accounting for covariates in the analysis is

simply to increase precision or to estimate a conditional
summary measure, and not to target the all-randomised
population, the remainder of this section and the appen-
dices can be skipped.
With outcomes missing according to this mechanism

(depending on covariates), performing multiple imputa-
tion by-randomised-arm and then analysing the imputed
data sets by any of the three approaches to adjustment tar-
gets the all-randomised population [39]. For direct adjust-
ment, this is straightforward but there are subtleties in
terms of statistical inference for the other two approaches:

• For standardisation, the question is whether to apply
Rubin’s rules before or after the standardisation step.
Since approximate normality is more likely on the
estimation scale (for example log-odds) than the
summary scale (for example risk difference), this is
likely to be the appropriate scale for combining.

• For IPTW, it is however possible that Rubin’s
variance formula will be inconsistent due to
uncongeniality [40]. Furthermore, attempting to use
multiple imputation may involve fitting the direct
adjustment model — the first step of standardisation
— so using multiple imputation may imply that
IPTW is not needed. We would lose, for example, the
advantages in terms of convergence.

There are alternatives to multiple imputation. Under
covariate-dependent missingness, standardisation can be
applied to the all-randomised sample rather than only
those with complete outcome data. Meanwhile, IPTW
can be combined with inverse probability of missingness

weighting, with missingness predicted from covariates
separately by randomised arm. These are not our primary
recommendations because we want a principal analy-
sis that can be readily extended to principled sensitivity
analyses.
Missing covariate values are not inevitable in ran-

domised trials but do sometimes occur. As with miss-
ing outcome data, analysis based only on the complete
cases may inadvertently target a complete-cases popula-
tion rather than all randomised and may be biased if the
all-randomised population is intended. Unlike with miss-
ing outcome data, discarding individuals with observed
data on treatment and outcome does not follow the
intention-to-treat principle and does throw away infor-
mation. However, it is sometimes simple to target the
all-randomised population: for any method that targets a
marginal or collapsible summary measure, simple mean
imputation (across arms, not within) and the missing
indicator method are generally appropriate methods [41].
When using direct adjustment with a non-collapsible
summary measure, it is more difficult to deal with incom-
plete covariate data, and this typically requires a correct
model [41]; if covariates are missing not at random, this
can be very difficult. The message is then that more care
is required to collect all covariate data if direct adjustment
is to be used with a non-collapsible summary measure.

Sensitivity analysis with outcomes missing-not-at-random
There are rarely cases where we know the true missing-
ness mechanism. The assumption of missing-at-random
depending on randomised arm and covariates is a con-
venient starting point but it is important to examine the
extent to which inferences are sensitive to alternative
missingness mechanisms. This prompts sensitivity anal-
ysis [29]. To obtain valid inference, missingness mecha-
nisms that represent departures from missing-at-random
then need to be explicitly invoked.
In this situation, we view multiple imputation as a gen-

eral and convenient framework for statistical inference
under various departures for each of the three broad
approaches, though not the only one [42]. Suppose for
example that the planned approach to covariate adjust-
ment was standardisation, and under missing-at-random,
we planned to standardise to the all-randomised sam-
ple (which is valid). There is no extension of this con-
cept under missing-not-at-random mechanisms. Multiple
imputation by-arm is a convenient way to do sensitivity
analysis. It makes little sense to have a mismatch between
the primary analysis and sensitivity analyses other than
the missingness mechanism invoked, since we want to
ensure that sensitivity of results are attributable to the
change of missingness mechanism rather than the change
of method. It is possible that multiple imputation under
missing-at-random may have delivered a slightly differ-
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ent result to all-randomised standardisation. Sensitivity
analyses are important enough that we regard coherence
between the primary and sensitivity analysis as worthy of
consideration.

Analyses of GetTested
This article focuses on planning a statistical analysis but
it is nonetheless instructive to consider some of the issues
discussed when different approaches are used. This helps
to illustrate what may happen and prompts us to reflect
on how we might plan.
As described previously, our analysis of the GetTested

trial is for two outcome measures: any test, which
occurred in 35%, and any diagnosis, which occurred in
1.6% [43]. For both outcomes, two summary measures
were of interest to the investigators: the risk ratio and the
risk difference. Recall that there are five categorical covari-
ates to adjust for, which in the direct adjustment model
use 18 parameters in addition to the intercept and ran-
domised arm. Table 3 gives the estimated treatment effect
and standard error from various analyses estimating each
measure on the two outcomes. For the Any test and Any
diagnosis outcomes, there were 612 and 27 events respec-
tively from 1739 observed outcomes (324 had missing
outcomes). Table 3 presents results for the complete-cases
population. Results targeting the all-randomised estimand
are presented and discussed in Appendix 2. Covariate data
were fully observed.
The results presented are intended to compare adjust-

