
https://github.com/soulmachine/machine-learning-cheat-sheet

soulmachine@gmail.com

Machine Learning Cheat Sheet

Classical equations, diagrams and tricks in machine learning

February 12, 2015

https://github.com/soulmachine/machine-learning-cheat-sheet

ii

©2013 soulmachine
Except where otherwise noted, This document is licensed under a Creative Commons Attribution-ShareAlike 3.0
Unported (CC BY-SA3.0) license
(http://creativecommons.org/licenses/by/3.0/).

http://creativecommons.org/licenses/by/3.0/

Preface

This cheat sheet contains many classical equations and diagrams on machine learning, which will help you quickly
recall knowledge and ideas in machine learning.

This cheat sheet has three significant advantages:

1. Strong typed. Compared to programming languages, mathematical formulas are weakly typed. For example, X can
be a set, a random variable, or a matrix. This causes difficulty in understanding the meaning of formulas. In this
cheat sheet, I try my best to standardize symbols used, see section §.

2. More parentheses. In machine learning, authors are prone to omit parentheses, brackets and braces, this usually
causes ambiguity in mathematical formulas. In this cheat sheet, I use parentheses(brackets and braces) at where
they are needed, to make formulas easy to understand.

3. Less thinking jumps. In many books, authors are prone to omit some steps that are trivial in his option. But it often
makes readers get lost in the middle way of derivation.

At Tsinghua University, May 2013 soulmachine

iii

Contents

Contents . v

Notation . xiii

1 Introduction . 1
1.1 Types of machine learning 1
1.2 Three elements of a machine learning

model . 1
1.2.1 Representation 1
1.2.2 Evaluation 1
1.2.3 Optimization 2

1.3 Some basic concepts 2
1.3.1 Parametric vs non-parametric

models . 2
1.3.2 A simple non-parametric

classifier: K-nearest neighbours 2
1.3.3 Overfitting 2
1.3.4 Cross validation 2
1.3.5 Model selection 2

2 Probability . 3
2.1 Frequentists vs. Bayesians 3
2.2 A brief review of probability theory 3

2.2.1 Basic concepts 3
2.2.2 Mutivariate random variables . . 3
2.2.3 Bayes rule 4
2.2.4 Independence and conditional

independence 4
2.2.5 Quantiles 4
2.2.6 Mean and variance 4

2.3 Some common discrete distributions . . . 5
2.3.1 The Bernoulli and binomial

distributions 5
2.3.2 The multinoulli and

multinomial distributions 5
2.3.3 The Poisson distribution 5
2.3.4 The empirical distribution 5

2.4 Some common continuous distributions . 6
2.4.1 Gaussian (normal) distribution . 6
2.4.2 Student’s t-distribution 6
2.4.3 The Laplace distribution 7
2.4.4 The gamma distribution 8
2.4.5 The beta distribution 8
2.4.6 Pareto distribution 8

2.5 Joint probability distributions 9
2.5.1 Covariance and correlation 9
2.5.2 Multivariate Gaussian

distribution 10

2.5.3 Multivariate Student’s
t-distribution 10

2.5.4 Dirichlet distribution 10
2.6 Transformations of random variables . . . 11

2.6.1 Linear transformations 11
2.6.2 General transformations 11
2.6.3 Central limit theorem 13

2.7 Monte Carlo approximation 13
2.8 Information theory 14

2.8.1 Entropy . 14
2.8.2 KL divergence 14
2.8.3 Mutual information 14

3 Generative models for discrete data 17
3.1 Generative classifier 17
3.2 Bayesian concept learning 17

3.2.1 Likelihood 17
3.2.2 Prior . 17
3.2.3 Posterior 17
3.2.4 Posterior predictive distribution 18

3.3 The beta-binomial model 18
3.3.1 Likelihood 18
3.3.2 Prior . 18
3.3.3 Posterior 18
3.3.4 Posterior predictive distribution 19

3.4 The Dirichlet-multinomial model 19
3.4.1 Likelihood 20
3.4.2 Prior . 20
3.4.3 Posterior 20
3.4.4 Posterior predictive distribution 20

3.5 Naive Bayes classifiers 20
3.5.1 Optimization 21
3.5.2 Using the model for prediction 21
3.5.3 The log-sum-exp trick 21
3.5.4 Feature selection using

mutual information 22
3.5.5 Classifying documents using

bag of words 22

4 Gaussian Models . 25
4.1 Basics . 25

4.1.1 MLE for a MVN 25
4.1.2 Maximum entropy derivation

of the Gaussian * 26
4.2 Gaussian discriminant analysis 26

4.2.1 Quadratic discriminant
analysis (QDA) 26

v

vi Preface

4.2.2 Linear discriminant analysis
(LDA) . 27

4.2.3 Two-class LDA 28
4.2.4 MLE for discriminant analysis . 28
4.2.5 Strategies for preventing

overfitting 29
4.2.6 Regularized LDA * 29
4.2.7 Diagonal LDA 29
4.2.8 Nearest shrunken centroids

classifier * 29
4.3 Inference in jointly Gaussian

distributions . 29
4.3.1 Statement of the result 29
4.3.2 Examples 30

4.4 Linear Gaussian systems 30
4.4.1 Statement of the result 30

4.5 Digression: The Wishart distribution * . . 30
4.6 Inferring the parameters of an MVN . . . 30

4.6.1 Posterior distribution of µ 30
4.6.2 Posterior distribution of Σ * . . . 30
4.6.3 Posterior distribution of µ

and Σ * . 30
4.6.4 Sensor fusion with unknown

precisions * 30

5 Bayesian statistics . 31
5.1 Introduction . 31
5.2 Summarizing posterior distributions 31

5.2.1 MAP estimation 31
5.2.2 Credible intervals 32
5.2.3 Inference for a difference in

proportions 33
5.3 Bayesian model selection 33

5.3.1 Bayesian Occam’s razor 33
5.3.2 Computing the marginal

likelihood (evidence) 34
5.3.3 Bayes factors 36

5.4 Priors . 36
5.4.1 Uninformative priors 36
5.4.2 Robust priors 36
5.4.3 Mixtures of conjugate priors . . 36

5.5 Hierarchical Bayes 36
5.6 Empirical Bayes . 36
5.7 Bayesian decision theory 36

5.7.1 Bayes estimators for common
loss functions 37

5.7.2 The false positive vs false
negative tradeoff 38

6 Frequentist statistics . 39
6.1 Sampling distribution of an estimator . . . 39

6.1.1 Bootstrap 39
6.1.2 Large sample theory for the

MLE * . 39

6.2 Frequentist decision theory 39
6.3 Desirable properties of estimators 39
6.4 Empirical risk minimization 39

6.4.1 Regularized risk minimization . 39
6.4.2 Structural risk minimization . . . 39
6.4.3 Estimating the risk using

cross validation 39
6.4.4 Upper bounding the risk

using statistical learning
theory * . 39

6.4.5 Surrogate loss functions 39
6.5 Pathologies of frequentist statistics * . . . 39

7 Linear Regression . 41
7.1 Introduction . 41
7.2 Representation . 41
7.3 MLE . 41

7.3.1 OLS . 41
7.3.2 SGD . 42

7.4 Ridge regression(MAP) 42
7.4.1 Basic idea 43
7.4.2 Numerically stable

computation * 43
7.4.3 Connection with PCA * 43
7.4.4 Regularization effects of big

