
Background: clinical applications of microarrays
While microarrays were rapidly accepted in research 
applications, incorporating them in clinical settings has 
required over a decade of benchmarking, standardization 
and the development of appropriate analysis methods. 
Extensive cross-platform and cross-laboratory analyses 
demonstrated the importance of low-level processing 
choices [1-3], including data summarization, normali-
zation, and adjustment for laboratory or ‘batch’ effects 
[4], on outcome accuracy. Some of this work was done 
under the auspices of the Food and Drug Administration 
(FDA), most notably the Microarray Quality Control 
(MAQC) studies, which were developed specifically in 
order to determine the utility of microarray technologies 
in a clinical setting [5,6]. Microarray-measured gene 
expression signatures now form the basis of several 

FDA-approved clinical diagnostic tests, including 
MammaPrint, and Pathwork’s Tissue of Origin test [7,8].

With high-throughput sequencing still in its infancy, 
many questions remain to be addressed before any hope 
of achieving approval for clinical applications is 
warranted. Although a study on the scale of the MAQC 
analyses for microarrays has yet to be carried out for 
sequencing (although one is in the works), there is 
already evidence that similar technical biases are present 
in sequencing data, and these will need to be understood 
and adjusted for to enable use of these new technologies 
in a clinical setting. In this commentary, we present some 
of these known biases and discuss the current state of 
solutions aimed at addressing them. Looking ahead to 
the application of this new technology in the clinical 
setting, we see both hurdles and promise.

Bias and batch effects in high-throughput assays
Biases arise when an observed measurement does not 
reflect the quantity to be measured due to a systematic 
distorting effect. For a concrete example from micro-
arrays, non-specific hybridization at microarray probes 
produces an observed intensity that is not an unbiased 
measure of the presence of the target sequence in the 
population being studied. Thorough investigation has 
revealed that the chemical composition of microarray 
probes influences this effect, and analysis methods have 
been developed to alleviate it [9].

Similarly, batch effects, whereby external factors, for 
example, time or technician, have a systematic influence 
on experimental outcomes across a condition, have been 
seen in many high-throughput technologies, and can 
cause confounding without proper study design and 
analysis techniques [4,10].

So far, there is evidence that these issues are present in 
experiments employing high-throughput sequencing 
data, indicating that similar precautions and methodo-
logical developments will be necessary before sequencing 
data can be used with confidence in the clinic.

Bias in base-call error rates
High-throughput sequencing involves the parallel 
sequen cing of millions of DNA fragments simultaneously. 
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Generally, these fragments are sequenced one base at a 
time, and, at each step or cycle, the current base is 
determined through fluorescent detection. For a review, 
see Holt and Jones [11]. Although sequencing platform 

chemistries differ, in all cases care must be taken to avoid 
introducing bias at this early stage.

Focusing on the Illumina Genome Analyzer platform, 
base-call errors are not randomly distributed across the 
cycle positions in sequenced reads [12]. Although not as 
extensively studied, similar biases have been observed 
and low-level signal correction methods have been 
developed for other sequencing platforms [13].

Incorrect base calls can have a deleterious impact 
downstream in aligning reads to the reference genome 
(resulting in fewer or incorrect alignments) and in variant 
detection (contributing to false-positive variant calls). In 
experiments aimed at detecting variants in genomic 
DNA, concern about false positives may lead researchers 
to employ stringent filtering criteria. Many researchers 
are hypothesizing that the discovery of rare variants will 
be a crucial next step in understanding the genetic causes 
of complex diseases [14], and overly strict filtering criteria 
may eliminate exactly the variants of most interest and 
impact. By improving the quality of nucleotide calls, either 

Figure 1. Effect of base-calling improvements on error bias. This 
figure is based on figures from Bravo and Irizarry [15]. Choosing a 
site that was a false-positive variant as determined by MAQ [28], the 
authors examined the pattern of nucleotide calls according to the 
read cycle the different calls occurred at. (a) Results with the default 
base-calling software; (b) results after application of the base-calling 
method of Bravo and Irizarry. The x-axis shows read cycle and the 
colored points indicate the percentage of calls at each cycle that 
were made for a particular nucleotide. In (a), the letter T becomes 
much more frequent in reads that align to the SNP site only at later 
sequencing cycles, indicating a technical bias in base calls at this 
position, while the plot in (b) shows a strong reduction in this bias. In 
addition, the location is no longer determined as a variant by MAQ 
after the improved base calling.
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Figure 2. Effect of mappability and GC content on coverage. 
(a) Mean tag counts in 50-bp bins, with error bars, from a naked DNA 
sample from a ChIP-Seq experiment, showing that they depend on 
mappability and GC content. (b) 97.4% of bins have GC percentages 
between 0.2% and 0.56%, as marked by the vertical dashed lines. This 
figure is reproduced with permission from Kuan et al. [21].
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through better base calling or error correction, more 
accurate variant calls will be possible.