ment methods for the same outcome and summary mea-

sure. For the risk ratio, two direct adjustment methods
are used: a log-binomial model and a Poisson model. In
the analyses presented, the methods used included ‘main’
effects of covariates only. Of course, interactions between
covariates could have been included for any method,
and interactions between covariates and randomised arm
could have been included for standardisation. Given the
low number of diagnosis events — both anticipated and
observed — including these interactions would have been
inadvisable for that outcome. For these illustrative analy-
ses, missing outcome data were assumed to be missing-at-
random given covariates.
Three of the 14 analyses in Table 3 failed to produce any

sensible estimate. Two of these instances were due to the
use of an identity-link-function binomial model to esti-
mate a risk difference, leading to non-convergence, which
happened for both outcomes. This emphasises the point
that it would have been unwise to plan this as the adjust-
ment model. The last was when directly estimating the log
risk ratio for any test using a Poissonmodel. It did produce
an estimate, which was 541, which indicated separation of
outcome and a clearly untrustworthy estimate.
Of the methods that did converge, the estimated treat-

ment effects and standard errors tended to be similar
across methods. The most notable difference in estimates
is the complete-cases log risk ratio for any diagnosis,
where the direct and standardisation analyses estimated
a larger value than the IPTW analysis. This turns out
to be due to the covariate men who have sex with men,

Table 3 Results of analyses of the GetTested trial. All models included main effects only. Link function is canonical unless otherwise
specified. The dash symbol - means model did not converge, except for * where the log risk ratio estimated as 541, indicating
separation for one or more covariates

Outcome
measure

Summary measure Adjustment method Model (variable modelled) Treatment effect estimate (SE)

Any test
(occurred in 35%)

Risk difference Direct Identity-link binomial (outcome) -

Standardisation Logistic (outcome) 0.260 (0.021)

IPTW Logistic (treatment) 0.262 (0.021)

Log risk ratio Direct Poisson, robust SE (outcome) -*

Direct Log-link binomial (outcome) 0.797 (0.075)

Standardisation Logistic (outcome) 0.796 (0.074)

IPTW Logistic (treatment) 0.806 (0.075)

Any diagnosis
(occurred in 1.6%)

Risk difference Direct Identity-link binomial (outcome) -

Standardisation Logistic (outcome) 0.015 (0.006)

IPTW Logistic (treatment) 0.013 (0.006)

Log risk ratio Direct Poisson, robust SE (outcome) 0.972 (0.433)

Direct Log-link binomial (outcome) 0.915 (0.412)

Standardisation Logistic (outcome) 0.959 (0.412)

IPTW Logistic (treatment) 0.855 (0.412)
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which in the direct model based on Poisson regression
estimated extremely large risk ratios (around 15). Remov-
ing this covariate from the two models resulted in very
similar estimates, close to the IPTW result shown.

Discussion
We have compared the properties of three broad methods
for estimating and adjusted treatment effect: direct adjust-
ment, standardisation and inverse probability of treatment
weighting. Our impression is that direct adjustment is
the most commonly used approach in clinical trials and
that standardisation and IPTW are better appreciated in
observational epidemiology and warrant more considera-
tion by trialists. In particular, it is clear that many investi-
gators are interested in summarising the treatment effect
as a risk ratio or risk difference. Direct adjustment is noto-
riously unstable for both measures and so an unadjusted
estimate is frequently reported, which will be inefficient.
Having discussed some properties of the three approa-

ches, we provide Table 4 for reference, listing some of the
points to consider for each approach.

We have described the methods in general terms with-
out giving recommendations about specific implemen-
tations. In our analysis of GetTested, the standardisa-
tion estimates were computed from the direct adjust-
ment model (logistic regression including main effect
terms for each covariate) but could have been com-
puted from a model including interactions among covari-
ates and interactions of covariates with randomised
group. Similarly, we used IPTW on the probability of
treatment given covariates, which was estimated using
logistic regression with a main effect term for each
covariate.
Tension between methods is typically greatest with

binary outcome data, so we chose to focus on this setting.
In particular, for continuous data analysed using linear
models, none of the issues around collapsibility are rele-
vant. Covariate adjustment using analysis of covariance is
then typically suitable (direct regression of the outcome
on treatment and covariates) unless treatment–covariate
interactions are to be modelled, when standardisation
would be the appropriate approach.