data . 43
7.5 Bayesian linear regression 43

8 Logistic Regression . 45
8.1 Representation . 45
8.2 Optimization . 45

8.2.1 MLE . 45
8.2.2 MAP . 45

8.3 Multinomial logistic regression 45
8.3.1 Representation 45
8.3.2 MLE . 46
8.3.3 MAP . 46

8.4 Bayesian logistic regression 46
8.4.1 Laplace approximation 47
8.4.2 Derivation of the BIC 47
8.4.3 Gaussian approximation for

logistic regression 47
8.4.4 Approximating the posterior

predictive 47
8.4.5 Residual analysis (outlier

detection) * 47
8.5 Online learning and stochastic

optimization . 47
8.5.1 The perceptron algorithm 47

8.6 Generative vs discriminative classifiers . 48
8.6.1 Pros and cons of each approach 48
8.6.2 Dealing with missing data 48
8.6.3 Fishers linear discriminant

analysis (FLDA) * 50

Preface vii

9 Generalized linear models and the
exponential family . 51
9.1 The exponential family 51

9.1.1 Definition 51
9.1.2 Examples 51
9.1.3 Log partition function 52
9.1.4 MLE for the exponential family 53
9.1.5 Bayes for the exponential

family . 53
9.1.6 Maximum entropy derivation

of the exponential family * 53
9.2 Generalized linear models (GLMs) 53

9.2.1 Basics . 53
9.3 Probit regression . 53
9.4 Multi-task learning 53

10 Directed graphical models (Bayes nets) 55
10.1 Introduction . 55

10.1.1 Chain rule 55
10.1.2 Conditional independence 55
10.1.3 Graphical models 55
10.1.4 Directed graphical model 55

10.2 Examples . 56
10.2.1 Naive Bayes classifiers 56
10.2.2 Markov and hidden Markov

models . 56
10.3 Inference . 56
10.4 Learning . 56

10.4.1 Learning from complete data . . 56
10.4.2 Learning with missing and/or

latent variables 57
10.5 Conditional independence properties

of DGMs . 57
10.5.1 d-separation and the Bayes

Ball algorithm (global
Markov properties) 57

10.5.2 Other Markov properties of
DGMs . 57

10.5.3 Markov blanket and full
conditionals 57

10.5.4 Multinoulli Learning 57
10.6 Influence (decision) diagrams * 57

11 Mixture models and the EM algorithm 59
11.1 Latent variable models 59
11.2 Mixture models . 59

11.2.1 Mixtures of Gaussians 59
11.2.2 Mixtures of multinoullis 60
11.2.3 Using mixture models for

clustering 60
11.2.4 Mixtures of experts 60

11.3 Parameter estimation for mixture models 60
11.3.1 Unidentifiability 60

11.3.2 Computing a MAP estimate
is non-convex 60

11.4 The EM algorithm 60
11.4.1 Introduction 60
11.4.2 Basic idea 62
11.4.3 EM for GMMs 62
11.4.4 EM for K-means 64
11.4.5 EM for mixture of experts 64
11.4.6 EM for DGMs with hidden

variables 64
11.4.7 EM for the Student

distribution * 64
11.4.8 EM for probit regression * 64
11.4.9 Derivation of the Q function . . 64
11.4.10 Convergence of the EM

Algorithm * 65
11.4.11 Generalization of EM

Algorithm * 65
11.4.12 Online EM 66
11.4.13 Other EM variants * 66

11.5 Model selection for latent variable
models . 66
11.5.1 Model selection for

probabilistic models 67
11.5.2 Model selection for

non-probabilistic methods 67
11.6 Fitting models with missing data 67

11.6.1 EM for the MLE of an MVN
with missing data 67

12 Latent linear models . 69
12.1 Factor analysis . 69

12.1.1 FA is a low rank
parameterization of an MVN . . 69

12.1.2 Inference of the latent factors . . 69
12.1.3 Unidentifiability 70
12.1.4 Mixtures of factor analysers . . . 70
12.1.5 EM for factor analysis models . 71
12.1.6 Fitting FA models with

missing data 71
12.2 Principal components analysis (PCA) . . 71

12.2.1 Classical PCA 71
12.2.2 Singular value decomposition

(SVD) . 72
12.2.3 Probabilistic PCA 73
12.2.4 EM algorithm for PCA 74

12.3 Choosing the number of latent
dimensions . 74
12.3.1 Model selection for FA/PPCA . 74
12.3.2 Model selection for PCA 74

12.4 PCA for categorical data 74
12.5 PCA for paired and multi-view data 75

12.5.1 Supervised PCA (latent
factor regression) 75

viii Preface

12.5.2 Discriminative supervised PCA 75
12.5.3 Canonical correlation analysis . 75

12.6 Independent Component Analysis (ICA) 75
12.6.1 Maximum likelihood estimation 75
12.6.2 The FastICA algorithm 76
12.6.3 Using EM 76
12.6.4 Other estimation principles * . . 76

13 Sparse linear models . 77

14 Kernels . 79
14.1 Introduction . 79
14.2 Kernel functions . 79

14.2.1 RBF kernels 79
14.2.2 TF-IDF kernels 79
14.2.3 Mercer (positive definite)

kernels . 79
14.2.4 Linear kernels 80
14.2.5 Matern kernels 80
14.2.6 String kernels 80
14.2.7 Pyramid match kernels 81
14.2.8 Kernels derived from

probabilistic generative models 81
14.3 Using kernels inside GLMs 81

14.3.1 Kernel machines 81
14.3.2 L1VMs, RVMs, and other

sparse vector machines 81
14.4 The kernel trick . 81

14.4.1 Kernelized KNN 82
14.4.2 Kernelized K-medoids

clustering 82
14.4.3 Kernelized ridge regression . . . 82
14.4.4 Kernel PCA 83

14.5 Support vector machines (SVMs) 83
14.5.1 SVMs for classification 83
14.5.2 SVMs for regression 84
14.5.3 Choosing C 85
14.5.4 A probabilistic interpretation

of SVMs 85
14.5.5 Summary of key points 85

14.6 Comparison of discriminative kernel
methods . 86

14.7 Kernels for building generative models . 86

15 Gaussian processes . 87
15.1 Introduction . 87
15.2 GPs for regression 87
15.3 GPs meet GLMs . 87
15.4 Connection with other methods 87
15.5 GP latent variable model 87
15.6 Approximation methods for large

datasets . 87

16 Adaptive basis function models 89
16.1 AdaBoost . 89

16.1.1 Representation 89
16.1.2 Evaluation 89
16.1.3 Optimization 89
16.1.4 The upper bound of the

training error of AdaBoost 89

17 Hidden markov Model . 91
17.1 Introduction . 91
17.2 Markov models . 91

18 State space models . 93

19 Undirected graphical models (Markov
random fields) . 95

20 Exact inference for graphical models 97

21 Variational inference . 99

22 More variational inference 101

23 Monte Carlo inference . 103

24 Markov chain Monte Carlo
(MCMC)inference . 105
24.1 Introduction . 105
24.2 Metropolis Hastings algorithm 105
24.3 Gibbs sampling . 105
24.4 Speed and accuracy of MCMC 105
24.5 Auxiliary variable MCMC * 105

25 Clustering . 107

26 Graphical model structure learning 109

27 Latent variable models for discrete data 111
27.1 Introduction . 111
27.2 Distributed state LVMs for discrete data 111

28 Deep learning . 113

A Optimization methods . 115
A.1 Convexity . 115
A.2 Gradient descent . 115

A.2.1 Stochastic gradient descent . . . 115
A.2.2 Batch gradient descent 115
A.2.3 Line search 115
A.2.4 Momentum term 116

A.3 Lagrange duality . 116
A.3.1 Primal form 116
A.3.2 Dual form 116

A.4 Newton’s method 116
A.5 Quasi-Newton method 116

A.5.1 DFP . 116

Preface ix

A.5.2 BFGS . 116
A.5.3 Broyden 117

Glossary . 119

List of Contributors

Wei Zhang
PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail:
zh3feng@gmail.com, has written chapters of Naive Bayes and SVM.