Alternative base-calling methods that reduce the cycle-
related bias in error rates have been developed (Figure 1) 
[15,16]. Numerous error correction methods have also 
been developed to remove errors from reads after base 
calls have been made [17-20]. Since base calling requires 
the raw intensity files, which many laboratories never 
receive from sequencing centers, re-calling bases is 
logistically burdensome, and error correction provides a 
potential alternative.

Coverage biases
Another long-observed phenomenon of high-throughput 
sequencing data is the strong, reproducible effect of local 
sequence content on the coverage of a genomic region by 
sequencing reads [12]. This phenomenon is analogous to 
probe effects for microarray platforms. For sequencing 
projects where coverage levels are compared across 

regions, such as RNA-Seq, chromosome immunoprecipi-
tation-sequencing (ChIP-Seq) or copy number detection, 
this phenomenon can be particularly problematic.

Researchers carrying out ChIP-Seq experiments have 
observed a systematic relationship between coverage and 
GC content (Figure 2) [21]. Researchers using sequencing 
to measure copy number have also found adjusting for GC 
content improves precision [22]. Adjusting signal for GC 
content leads to improved results in both ChIP-Seq and 
copy number estimation with sequencing data [21,22].

Genomic regions that are identical or highly similar to 
one another create ambiguity in alignment to the 
genome, and ambiguous reads are generally discarded. 
The low coverage in these regions can produce biased 
measurements or remove the regions from consideration 
in downstream analysis, potentially eliminating impor-
tant signals from the data. Methods have been developed 
for taking this mappability property into account to 
adjust the observed signal in these regions [21].

Figure 3. Batch effect for second-generation sequencing data from the 1000 Genomes Project. This figure is similar to one from Leek et al. 
[10]. Each row in the heat-map is data from a different HapMap sample processed in the same facility with the same platform (see Leek et al. [10] for 
a description of the data), shown for a 3-Mb region on chromosome 16, with data summarized in 10-kb bins. Data from each bin were standardized 
across samples, with blue representing 3 standard deviations below average, and orange representing 3 standard deviations above average. The 
rows are ordered by date, with black lines separating different processing days. The largest batch effect can be seen on the alternating pattern of 
blue and orange on days 223 to 241 and days 244 to 251.
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Some spatial biases seem to be unique to the sample 
preparation protocol being used. Hansen et al. [23] have 
shown that random hexamer priming can lead to 
coverage bias in RNA-Seq analyses, and Li et al. [24] 
present a model for the non-uniformity of RNA-Seq read 
coverage. Both papers provide solutions to adjust for 
these biases and achieve more uniform coverage.

Batch effects
Batch effects arise when variability in the data correlates 
with a technical variable, such as processing date, 
location or technician. Such effects have been observed 
in many different high-throughput experiments. Leek et 
al. [10] investigated batch effects in genomic DNA 
sequencing carried out as part of the 1000 Genomes 
Project [25]. To investigate whether batch effects were 
present in a subset of this sequencing data, Leek et al. 
compiled a set of aligned sequencing data sets that were 
produced in the same location at different dates. After 
summarization and normalization of the data, clear 
spatial patterns can be seen in several of the samples, and 
the patterns are correlated with the technical variable of 
processing date (Figure 3). Patterns like these could lead 
to false conclusions in experiments where the sequencing 
coverage is related to the condition of interest, such as 
copy-number or peak height.

The primary way of avoiding batch effects is through 
careful experimental design. Randomization of all 
experimental variables across treatment conditions 
should be employed to avoid systematic effects within a 
condition. In order to correct for these batch effects after 
the fact, they need to first be detected, and then adjusted 
for, be it through the use of covariates in linear models, 
or more involved procedures such as surrogate variable 
analysis [26]. These methods will work best when 
confounding between the technical variable and the 
outcome of interest are avoided; thus, careful experi-
mental design is essential.

One challenge of using sequencing technologies in 
clinical applications is that conclusions are likely to be 
drawn by comparing newly acquired data with genome 
profiles derived from previously collected data. Inter-
preting findings derived from this type of comparison is 
made difficult by the batch effect. Better understanding 
of batch-to-batch variation and development of single-
sample methods such as fRMA [27] will be important 
steps forward in addressing this challenge.

Conclusion
Just as is the case for other high-throughput biological 
assays, high-throughput sequencing presents many 
challenges when it comes to avoiding bias and batch 
effects. Promising solutions to these problems are already 
in development, including: low-level improvements in 

base calling and error correction, improved per-position 
data quality metrics, adjustments to coverage estimates 
to alleviate context-specific or protocol-specific effects, 
and experimental designs that minimize potential 
confounding effects of batch. The lessons learned through 
the development of clinical applications of microarrays, 
such as the need for benchmark studies such as those 
conducted by the MAQC project, should help accelerate 
the process of incorporating high-throughput sequencing 
into the clinic.
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