Table 4 Points to consider on properties of each approach

Issue Direct adjustment Standardisation Inverse probability weighting

Estimand for non-collapsible
summary measures

Conditional Marginal Marginal

For non-collapsible summary
measures, true β depends
on. . .

Covariates conditioned on in out-
come model

In-trial distribution of covariates In-trial distribution of covariates

Misspecification of covariate
effects

Loses efficiency vs. correctly spec-
ified model but expected to gain
vs. no adjustment. True β changes
under non-collapsibility

Loses efficiency vs. correctly speci-
fiedmodel but expected to gain vs.
no adjustment

Loses efficiency vs. correctly speci-
fiedmodel but expected to gain vs.
no adjustment

Convergence Vulnerable Reasonable (but see GetTested
experience)

Solid

Stratification/minimisation
handled by variance
estimator

Yes Yes Yes

Efficiency Asymptotically optimal Asymptotically optimal Asymptotically optimal

Standard error calculation Direct Delta method Robust, accounting for estimation
of weights via joint estimating
equations. Standard error can be
biased downwards in small sam-
ples [38]

Treatment–covariate interac-
tions

Can be fitted but does not pro-
duce an estimate of an average
treatment effect

Naturally handled this and pro-
duces an estimate of the average
treatment effect

Does not handle

Handling of missing covari-
ate data in order to target
all-randomised population

Missing indicator or single mean
imputation (though neither is suit-
able with non-collapsible popula-
tion summary measures)

Missing indicator or single mean
imputation

Missing indicator or single mean
imputation

Handling ofmissing outcome
data in order to target all-
randomised population

Multiple imputation by-arm (or
inverse probability of missingness
weighting)

Standardisation to all-randomised
rather than complete-case sam-
ple; alternatively multiple imputa-
tion by-arm or inverse probability
of missingness weighting

Inverse probability of missingness
weighting (or multiple imputation
by-arm )
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Binary outcomes are common in non-inferiority trials
and the scale of the population summary should match
the scale on which the non-inferiority margin is defined.
In our experience, the margin is never defined as a con-
ditional odds ratio, suggesting that the use of standardisa-
tion or IPTW will be necessary.
For time-to-event outcome data, the issues will depend

on the chosen summary measure, as with binary out-
come data. In clinical trials, this is frequently the hazard
ratio, which is non-collapsible. A further important issue
specific to hazard ratios is that even if hazards are pro-
portional on the conditional scale they may not be pro-
portional on the marginal scale, so an adjusted marginal
hazard ratio (estimated by standardisation or IPTW) may
be an inappropriate summary of the treatment effect,
though this is also true of an unadjusted hazard ratio.
It is possible to estimate the covariate-adjusted differ-

ence in survival proportion at a time t using standardisa-
tion or IPTW,which some trials are beginning to do in sta-
tistical analysis plans, or the difference in restricted-mean
survival times [44]. A variance estimator has been derived
for standardisation [19], though not (to our knowledge)
for IPTW.
Improved power is frequently the main motivation for

covariate adjustment, so a natural question arises regard-
ing how to account for this improved power in sample
size calculations. The increased power through covariate
adjustment depends on the unknown prognostic value of
covariates. If this is assumed to be appreciable but turns
out to be modest, the trial will be underpowered. We
therefore advise a cautious approach and would generally
calculate sample size without accounting for covariates.
If sample size calculation were to take account of covari-
ate adjustment, we do not believe this would affect the
choice between approaches, given that they have similar
efficiency.
Many randomised trials report subgroup analyses,

which we have not discussed. This raises some interesting
issues and questions:

1. When adjustment covariates are correlated with the
variable defining the subgroup, the expected
precision gains from covariate adjustment will
diminish. At the most extreme, if we consider
adjusting for the variable that defines the subgroup
(where the ‘adjustment’ and ‘subgroup’ variables have
perfect correlation), adjustment gains nothing: since
X does not vary within subgroup, adjustment cannot
improve predictions about Y.

2. Should we choose the same approach to adjustment
as for the main analyses? Ideally yes, with the caveat
that any subgroup analysis is inherently conditional
on subgroup membership, so the estimand is
conditional-on-subgroup. Furthermore, issues

around convergence are to be expected in smaller
subgroups.

3. For IPTW, should we fit weighting models separately
within subgroups or overall? We believe that this is
an open question but note that direct adjustment and
standardisation would adjust for covariates
separately within subgroups.

4. Subgroup analyses should be supported by
interaction tests. These are straightforward for direct
adjustment and IPTW. For standardisation, one
could test for interaction on the scale of the working
model, but it is more appropriate to test on the scale
of the estimand.