Fei Pan
Master at Beijing University of Technology, Beijing, P.R.CHINA, e-mail: example@gmail.com, has written
chapters of KMeans, AdaBoost.

Yong Li
PhD candidate at the Institute of Automation of the Chinese Academy of Sciences (CASIA), Beijing, P.R.CHINA,
e-mail: liyong3forever@gmail.com, has written chapters of Logistic Regression.

Jiankou Li
PhD candidate at the Institute of Software, Chinese Academy of Sciences (ISCAS), Beijing, P.R.CHINA, e-mail:
lijiankoucoco@163.com, has written chapters of BayesNet.

xi

zh3feng@gmail.com
example@gmail.com
liyong3forever@gmail.com
lijiankoucoco@163.com

Notation

Introduction

It is very difficult to come up with a single, consistent notation to cover the wide variety of data, models and algorithms
that we discuss. Furthermore, conventions difer between machine learning and statistics, and between different books
and papers. Nevertheless, we have tried to be as consistent as possible. Below we summarize most of the notation
used in this book, although individual sections may introduce new notation. Note also that the same symbol may have
different meanings depending on the context, although we try to avoid this where possible.

General math notation

Symbol Meaning

⌊x⌋ Floor of x, i.e., round down to nearest integer
⌈x⌉ Ceiling of x, i.e., round up to nearest integer
x⊗y Convolution of x and y
x⊙y Hadamard (elementwise) product of x and y
a∧b logical AND
a∨b logical OR
¬a logical NOT
I(x) Indicator function, I(x) = 1 if x is true, else I(x) = 0
∞ Infinity
→ Tends towards, e.g., n→ ∞
∝ Proportional to, so y = ax can be written as y ∝ x
|x| Absolute value
|S| Size (cardinality) of a set
n! Factorial function
∇ Vector of first derivatives
∇2 Hessian matrix of second derivatives
≜ Defined as
O(·) Big-O: roughly means order of magnitude
R The real numbers
1 : n Range (Matlab convention): 1 : n = 1,2, ...,n
≈ Approximately equal to
argmax

x
f (x) Argmax: the value x that maximizes f

B(a,b) Beta function, B(a,b) =
Γ (a)Γ (b)
Γ (a+b)

B(α) Multivariate beta function,
∏
k

Γ (αk)

Γ (∑
k

αk)(n
k

)
n choose k , equal to n!/(k!(nk)!)

δ (x) Dirac delta function,δ (x) = ∞ if x = 0, else δ (x) = 0
exp(x) Exponential function ex

Γ (x) Gamma function, Γ (x) =
∫ ∞

0 ux−1e−udu

Ψ(x) Digamma function,Psi(x) =
d
dx

logΓ (x)

xiii

xiv Notation

X A set from which values are drawn (e.g.,X = RD)

Linear algebra notation

We use boldface lower-case to denote vectors, such as x, and boldface upper-case to denote matrices, such as X . We
denote entries in a matrix by non-bold upper case letters, such as Xi j.

Vectors are assumed to be column vectors, unless noted otherwise. We use (x1, · · · ,xD) to denote a column vector
created by stacking D scalars. If we write X = (x1, · · · ,xn), where the left hand side is a matrix, we mean to stack
the xi along the columns, creating a matrix.

Symbol Meaning

X ≻ 0 X is a positive definite matrix
tr(X) Trace of a matrix
det(X) Determinant of matrix X
|X| Determinant of matrix X
X−1 Inverse of a matrix
X† Pseudo-inverse of a matrix
XT Transpose of a matrix
xT Transpose of a vector
diag(x) Diagonal matrix made from vector x
diag(X) Diagonal vector extracted from matrix X
I or Id Identity matrix of size d×d (ones on diagonal, zeros of)
1 or 1d Vector of ones (of length d)
0 or 0d Vector of zeros (of length d)

||x||= ||x||2 Euclidean or ℓ2 norm

√
d
∑
j=1

x2
j

||x||1 ℓ1 norm
d
∑
j=1

∣∣x j
∣∣

X :, j j’th column of matrix
X i,: transpose of i’th row of matrix (a column vector)
X i, j Element (i, j) of matrix X
x⊗y Tensor product of x and y

Probability notation

We denote random and fixed scalars by lower case, random and fixed vectors by bold lower case, and random and
fixed matrices by bold upper case. Occasionally we use non-bold upper case to denote scalar random variables. Also,
we use p() for both discrete and continuous random variables

Symbol Meaning

X ,Y Random variable
P() Probability of a random event
F() Cumulative distribution function(CDF), also called distribution function
p(x) Probability mass function(PMF)
f (x) probability density function(PDF)
F(x,y) Joint CDF
p(x,y) Joint PMF
f (x,y) Joint PDF

Notation xv

p(X |Y) Conditional PMF, also called conditional probability
fX |Y (x|y) Conditional PDF
X ⊥ Y X is independent of Y
X ̸⊥ Y X is not independent of Y
X ⊥ Y |Z X is conditionally independent of Y given Z
X ̸⊥ Y |Z X is not conditionally independent of Y given Z
X ∼ p X is distributed according to distribution p
α Parameters of a Beta or Dirichlet distribution
cov[X] Covariance of X
E[X] Expected value of X
Eq[X] Expected value of X wrt distribution q
H(X) or H(p) Entropy of distribution p(X)
I(X ;Y) Mutual information between X and Y
KL(p||q) KL divergence from distribution p to q
ℓ(θ) Log-likelihood function
L(θ ,a) Loss function for taking action a when true state of nature is θ
λ Precision (inverse variance) λ = 1/σ2

Λ Precision matrix Λ = Σ−1

mode[X] Most probable value of X
µ Mean of a scalar distribution
µ Mean of a multivariate distribution
Φ cdf of standard normal
ϕ pdf of standard normal
π multinomial parameter vector, Stationary distribution of Markov chain
ρ Correlation coefficient

sigm(x) Sigmoid (logistic) function,
1

1+ e−x

σ2 Variance
Σ Covariance matrix
var[x] Variance of x
ν Degrees of freedom parameter
Z Normalization constant of a probability distribution

Machine learning/statistics notation

In general, we use upper case letters to denote constants, such as C,K,M,N,T , etc. We use lower case letters as dummy
indexes of the appropriate range, such as c = 1 : C to index classes, i = 1 : M to index data cases, j = 1 : N to index
input features, k = 1 : K to index states or clusters, t = 1 : T to index time, etc.

We use x to represent an observed data vector. In a supervised problem, we use y or y to represent the desired output
label. We use z to represent a hidden variable. Sometimes we also use q to represent a hidden discrete variable.