Conclusions
We hope that this work stimulates statisticians working in
trial teams to think carefully about adjustment methods,
particularly by placing the estimand — which requires
clinical investigators’ input — first, followed by consid-
eration of the more statistical aspects. None of the three
approaches is always best and the choice will depend on
the trial context. Standardisation and IPTW are largely
unused in trials, but have many advantages which mean
they warrant routine consideration.

Appendix 1: targeting the complete-case and
all-randomised populations in the presence of
missing data
The received wisdom is that, when missingness depends
only on covariates, a complete-case estimator is unbiased
and efficient. There is however a subtlety to this, which
impacts on our three adjustment methods: The estimand
no longer targets a population with the empirical distri-
bution of covariates among those randomised but among
the complete cases. This is true unless the treatment effect
is identical within strata on the chosen summary scale, as
we will show.
As with non-collapsibility, the fact that the value of the

estimand for all-randomised and complete-cases may dif-
fer is not bias but a case of targeting different estimands:
the target population attribute of the estimands differs.
It is perhaps difficult to contrive an argument for the
complete-case estimand.
To demonstrate this point and outline some solutions,

we will work through a simple numerical example with
covariate-dependent missingness, show that a standard
complete-case estimator changes the estimand, and note
one possible advantage of standardisation over the other
methods in this respect. The numerical example can be
regarded as deterministic in the sense that estimators that
fail to recover the exact value of the estimand seen in the
true data do target a different estimand.
Consider a trial with binary X, Y and Z, where the data

can be represented in a 2 × 2 × 2 table. Table 5a gives
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Table 5 a) Full data from a notional randomised trial. b) Complete cases, where all individuals with X = 0 and half of individuals with
X=1 are complete cases. c) True value of summary measure within levels of X

a) Full data b) Complete cases

X = 0 X = 1 X = 0 X = 1

Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1 Z = 0 Z = 1

Y = 1 42 26 180 140 Y = 1 21 13 180 140

Y = 0 458 474 320 360 Y = 0 229 237 320 360

500 500 500 500 250 250 500 500

c) Value of summary measures within X (both

in all randomised and among complete cases)

Summary measure X = 0 X = 1

Odds ratio 0.598 0.691

Risk ratio 0.619 0.778

Risk difference −0.032 −0.080

the full data from a notional randomised trial in which
2000 participants are recruited. Of these, 1000 have the
covariate X = 1 and 1000 have X = 0. Treatment Z is
stratified by covariate X so that 500 participants have each
combination of values of X and Z. Finally, Table 5c gives
the within-stratum odds ratios, risk ratios and risk dif-
ferences. Note that we have ensured there is some effect
modification by X on each of these summary scales, since
we will not in general be able to choose a scale on which
there is no effect modification (particularly before seeing
the data).
Suppose now that among those with X = 0, exactly

half are a complete case, while among those with X = 1,
all are a complete case. The complete cases are depicted
in Table 5b. The probability of being a complete case
depends only on the covariate X, meaning that the fre-
quencies in the cells of the 2 × 2 table for X = 1 are
exactly half what they were in Table 5a. Table 5c thus
correctly represents the true values of the within-stratum
summaries from Table 5b and a.
As previously, we do not dictate which summary of the

treatment effect should be used for the trial. We con-

sider four: a risk ratio, a risk difference, a conditional odds
ratio and a marginal odds ratio. In these examples, con-
ditional odds ratios are estimated by logistic regression,
while marginal odds ratios, risk ratios and risk differences
are estimated in two ways: first by standardisation after
logistic regression and second by IPTW. The standardis-
ation analysis does not include an interaction of X with Z
in the logistic regression model, though it could do. Note
that when two or more approaches can be used for one
summary measure (the marginal odds ratio, risk ratio and
risk difference are all estimated using standardisation and
IPTW), the estimates produced will be identical (see [15],
chapters 12 and 13).
Table 6 gives results of analyses for all randomised and

for the complete cases. The key point is that the true value
of the complete-cases estimand differs from the true value
of the all-randomised estimand for all summarymeasures.
This is because there is effect modification by X on each
scale and the relative proportion with X = 1 changes in
the complete cases under covariate-dependent missing-
ness, so the relative contribution of each stratum-specific
effect to the overall effect changes.

Table 6 Summary of the true value of the estimand in all randomised and among the complete cases under covariate-dependent
missingness

Summary measure All-randomised Complete cases

Conditional odds ratio 0.670 0.679

Marginal odds ratio 0.698 0.700

Risk ratio 0.748 0.761

Risk difference −0.056 −0.064

*This method is possible with complete X and incomplete Y
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It would seem that there is little to choose between
the methods in terms of handling of missing data. How-
ever, there are different modifications to the adjustment
methods that we can used to target the all-randomised
estimand in several cases.
We have until now talked about ‘complete cases’ without

specifying whether X or Y is incomplete. With X incom-
plete, the simple-mean-imputation or missing indicator
methods described by White and Thompson can be used
to target the all-randomised estimand for marginal sum-
mary measures [41]. Moving beyond complete cases is
imperative here since the incomplete cases have impor-
tant information in observed Y. However, neither method
is appropriate if the summary measure of interest is con-
ditional and non-collapsible and data are missing-not-at-
random, in which case there is no method to target the
all-randomised estimand besides correct modelling of the
not-at-random missingness mechanism.
With covariate-dependent missingness and outcome Y

incomplete, a simple method can be used to target stan-
dardisation to the all-randomised estimand:

1. Retain in the data all randomised individuals
2. Fit the estimation model for standardisation in the

complete cases (possibly including additional or
different interactions between Z and covariates)

3. Standardise over the all-randomised distribution of X
(implemented in Stata’s margins command with
the noesample option)

The result of applying this method to the numerical exam-
ple gives results identical to the left hand column of
Table 6, indicating that the procedure can target the all-
randomised estimand. However, as seen in the analysis of
the GetTested study (see Appendix 2), this neat ‘trick’ is
not fool-proof.
For direct adjustment and IPTW, estimators of the all-

randomised estimand are slightly less straightforward, but
can be achieved by using multiple imputation with a sepa-
rate imputation model for each randomised arm or using
inverse probability of missingness weighting with the
weighting model based on randomised arm and covari-
ates. It would seemmost natural to pair direct adjustment
with by-arm multiple imputation, because both posit a
model for the outcome data. IPTW therefore pairs more
naturally with inverse probability of missingness weight-
ing, where neither of the weighting models involve the
value of the outcome.

Appendix 2: Issues with estimation for the
all-randomised population inGetTested
We now consider further results from re-analysis of
GetTested. Table 3 considers an estimand for the

complete-case population, but here we consider the all-
randomised population. To target this population, we
retain the assumption that outcomes are missing at ran-
dom and then use a different method for each adjustment
approach.
For direct adjustment, we target the all-randomised

population using multiple imputation ‘by-arm’. Each out-
come was multiply imputed separately (not jointly), since
they are always observed or missing simultaneously and
so there is not auxiliary information. The imputation pro-
cedure used a logistic regression model, separately for
each arm, to impute outcome, including main effects
of covariates. The imputation model for both outcomes
was ‘augmented’ to handle separation of outcome given
covariates [45]. Ten imputations were used. Note that it
is the separate imputation model by-arm that targets the
all-randomised population. Simply including randomised
arm as a covariate in the imputation model would not
achieve this unless there were no treatment–covariate
interactions on the scale of the summary measure.
For standardisation, the all-randomised estimand was

targeted by standardising over the all-randomised popu-
lation, as described in Appendix 1.
For IPTW, inverse-probability-of-missingness weight-

ing was used. The probability of missingness was esti-
mated using a logistic regression model for missingness
including all covariates that are present in the primary
analysis, and interactions with randomised arm. Since the
two outcomes were always missing simultaneously, esti-
mated missingness probabilities were identical for both
outcomes. This approach is straightforward to imple-
ment due to the monotone missingness pattern (baseline
covariates were fully observed and outcomes were missing
on the same individuals).
Additional file 2 contains the Stata code used, which can

be inspected to resolve any ambiguity in the description
of the three methods. Note that multiple imputation or
inverse-probability-of-missingness weighting could have
been used for any of the three adjustment methods.
Table 7 shows the results from these analyses. The main

point to note is that some analyses which returned an esti-
mate for the complete-case population (see Table 3) do
not for the all-randomised. This turns out to be due to
collinearity or perfect prediction, described below. How-
ever, this affects the methods in different ways, as we see
below.
For direct adjustment, the multiple imputation step suf-

fered from perfect prediction due to collinearity and the
imputation model for any diagnosis had to be augmented
[45]. The subsequent estimation of risk differences with an
identity-link binomial model failed to converge for both
outcomes. For any diagnosis risk ratios, the log-link bino-
mial model also failed to converge; the Poisson model did
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Table 7 Appendix 2: Results of analyses of the GetTested trial targeting the all-randomised population. All models included main
effects only. Link function is canonical unless otherwise specified. The dash symbol - means model did not converge, with reasons
described in the text of Appendix 2