Symbol Meaning

C Number of classes
D Dimensionality of data vector (number of features)
N Number of data cases
Nc Number of examples of class c,Nc = ∑N

i=1 I(yi = c)
R Number of outputs (response variables)
D Training data D = {(xi,yi)|i = 1 : N}
Dtest Test data
X Input space
Y Output space

xvi Notation

K Number of states or dimensions of a variable (often latent)
k(x,y) Kernel function
K Kernel matrix
H Hypothesis space
L Loss function
J(θ) Cost function
f (x) Decision function
P(y|x) TODO
λ Strength of ℓ2 or ℓ1regularizer
ϕ(x) Basis function expansion of feature vector x
Φ Basis function expansion of design matrix X
q() Approximate or proposal distribution
Q(θ,θold) Auxiliary function in EM
T Length of a sequence
T (D) Test statistic for data
T Transition matrix of Markov chain
θ Parameter vector
θ(s) s’th sample of parameter vector
θ̂ Estimate (usually MLE or MAP) of θ
θ̂MLE Maximum likelihood estimate of θ
θ̂MAP MAP estimate of θ
θ̄ Estimate (usually posterior mean) of θ
w Vector of regression weights (called β in statistics)
b intercept (called ε in statistics)
W Matrix of regression weights
xi j Component (i.e., feature) j of data case i ,for i = 1 : N, j = 1 : D
xi Training case, i = 1 : N
X Design matrix of size N×D

x̄ Empirical mean x̄=
1
N

∑N
i=1xi

x̃ Future test case
x∗ Feature test case
y Vector of all training labels y = (y1, ...,yN)
zi j Latent component j for case i

Chapter 1
Introduction

1.1 Types of machine learning

Supervised learning

{
Classification
Regression

Unsupervised learning

Discovering clusters
Discovering latent factors
Discovering graph structure
Matrix completion

1.2 Three elements of a machine learning
model

Model = Representation + Evaluation + Optimization1

1.2.1 Representation

In supervised learning, a model must be represented as
a conditional probability distribution P(y|x)(usually we
call it classifier) or a decision function f (x). The set of
classifiers(or decision functions) is called the hypothesis
space of the model. Choosing a representation for a model
is tantamount to choosing the hypothesis space that it can
possibly learn.

1.2.2 Evaluation

In the hypothesis space, an evaluation function (also
called objective function or risk function) is needed to
distinguish good classifiers(or decision functions) from
bad ones.

1.2.2.1 Loss function and risk function

Definition 1.1. In order to measure how well a function
fits the training data, a loss function L : Y ×Y → R≥ 0 is

1 Domingos, P. A few useful things to know about machine learning.
Commun. ACM. 55(10):7887 (2012).

defined. For training example (xi,yi), the loss of predict-
ing the value ŷ is L(yi, ŷ).

The following is some common loss functions:

1. 0-1 loss function

L(Y, f (X)) = I(Y, f (X)) =

{
1, Y = f (X)

0, Y ̸= f (X)

2. Quadratic loss function L(Y, f (X)) = (Y − f (X))2

3. Absolute loss function L(Y, f (X)) = |Y − f (X)|
4. Logarithmic loss function

L(Y,P(Y |X)) =− logP(Y |X)

Definition 1.2. The risk of function f is defined as the ex-
pected loss of f :

Rexp(f) = E [L(Y, f (X))] =
∫

L(y, f (x))P(x,y)dxdy

(1.1)
which is also called expected loss or risk function.

Definition 1.3. The risk function Rexp(f) can be esti-
mated from the training data as

Remp(f) =
1
N

N

∑
i=1

L(yi, f (xi)) (1.2)

which is also called empirical loss or empirical risk.

You can define your own loss function, but if you’re
a novice, you’re probably better off using one from the
literature. There are conditions that loss functions should
meet2:

1. They should approximate the actual loss you’re trying
to minimize. As was said in the other answer, the stan-
dard loss functions for classification is zero-one-loss
(misclassification rate) and the ones used for training
classifiers are approximations of that loss.

2. The loss function should work with your intended op-
timization algorithm. That’s why zero-one-loss is not
used directly: it doesn’t work with gradient-based opti-
mization methods since it doesn’t have a well-defined
gradient (or even a subgradient, like the hinge loss for
SVMs has).
The main algorithm that optimizes the zero-one-loss
directly is the old perceptron algorithm(chapter §??).

2 http://t.cn/zTrDxLO

1

http://t.cn/zTrDxLO

2

1.2.2.2 ERM and SRM

Definition 1.4. ERM(Empirical risk minimization)

min
f∈F

Remp(f) = min
f∈F

1
N

N

∑
i=1

L(yi, f (xi)) (1.3)

Definition 1.5. Structural risk

Rsmp(f) =
1
N

N

∑
i=1

L(yi, f (xi))+λJ(f) (1.4)

Definition 1.6. SRM(Structural risk minimization)

min
f∈F

Rsrm(f) = min
f∈F

1
N

N

∑
i=1

L(yi, f (xi))+λJ(f) (1.5)

1.2.3 Optimization

Finally, we need a training algorithm(also called learn-
ing algorithm) to search among the classifiers in the the
hypothesis space for the highest-scoring one. The choice
of optimization technique is key to the efficiency of the
model.

1.3 Some basic concepts

1.3.1 Parametric vs non-parametric models

1.3.2 A simple non-parametric classifier:
K-nearest neighbours

1.3.2.1 Representation

y = f (x) = argmin
c ∑

xi∈Nk(x)

I(yi = c) (1.6)

where Nk(x) is the set of k points that are closest to point
x.

Usually use k-d tree to accelerate the process of find-
ing k nearest points.

1.3.2.2 Evaluation

No training is needed.

1.3.2.3 Optimization

No training is needed.

1.3.3 Overfitting

1.3.4 Cross validation

Definition 1.7. Cross validation, sometimes called rota-
tion estimation, is a model validation technique for assess-
ing how the results of a statistical analysis will generalize
to an independent data set3.

Common types of cross-validation:

1. K-fold cross-validation. In k-fold cross-validation, the
original sample is randomly partitioned into k equal
size subsamples. Of the k subsamples, a single sub-
sample is retained as the validation data for testing the
model, and the remaining k 1 subsamples are used as
training data.

2. 2-fold cross-validation. Also, called simple cross-
validation or holdout method. This is the simplest
variation of k-fold cross-validation, k=2.

3. Leave-one-out cross-validation(LOOCV). k=M, the
number of original samples.

1.3.5 Model selection

When we have a variety of models of different complex-
ity (e.g., linear or logistic regression models with differ-
ent degree polynomials, or KNN classifiers with different
values ofK), how should we pick the right one? A natural
approach is to compute the misclassification rate on the
training set for each method.

3 http://en.wikipedia.org/wiki/
Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Chapter 2
Probability

2.1 Frequentists vs. Bayesians

what is probability?
One is called the frequentist interpretation. In this

view, probabilities represent long run frequencies of
events. For example, the above statement means that, if
we flip the coin many times, we expect it to land heads
about half the time.

The other interpretation is called the Bayesian inter-
pretation of probability. In this view, probability is used
to quantify our uncertainty about something; hence it is
fundamentally related to information rather than repeated
trials (Jaynes 2003). In the Bayesian view, the above state-
ment means we believe the coin is equally likely to land
heads or tails on the next toss

One big advantage of the Bayesian interpretation is
that it can be used to model our uncertainty about events
that do not have long term frequencies. For example, we
might want to compute the probability that the polar ice
cap will melt by 2020 CE. This event will happen zero
or one times, but cannot happen repeatedly. Nevertheless,
we ought to be able to quantify our uncertainty about this
event. To give another machine learning oriented exam-
ple, we might have observed a blip on our radar screen,
and want to compute the probability distribution over the
location of the corresponding target (be it a bird, plane,
or missile). In all these cases, the idea of repeated trials
does not make sense, but the Bayesian interpretation is
valid and indeed quite natural. We shall therefore adopt
the Bayesian interpretation in this book. Fortunately, the
basic rules of probability theory are the same, no matter
which interpretation is adopted.

2.2 A brief review of probability theory

2.2.1 Basic concepts

We denote a random event by defining a random variable
X .

Descrete random variable: X can take on any value
from a finite or countably infinite set.

Continuous random variable: the value of X is real-
valued.

2.2.1.1 CDF

F(x)≜ P(X ≤ x) =

{
∑u≤x p(u) , discrete∫ x
−∞ f (u)du , continuous

(2.1)

2.2.1.2 PMF and PDF

For descrete random variable, We denote the probability
of the event that X = x by P(X = x), or just p(x) for
short. Here p(x) is called a probability mass function
or PMF.A probability mass function is a function that
gives the probability that a discrete random variable is ex-
actly equal to some value4. This satisfies the properties
0≤ p(x)≤ 1 and ∑x∈X p(x) = 1.

For continuous variable, in the equation
F(x) =

∫ x
−∞ f (u)du, the function f (x) is called a

probability density function or PDF. A probability
density function is a function that describes the rela-
tive likelihood for this random variable to take on a
given value5.This satisfies the properties f (x) ≥ 0 and∫ ∞
−∞ f (x)dx = 1.

2.2.2 Mutivariate random variables

2.2.2.1 Joint CDF

We denote joint CDF by F(x,y) ≜ P(X ≤ x∩Y ≤ y) =
P(X ≤ x,Y ≤ y).

F(x,y)≜ P(X ≤ x,Y ≤ y) =

{
∑u≤x,v≤y p(u,v)∫ x
−∞
∫ y
−∞ f (u,v)dudv

(2.2)
product rule:

p(X ,Y) = P(X |Y)P(Y) (2.3)

Chain rule:

4 http://en.wikipedia.org/wiki/Probability_
mass_function
5 http://en.wikipedia.org/wiki/Probability_
density_function

3

http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function

4

p(X1:N) = p(X1)p(X3|X2,X1)...p(XN |X1:N−1) (2.4)

2.2.2.2 Marginal distribution

Marginal CDF:

FX (x)≜ F(x,+∞) = ∑
xi≤x

P(X = xi) = ∑
xi≤x

+∞
∑
j=1

P(X = xi,Y = y j)∫ x
−∞ fX (u)du =

∫ x
−∞
∫ +∞
−∞ f (u,v)dudv

(2.5)

FY (y)≜ F(+∞,y) = ∑
y j≤y

p(Y = y j) =
+∞
∑

i=1
∑y j≤y P(X = xi,Y = y j)∫ y

−∞ fY (v)dv =
∫ +∞
−∞

∫ y
−∞ f (u,v)dudv

(2.6)

Marginal PMF and PDF:{
P(X = xi) = ∑+∞

j=1 P(X = xi,Y = y j) , descrete
fX (x) =

∫ +∞
−∞ f (x,y)dy , continuous

(2.7)

{
p(Y = y j) = ∑+∞

i=1 P(X = xi,Y = y j) , descrete
fY (y) =

∫ +∞
−∞ f (x,y)dx , continuous

(2.8)

2.2.2.3 Conditional distribution

Conditional PMF:

p(X = xi|Y = y j) =
p(X = xi,Y = y j)

p(Y = y j)
if p(Y)> 0 (2.9)

The pmf p(X |Y) is called conditional probability.
Conditional PDF:

fX |Y (x|y) =
f (x,y)
fY (y)

(2.10)

2.2.3 Bayes rule

p(Y = y|X = x) =
p(X = x,Y = y)

p(X = x)

=
p(X = x|Y = y)p(Y = y)

∑y′ p(X = x|Y = y′)p(Y = y′)
(2.11)

2.2.4 Independence and conditional
independence

We say X and Y are unconditionally independent or
marginally independent, denoted X ⊥ Y , if we can
represent the joint as the product of the two marginals,
i.e.,

X ⊥ Y = P(X ,Y) = P(X)P(Y) (2.12)

We say X and Y are conditionally independent(CI)
given Z if the conditional joint can be written as a product
of conditional marginals:

X ⊥ Y |Z = P(X ,Y |Z) = P(X |Z)P(Y |Z) (2.13)

2.2.5 Quantiles

Since the cdf F is a monotonically increasing function,
it has an inverse; let us denote this by F−1. If F is the
cdf of X , then F−1(α) is the value of xα such that
P(X ≤ xα) = α; this is called the α quantile of F . The
value F−1(0.5) is the median of the distribution, with half
of the probability mass on the left, and half on the right.
The values F−1(0.25) and F1(0.75)are the lower and up-
per quartiles.

2.2.6 Mean and variance

The most familiar property of a distribution is its mean,or
expected value, denoted by µ . For discrete rvs, it is de-
fined as E[X] ≜ ∑x∈X xp(x), and for continuous rvs, it is
defined as E[X]≜

∫
X xp(x)dx. If this integral is not finite,

the mean is not defined (we will see some examples of
this later).

The variance is a measure of the spread of a distribu-
tion, denoted by σ2. This is defined as follows:

var[X] = E[(X−µ)2] (2.14)

=
∫

(x−µ)2 p(x)dx

=
∫

x2 p(x)dx+µ2
∫

p(x)dx−2µ
∫

xp(x)dx

= E[X2]−µ2 (2.15)

from which we derive the useful result

E[X2] = σ2 +µ2 (2.16)

The standard deviation is defined as

5

std[X]≜
√

var[X] (2.17)

This is useful since it has the same units as X itself.

2.3 Some common discrete distributions

In this section, we review some commonly used paramet-
ric distributions defined on discrete state spaces, both fi-
nite and countably infinite.

2.3.1 The Bernoulli and binomial
distributions

Definition 2.1. Now suppose we toss a coin only once.
Let X ∈ {0,1} be a binary random variable, with probabil-
ity of success or heads of θ . We say that X has a Bernoulli
distribution. This is written as X ∼ Ber(θ), where the
pmf is defined as

Ber(x|θ)≜ θ I(x=1)(1−θ)I(x=0) (2.18)

Definition 2.2. Suppose we toss a coin n times. Let X ∈
{0,1, · · · ,n} be the number of heads. If the probability of
heads is θ , then we say X has a binomial distribution,
written as X ∼ Bin(n,θ). The pmf is given by

Bin(k|n,θ)≜
(

n
k

)
θ k(1−θ)n−k (2.19)

2.3.2 The multinoulli and multinomial
distributions

Definition 2.3. The Bernoulli distribution can be
used to model the outcome of one coin tosses. To
model the outcome of tossing a K-sided dice, let
x = (I(x = 1), · · · ,I(x = K)) ∈ {0,1}K be a random
vector(this is called dummy encoding or one-hot en-
coding), then we say X has a multinoulli distribution(or
categorical distribution), written as X ∼ Cat(θ). The
pmf is given by:

p(x)≜
K

∏
k=1

θ I(xk=1)
k (2.20)

Definition 2.4. Suppose we toss a K-sided dice n times.
Let x= (x1,x2, · · · ,xK)∈ {0,1, · · · ,n}K be a random vec-
tor, where x j is the number of times side j of the dice
occurs, then we say X has a multinomial distribution,

written as X ∼Mu(n,θ). The pmf is given by

p(x)≜
(

n
x1 · · ·xk

) K

∏
k=1

θ xk
k (2.21)

where
(

n
x1 · · ·xk

)
≜ n!

x1!x2! · · ·xK!