Outcome
measure

Summary measure Adjustment method Model (variable modelled) Treatment effect estimate (SE)

Any test
(occurred in 35%)

Risk difference Direct Identity-link binomial (outcome) -

Standardisation Logistic (outcome) 0.258 (0.021)*

IPTW Logistic (treatment) 0.259 (0.021)

Log risk ratio Direct Poisson, robust SE (outcome) 0.804 (0.069)

Direct Log-link binomial (outcome) -

Standardisation Logistic (outcome) 0.799 (0.075)*

IPTW Logistic (treatment) 0.802 (0.075)

Any diagnosis
(occurred in 1.6%)

Risk difference Direct Identity-link binomial (outcome) -

Standardisation Logistic (outcome) -

IPTW Logistic (treatment) 0.013 (0.006)

Log risk ratio Direct Poisson, robust SE (outcome) -

Direct Identity-link binomial (outcome) -

Standardisation Logistic (outcome) -

IPTW Logistic (treatment) 0.866 (0.414)

*Almost-all-randomised. Estimate was returned only after omitting four participants affected by collinearity

return an estimate but we do not regard this as a valid
all-randomised estimate because many parameters had
to be dropped from the imputation models in order for
them to fit. For any test, there was severe collinearity in
the imputation model. Even after augmentation, only 916
individuals could be used in the imputation model. This
again represents a failure to return an estimate relevant to
the all-randomised population.
For standardisation, no estimate was immediately

returned for either outcome or summary measure. This
was due to collinearity in the logistic regression mod-
els predicting outcome, which meant that predictions
were not produced for four transgender individuals. By
omitting these individuals in the standardisation step, an
almost-all-randomised estimate could be obtained for any
test but not for any diagnosis (marked with asterisks in
Table 7).
IPTW returned estimates for both summary mea-

sures and both outcomes. The main threat to it obtain-
ing an estimate for the all-randomised population is
perfect prediction of missingness in the missingness
model.
Given the above issues, there is little to say in terms of

comparing the estimated log risk ratios obtained across
approaches. When approaches did return an estimate and
standard error, they were very similar. It is hard to say
what differences can be attributed to the populations tar-
geted, the specific assumptions about missing data, or
the approach to modelling assumptions specific to the
approach to covariate adjustment. Further investigation

of methods targeting the all-randomised population is
ongoing. The ideal solution is of course to avoid missing
outcome data as far as possible during the conduct of a
trial.

Abbreviations
IPTW: Inverse probability of treatment weighting; STI: Sexually transmitted
infection

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s13063-022-06097-z.

Additional file 1: Stata code to generate Fig. 1.

Additional file 2: Stata code for the analysis of the GetTested trial
(Assumes the data file journal.pmed.1002479.s001.xls has
been downloaded from https://journals.plos.org/plosmedicine/article?id=
10.1371/journal.pmed.1002479#sec020).

Acknowledgements
We are grateful to Jonathan Bartlett, Richard Riley, Leanne McCabe, Brennan
Kahan, Andrew Althouse, Maarten van Smeden and Babak Choodari-Oskooei
for discussions relating to this work. Our acknowledgement of these
individuals does not imply their endorsement of this article.

Authors’ contributions
TPM, ASW, EJW and IRW conceived of the article, planned the work and
interpreted the results. TPM drafted the article. All authors have approved the
submitted version.

Funding
TPM, ASW and IRW were funded by the MRC grants MC_UU_12023/21,
MC_UU_12023/29, MC_UU_00004/07 and MC_UU_00004/09. ASW was also
funded by the MRC grant MC_UU_12023/22. ASW is an National Institute for
Health Research Senior Investigator; as such, the views expressed are those of
the authors and not necessarily those of the NHS, the NIHR, or the Department

https://doi.org/10.1186/s13063-022-06097-z
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002479#sec020
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002479#sec020


Morris et al. Trials          (2022) 23:328 Page 16 of 17

of Health. EJW was supported by the MRC Network of Hubs for Trials
Methodology HTMR Award MR/L004933/2/N96 and MRC project grant
MR/S01442X/1.

Declarations

Ethics approval and consent to participate
N/A

Consent for publication
N/A

Competing interests
Tim Morris consults for Kite Pharma, Inc. Ian White has provided consultancy
services or courses to Exelixis, AstraZeneca, GSK and Novartis, for which his
employer has received funding. Elizabeth Williamson declares personal
income from providing training to AstraZeneca.