Bernoulli distribution is just a special case of a Bino-
mial distribution with n = 1, and so is multinoulli distri-
bution as to multinomial distribution. See Table 2.1 for a
summary.

Table 2.1: Summary of the multinomial and related
distributions.

Name K n X

Bernoulli 1 1 x ∈ {0,1}
Binomial 1 - x ∈ {0,1, · · · ,n}
Multinoulli - 1 x ∈ {0,1}K ,∑K

k=1 xk = 1
Multinomial - - x ∈ {0,1, · · · ,n}K ,∑K

k=1 xk = n

2.3.3 The Poisson distribution

Definition 2.5. We say that X ∈ {0,1,2, · · ·} has a Pois-
son distribution with parameter λ > 0, written as X ∼
Poi(λ), if its pmf is

p(x|λ) = e−λ λ x

x!
(2.22)

The first term is just the normalization constant, re-
quired to ensure the distribution sums to 1.

The Poisson distribution is often used as a model for
counts of rare events like radioactive decay and traffic ac-
cidents.

2.3.4 The empirical distribution

The empirical distribution function6, or empirical cdf,
is the cumulative distribution function associated with the
empirical measure of the sample. LetD= {x1,x2, · · · ,xN}
be a sample set, it is defined as

Fn(x)≜
1
N

N

∑
i=1

I(xi ≤ x) (2.23)

6 http://en.wikipedia.org/wiki/Empirical_
distribution_function

http://en.wikipedia.org/wiki/Empirical_distribution_function
http://en.wikipedia.org/wiki/Empirical_distribution_function

6

Table 2.2: Summary of Bernoulli, binomial multinoulli and multinomial distributions.

Name Written as X p(x)(or p(x)) E[X] var[X]

Bernoulli X ∼ Ber(θ) x ∈ {0,1} θ I(x=1)(1−θ)I(x=0) θ θ (1−θ)

Binomial X ∼ Bin(n,θ) x ∈ {0,1, · · · ,n}
(

n
k

)
θ k(1−θ)n−k nθ nθ(1−θ)

Multinoulli X ∼ Cat(θ) x ∈ {0,1}K ,∑K
k=1 xk = 1

K
∏

k=1
θ I(x j=1)

j - -

Multinomial X ∼Mu(n,θ) x ∈ {0,1, · · · ,n}K ,∑K
k=1 xk = n

(
n

x1 · · ·xk

)
K
∏

k=1
θ x j

j - -

Poisson X ∼ Poi(λ) x ∈ {0,1,2, · · ·} e−λ λ x

x!
λ λ

2.4 Some common continuous distributions

In this section we present some commonly used univariate
(one-dimensional) continuous probability distributions.

2.4.1 Gaussian (normal) distribution

Table 2.3: Summary of Gaussian distribution.

Written as f (x) E[X] mode var[X]

X ∼N (µ,σ2)
1√

2πσ
e−

1
2σ2 (x−µ)2

µ µ σ2

If X ∼ N(0,1),we say X follows a standard normal
distribution.

The Gaussian distribution is the most widely used dis-
tribution in statistics. There are several reasons for this.

1. First, it has two parameters which are easy to interpret,
and which capture some of the most basic properties of
a distribution, namely its mean and variance.

2. Second,the central limit theorem (Section TODO) tells
us that sums of independent random variables have an
approximately Gaussian distribution, making it a good
choice for modeling residual errors or noise.

3. Third, the Gaussian distribution makes the least num-
ber of assumptions (has maximum entropy), subject to
the constraint of having a specified mean and variance,
as we show in Section TODO; this makes it a good de-
fault choice in many cases.

4. Finally, it has a simple mathematical form, which re-
sults in easy to implement, but often highly effective,
methods, as we will see.

See (Jaynes 2003, ch 7) for a more extensive discussion
of why Gaussians are so widely used.

2.4.2 Student’s t-distribution

Table 2.4: Summary of Student’s t-distribution.

Written as f (x) E[X] mode var[X]

X ∼ T (µ,σ2,ν)
Γ (ν+1

2)
√

νπΓ (ν
2)

[
1+

1
ν

(
x−µ

ν

)2
]

µ µ
νσ 2

ν−2

where Γ (x) is the gamma function:

Γ (x)≜
∫ ∞

0
tx−1e−tdt (2.24)

µ is the mean, σ2 > 0 is the scale parameter, and ν > 0
is called the degrees of freedom. See Figure 2.1 for some
plots.

The variance is only defined if ν > 2. The mean is only
defined if ν > 1.

As an illustration of the robustness of the Student dis-
tribution, consider Figure 2.2. We see that the Gaussian
is affected a lot, whereas the Student distribution hardly
changes. This is because the Student has heavier tails, at
least for small ν(see Figure 2.1).

If ν = 1, this distribution is known as the Cauchy
or Lorentz distribution. This is notable for having such
heavy tails that the integral that defines the mean does not
converge.

To ensure finite variance, we require ν > 2. It is com-
mon to use ν = 4, which gives good performance in a
range of problems (Lange et al. 1989). For ν ≫ 5, the
Student distribution rapidly approaches a Gaussian distri-
bution and loses its robustness properties.

7

(a)

(b)

Fig. 2.1: (a) The pdfs for a N (0,1), T (0,1,1) and
Lap(0,1/

√
2). The mean is 0 and the variance is 1 for

both the Gaussian and Laplace. The mean and variance
of the Student is undefined when ν = 1.(b) Log of these

pdfs. Note that the Student distribution is not
log-concave for any parameter value, unlike the Laplace

distribution, which is always log-concave (and
log-convex...) Nevertheless, both are unimodal.

Table 2.5: Summary of Laplace distribution.

Written as f (x) E[X] mode var[X]

X ∼ Lap(µ,b)
1

2b
exp
(
−|x−µ|

b

)
µ µ 2b2

(a)

(b)

Fig. 2.2: Illustration of the effect of outliers on fitting
Gaussian, Student and Laplace distributions. (a) No

outliers (the Gaussian and Student curves are on top of
each other). (b) With outliers. We see that the Gaussian is

more affected by outliers than the Student and Laplace
distributions.

2.4.3 The Laplace distribution

Here µ is a location parameter and b > 0 is a scale param-
eter. See Figure 2.1 for a plot.

Its robustness to outliers is illustrated in Figure 2.2. It
also put mores probability density at 0 than the Gaussian.
This property is a useful way to encourage sparsity in a
model, as we will see in Section TODO.

8

Table 2.6: Summary of gamma distribution

Written as X f (x) E[X] mode var[X]

X ∼ Ga(a,b) x ∈ R+ ba

Γ (a)
xa−1e−xb a

b
a−1

b
a
b2

2.4.4 The gamma distribution

Here a > 0 is called the shape parameter and b > 0 is
called the rate parameter. See Figure 2.3 for some plots.

(a)

(b)

Fig. 2.3: Some Ga(a,b = 1) distributions. If a≤ 1, the
mode is at 0, otherwise it is > 0.As we increase the rate

b, we reduce the horizontal scale, thus squeezing
everything leftwards and upwards. (b) An empirical pdf
of some rainfall data, with a fitted Gamma distribution

superimposed.

2.4.5 The beta distribution

Here B(a,b)is the beta function,

B(a,b)≜ Γ (a)Γ (b)
Γ (a+b)

(2.25)

See Figure 2.4 for plots of some beta distributions. We
require a,b > 0 to ensure the distribution is integrable
(i.e., to ensure B(a,b) exists). If a = b = 1, we get the
uniform distirbution. If a and b are both less than 1, we
get a bimodal distribution with spikes at 0 and 1; if a and
b are both greater than 1, the distribution is unimodal.

Fig. 2.4: Some beta distributions.

2.4.6 Pareto distribution

The Pareto distribution is used to model the distribu-
tion of quantities that exhibit long tails, also called heavy
tails.

As k→ ∞, the distribution approaches δ (x−m). See
Figure 2.5(a) for some plots. If we plot the distribution
on a log-log scale, it forms a straight line, of the form
log p(x) = a logx+c for some constants a and c. See Fig-
ure 2.5(b) for an illustration (this is known as a power
law).

9

Table 2.7: Summary of Beta distribution

Name Written as X f (x) E[X] mode var[X]

Beta distribution X ∼ Beta(a,b) x ∈ [0,1]
1

B(a,b)
xa−1(1− x)b−1 a

a+b
a−1

a+b−2
ab

(a+b)2(a+b+1)

Table 2.8: Summary of Pareto distribution

Name Written as X f (x) E[X] mode var[X]

Pareto distribution X ∼ Pareto(k,m) x≥ m kmkx−(k+1)I(x≥ m)
km

k−1
if k > 1 m

m2k
(k−1)2(k−2)

if k > 2

(a)

(b)

Fig. 2.5: (a) The Pareto distribution Pareto(x|m,k) for
m = 1. (b) The pdf on a log-log scale.

2.5 Joint probability distributions

Given a multivariate random variable or random vec-
tor 7 X ∈ RD, the joint probability distribution8 is a
probability distribution that gives the probability that each
of X1,X2, · · · ,XD falls in any particular range or discrete
set of values specified for that variable. In the case of only
two random variables, this is called a bivariate distribu-
tion, but the concept generalizes to any number of random
variables, giving a multivariate distribution.

The joint probability distribution can be expressed ei-
ther in terms of a joint cumulative distribution function
or in terms of a joint probability density function (in the
case of continuous variables) or joint probability mass
function (in the case of discrete variables).

2.5.1 Covariance and correlation

Definition 2.6. The covariance between two rvs X and
Y measures the degree to which X and Y are (linearly)
related. Covariance is defined as

cov[X ,Y]≜ E [(X−E[X])(Y −E[Y])]
= E[XY]−E[X]E[Y]

(2.26)

Definition 2.7. If X is a D-dimensional random vector, its
covariance matrix is defined to be the following symmet-
ric, positive definite matrix:

7 http://en.wikipedia.org/wiki/Multivariate_
random_variable
8 http://en.wikipedia.org/wiki/Joint_
probability_distribution

http://en.wikipedia.org/wiki/Multivariate_random_variable
http://en.wikipedia.org/wiki/Multivariate_random_variable
http://en.wikipedia.org/wiki/Joint_probability_distribution
http://en.wikipedia.org/wiki/Joint_probability_distribution

10

cov[X]≜ E
[
(X−E[X])(X−E[X])T] (2.27)

=

var[X1] Cov[X1,X2] · · · Cov[X1,XD]

Cov[X2,X1] var[X2] · · · Cov[X2,XD]
...

...
. . .

...
Cov[XD,X1] Cov[XD,X2] · · · var[XD]

(2.28)

Definition 2.8. The (Pearson) correlation coefficient be-
tween X and Y is defined as

corr[X ,Y]≜ Cov[X ,Y]√
var[X],var[Y]

(2.29)

A correlation matrix has the form

R ≜

corr[X1,X1] corr[X1,X2] · · · corr[X1,XD]
corr[X2,X1] corr[X2,X2] · · · corr[X2,XD]

...
...

. . .
...

corr[XD,X1] corr[XD,X2] · · · corr[XD,XD]

(2.30)

The correlation coefficient can viewed as a degree of
linearity between X and Y , see Figure 2.6.

Uncorrelated does not imply independent. For ex-
ample, let X ∼U(−1,1) and Y = X2. Clearly Y is depen-
dent on X(in fact, Y is uniquely determined by X), yet one
can show that corr[X ,Y] = 0. Some striking examples of
this fact are shown in Figure 2.6. This shows several data
sets where there is clear dependence between X and Y , and
yet the correlation coefficient is 0. A more general mea-
sure of dependence between random variables is mutual
information, see Section TODO.

2.5.2 Multivariate Gaussian distribution

The multivariate Gaussian or multivariate nor-
mal(MVN) is the most widely used joint probability
density function for continuous variables. We discuss
MVNs in detail in Chapter 4; here we just give some
definitions and plots.

The pdf of the MVN in D dimensions is defined by the
following:

N (x|µ,Σ)≜ 1
(2π)D/2|Σ |1/2 exp

[
−1

2
(x−µ)T Σ−1(x−µ)

]
(2.31)

where µ=E[X]∈RD is the mean vector, and Σ =Cov[X]
is the D×D covariance matrix. The normalization con-
stant (2π)D/2|Σ |1/2 just ensures that the pdf integrates to
1.

Figure 2.7 plots some MVN densities in 2d for three
different kinds of covariance matrices. A full covariance
matrix has A D(D+1)/2 parameters (we divide by 2 since

Σ is symmetric). A diagonal covariance matrix has D pa-
rameters, and has 0s in the off-diagonal terms. A spherical
or isotropic covariance,Σ =σ2ID, has one free parameter.