Received: 13 July 2021 Accepted: 10 February 2022

References
1. Senn S. Seven myths of randomisation in clinical trials. Stat Med.

2013;32(9):1439–50.
2. Kahan BC, Jairath V, Doré CJ, Morris TP. The risks and rewards of

covariate adjustment in randomized trials: an assessment of 12 outcomes
from 8 studies. Trials. 2014;15(1):139+.

3. Hernández AV, Eijkemans MJC, Steyerberg EW. Randomized controlled
trials with time-to-event outcomes: how much does prespecified
covariate adjustment increase power Ann Epidemiol. 2006;16(1):41–8.

4. Turner EL, Perel P, Clayton T, Edwards P, Hernández AV, Roberts I,
Shakur H, Steyerberg EW. Covariate adjustment increased power in
randomized controlled trials: an example in traumatic brain injury. J Clin
Epidemiol. 2012;65(5):474–81.

5. Kahan BC, Morris TP. Improper analysis of trials randomised using
stratified blocks or minimisation. Stat Med. 2012;31(4):328–40.

6. Fisher RA. The arrangement of field experiments. J Minist Agric G B.
1926;33:83–94.

7. Kahan BC, Morris TP. Reporting and analysis of trials using stratified
randomisation in leading medical journals: review and reanalysis. BMJ
(Clin Res Ed). 2012;345:345.

8. Committee for Proprietary Medicinal Products. Committee for proprietary
medicinal products (CPMP) points to consider on adjustment for baseline
covariates. Stat Med. 2004;23(5):701–9.

9. Tsiatis AA, Davidian M, Zhang M, Lu X. Covariate adjustment for
two-sample treatment comparisons in randomized clinical trials: a
principled yet flexible approach. Stat Med. 2008;27(23):4658–77.

10. Balzer LB, van der Laan MJ, Petersen ML, the SEARCH Collaboration.
Adaptive pre-specification in randomized trials with and without
pair-matching. Stat Med. 2016;35(25):4528–45.

11. Ciolino JD, Palac HL, Yang A, Vaca M, Belli HM. Ideal vs. real: a systematic
review on handling covariates in randomized controlled trials. BMC Med
Res Methodol. 2019;19(1):1–11.

12. Wilson E, Free C, Morris TP, Kenward MG, Syred J, Baraitser P. JMIR Res
Protoc. 2016;5(1):e9.

13. McCullagh P, Nelder JA. Generalized linear models, 2nd ed. London:
Chapman and Hall; 1989.

14. Cox DR. Regression models and life tables. J R Stat Soc Ser B. 1972;34:
187–220.

15. Hernán MA, Robins JM. Causal Inference: What If. Boca Raton: Chapman &
Hall/CRC; 2020.

16. Cummings P. The relative merits of risk ratios and odds ratios. Arch
Pediatr Adolesc Med. 2009;163(5):438.

17. Snowden JM, Rose S, Mortimer KM. Implementation of g-computation
on a simulated data set: Demonstration of a causal inference technique.
Am J Epidemiol. 2011;173(7):731–8.

18. Lee Y, Nelder JA. Conditional and marginal models: another view. Stat
Sci. 2004;19(2):219–38.

19. Sjölander A. Regression standardization with the R package stdReg. Eur J
Epidemiol. 2016;31(6):563–74.

20. Williamson EJ, Forbes A, White IR. Variance reduction in randomised
trials by inverse probability weighting using the propensity score. Stat
Med. 2014;33(5):721–37.

21. International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use. Addendum on estimands and sensitivity
analysis in clinical trials to the guideline on statistical principles for clinical
trials. 2019. https://www.ema.europa.eu/en/documents/scientific-
guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-
trials-guideline-statistical-principles_en.pdf. Accessed 17 Feb 2021.

22. Permutt T. Do covariates change the estimand? Stat Biopharm Res.
2020;12(1):45–53.

23. Daniel R, Zhang J, Farewell D. Making apples from oranges: comparing
noncollapsible effect estimators and their standard errors after
adjustment for different covariate sets. Biom J. 2021;63(3):528–57.

24. Didelez V, Stensrud MJ. On the logic of collapsibility for causal effect
measures. Biom J. 2021;64(2):235–42.

25. Huitfeldt A, Stensrud MJ, Suzuki E. On the collapsibility of measures of
effect in the counterfactual causal framework. Emerg Themes Epidemiol.
2019;16(1):1–5.

26. Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA.
Extending inferences from a randomized trial to a new target population.
Stat Med. 2020;39(14):1999–2014.

27. Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials
to target populations: the ACTG 320 trial. Am J Epidemiol. 2010;172(1):
107–15.

28. Kim J, Troxel AB, Halpern SD, Volpp KG, Kahan BC, Morris TP, Harhay
MO. Analysis of multicenter clinical trials with very low event rates. Trials.
2020;21(1):917.

29. Morris TP, Kahan BC, White IR. Choosing sensitivity analyses for
randomised trials: principles. BMC Med Res Methodol. 2014;14(1):11+.

30. Gamble C, Krishan A, Stocken D, Lewis S, Juszczak E, Doré C,
Williamson PR, Altman DG, Montgomery A, Lim P, Berlin J, Senn S, Day
S, Barbachano Y, Loder E. Guidelines for the content of statistical analysis
plans in clinical trials. JAMA. 2017;318(23):2337.

31. Yelland LN, Salter AB, Ryan P. Relative risk estimation in randomized
controlled trials: a comparison of methods for independent observations.
Int J Biostat. 2011;7(1):1–31.

32. Heinze G, Schemper M. A solution to the problem of separation in
logistic regression. Stat Med. 2002;21:2409–19.

33. Colantuoni E, Rosenblum M. Leveraging prognostic baseline variables to
gain precision in randomized trials. Stat Med. 2015;34(18):2602–17.

34. Moore KL, van der Laan MJ. Covariate adjustment in randomized trials
with binary outcomes: targeted maximum likelihood estimation. Stat
Med. 2009;28(1):39–64.

35. Zeng S, Li F, Wang R, Li F. Propensity score weighting for covariate
adjustment in randomized clinical trials. Stat Med. 2020;40(4):842–58.

36. Desai RJ, Franklin JM. Alternative approaches for confounding
adjustment in observational studies using weighting based on the
propensity score: a primer for practitioners. BMJ. 2019;367:l5657.

37. Oehlert GW. A note on the delta method. Am Stat. 1992;46(1):27–9.
38. Raad H, Cornelius V, Chan S, Williamson E, Cro S. An evaluation of

inverse probability weighting using the propensity score for baseline
covariate adjustment in smaller population randomised controlled trials
with a continuous outcome. BMC Med Res Methodol. 2020;20(1):70.

39. Sullivan TR, White IR, Salter AB, Ryan P, Lee KJ. Should multiple
imputation be the method of choice for handling missing data in
randomized trials?. Stat Methods Med Res. 2016;27(9):2610–26.

40. Meng XL. Multiple-imputation inferences with uncongenial sources of
input. Stat Sci. 1994;9:538–58.

41. White IR, Thompson SG. Adjusting for partially missing baseline
measurements in randomised trials. Stat Med. 2005;24(7):993–1007.

42. Cro S, Morris TP, Kenward MG, Carpenter JR. Sensitivity analysis for
clinical trials with missing continuous outcome data using controlled
multiple imputation: a practical guide. Stat Med. 2020;39(21):2815–42.

43. Wilson E, Free C, Morris TP, Syred J, Ahamed I, Menon-Johansson AS,
Palmer MJ, Barnard S, Rezel E, Baraitser P. Internet-accessed sexually
transmitted infection (e-STI) testing and results service: a randomised,
single-blind, controlled trial. PLOS Med. 2017;14(12):e1002479.

44. Royston P, Altman D. External validation of a Cox prognostic model:
principles and methods. BMC Med Res Methodol. 2013;13(1):33+.

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf


Morris et al. Trials          (2022) 23:328 Page 17 of 17

45. White IR, Daniel R, Royston P. Avoiding bias due to perfect prediction in
multiple imputation of incomplete categorical variables. Comput Stat
Data Anal. 2010;54(10):2267–75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Motivating example: the GetTested trial 
	Three broad approaches to accounting for covariates
	Direct adjustment
	Standardisation
	Inverse probability of treatment weighting
	Comments on methods


	Results
	Summary measure of the estimand: marginal or conditional
	Convergence
	Efficiency/precision/power
	Handling covariates balanced by design
	Variance estimation
	Misspecification of the covariate model
	Handling data missing at random with the three adjustment approaches
	Sensitivity analysis with outcomes missing-not-at-random 

	Analyses of GetTested
	Discussion
	Conclusions
	Appendix 1: targeting the complete-case and all-randomised populations in the presence of missing data
	Appendix 2: Issues with estimation for the all-randomised population in GetTested
	Abbreviations
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s13063-022-06097-z.
	Additional file 1
	Additional file 2

	Acknowledgements
	Authors' contributions
	Funding
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