2.5.3 Multivariate Student’s t-distribution

A more robust alternative to the MVN is the multivariate
Student’s t-distribution, whose pdf is given by

T (x|µ,Σ ,ν)

≜
Γ (ν+D

2)

Γ (ν
2)

|Σ |− 1
2

(νπ)
D
2

[
1+

1
ν
(x−µ)T Σ−1 (x−µ)

]− ν+D
2

(2.32)

=
Γ (ν+D

2)

Γ (ν
2)

|Σ |− 1
2

(νπ)
D
2

[
1+(x−µ)T V −1 (x−µ)

]− ν+D
2

(2.33)

where Σ is called the scale matrix (since it is not exactly
the covariance matrix) and V = νΣ . This has fatter tails
than a Gaussian. The smaller ν is, the fatter the tails. As
ν→∞, the distribution tends towards a Gaussian. The dis-
tribution has the following properties

mean = µ , mode = µ , Cov =
ν

ν−2
Σ (2.34)

2.5.4 Dirichlet distribution

A multivariate generalization of the beta distribution is the
Dirichlet distribution, which has support over the prob-
ability simplex, defined by

SK =

{
x : 0≤ xk ≤ 1,

K

∑
k=1

xk = 1

}
(2.35)

The pdf is defined as follows:

Dir(x|α)≜ 1
B(α)

K

∏
k=1

xαk−1
k I(x ∈ SK) (2.36)

where B(α1,α2, · · · ,αK) is the natural generalization of
the beta function to K variables:

B(α)≜ ∏K
k=1 Γ (αk)

Γ (α0)
where α0 ≜

K

∑
k=1

αk (2.37)

Figure 2.8 shows some plots of the Dirichlet when
K = 3, and Figure 2.9 for some sampled probability vec-
tors. We see that α0 controls the strength of the dis-

11

Fig. 2.6: Several sets of (x,y) points, with the Pearson correlation coefficient of x and y for each set. Note that the
correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship
(middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in

that case the correlation coefficient is undefined because the variance of Y is
zero.Source:http://en.wikipedia.org/wiki/Correlation

tribution (how peaked it is), and thekcontrol where the
peak occurs. For example, Dir(1,1,1) is a uniform dis-
tribution, Dir(2,2,2) is a broad distribution centered at
(1/3,1/3,1/3), and Dir(20,20,20) is a narrow distribu-
tion centered at (1/3,1/3,1/3).If αk < 1 for all k, we get
spikes at the corner of the simplex.

For future reference, the distribution has these proper-
ties

E(xk) =
αk

α0
, mode[xk] =

αk−1
α0−K

, var[xk] =
αk(α0−αk)

α2
0 (α0 +1)

(2.38)

2.6 Transformations of random variables

If x ∼ P() is some random variable, and y = f (x), what
is the distribution of Y ? This is the question we address in
this section.

2.6.1 Linear transformations

Suppose g() is a linear function:

g(x) = Ax+b (2.39)

First, for the mean, we have

E[y] = E[Ax+b] = AE[x]+b (2.40)

this is called the linearity of expectation.
For the covariance, we have

Cov[y] = Cov[Ax+b] = AΣAT (2.41)

2.6.2 General transformations

If X is a discrete rv, we can derive the pmf for y by simply
summing up the probability mass for all the xs such that
f (x) = y:

pY (y) = ∑
x:g(x)=y

pX (x) (2.42)

If X is continuous, we cannot use Equation 2.42 since
pX (x) is a density, not a pmf, and we cannot sum up den-
sities. Instead, we work with cdfs, and write

FY (y) = P(Y ≤ y) = P(g(X)≤ y) =
∫

g(X)≤y

fX (x)dx

(2.43)
We can derive the pdf of Y by differentiating the cdf:

fY (y) = fX (x)|
dx
dy
| (2.44)

This is called change of variables formula. We leave
the proof of this as an exercise.

For example, suppose X ∼U(1,1), and Y = X2. Then

pY (y) =
1
2

y−
1
2 .

http://en.wikipedia.org/wiki/Correlation

12

(a)

(b)

(c)

(d)

Fig. 2.7: We show the level sets for 2d Gaussians. (a) A
full covariance matrix has elliptical contours.(b) A

diagonal covariance matrix is an axis aligned ellipse. (c)
A spherical covariance matrix has a circular shape. (d)

Surface plot for the spherical Gaussian in (c).

(a)

(b)

(c)

(d)

Fig. 2.8: (a) The Dirichlet distribution when K = 3
defines a distribution over the simplex, which can be
represented by the triangular surface. Points on this

surface satisfy 0≤ θk ≤ 1 and ∑K
k=1 θk = 1. (b) Plot of the

Dirichlet density when α= (2,2,2). (c) α= (20,2,2).

13

(a) α= (0.1, · · · ,0.1). This results in very sparse
distributions, with many 0s.

(b) α= (1, · · · ,1). This results in more uniform (and
dense) distributions.

Fig. 2.9: Samples from a 5-dimensional symmetric
Dirichlet distribution for different parameter values.

2.6.2.1 Multivariate change of variables *

Let f be a function f : Rn→ Rn, and let y = f (x). Then
its Jacobian matrix J is given by

Jx→y ≜ ∂y
∂x

≜

∂y1
∂x1
· · · ∂y1

∂xn
...

...
...

∂yn
∂x1
· · · ∂yn

∂xn

 (2.45)

|det(J)| measures how much a unit cube changes in vol-
ume when we apply f .

If f is an invertible mapping, we can define the pdf of
the transformed variables using the Jacobian of the inverse
mapping y→ x:

py(y) = px(x)|det(
∂x
∂y

)|= px(x)|det(Jy→x)| (2.46)

2.6.3 Central limit theorem

Given N random variables X1,X2, · · · ,XN , each variable is
independent and identically distributed9(iid for short),
and each has the same mean µ and variance σ2, then

n
∑

i=1
Xi−Nµ
√

Nσ
∼N (0,1) (2.47)

this can also be written as

X̄−µ
σ/
√

N
∼N (0,1) , where X̄ ≜ 1

N

n

∑
i=1

Xi (2.48)

2.7 Monte Carlo approximation

In general, computing the distribution of a function of an
rv using the change of variables formula can be difficult.
One simple but powerful alternative is as follows. First
we generate S samples from the distribution, call them
x1, · · · ,xS. (There are many ways to generate such sam-
ples; one popular method, for high dimensional distribu-
tions, is called Markov chain Monte Carlo or MCMC;
this will be explained in Chapter TODO.) Given the sam-
ples, we can approximate the distribution of f (X) by us-
ing the empirical distribution of { f (xs)}S

s=1. This is called
a Monte Carlo approximation10, named after a city in
Europe known for its plush gambling casinos.

We can use Monte Carlo to approximate the expected
value of any function of a random variable. We simply
draw samples, and then compute the arithmetic mean of
the function applied to the samples. This can be written as
follows:

E[g(X)] =
∫

g(x)p(x)dx≈ 1
S

S

∑
s=1

f (xs) (2.49)

where xs ∼ p(X).
This is called Monte Carlo integration11, and has the

advantage over numerical integration (which is based on
evaluating the function at a fixed grid of points) that the
function is only evaluated in places where there is non-
negligible probability.

9 http://en.wikipedia.org/wiki/Independent_
identically_distributed
10 http://en.wikipedia.org/wiki/Monte_Carlo_
method
11 http://en.wikipedia.org/wiki/Monte_Carlo_
integration

http://en.wikipedia.org/wiki/Independent_identically_distributed
http://en.wikipedia.org/wiki/Independent_identically_distributed
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_integration
http://en.wikipedia.org/wiki/Monte_Carlo_integration

14

2.8 Information theory

2.8.1 Entropy

The entropy of a random variable X with distribution p,
denoted by H(X) or sometimes H(p), is a measure of its
uncertainty. In particular, for a discrete variable with K
states, it is defined by

H(X)≜−
K

∑
k=1

p(X = k) log2 p(X = k) (2.50)

Usually we use log base 2, in which case the units are
called bits(short for binary digits). If we use log base e ,
the units are called nats.

The discrete distribution with maximum entropy is
the uniform distribution (see Section XXX for a proof).
Hence for a K-ary random variable, the entropy is maxi-
mized if p(x = k) = 1/K; in this case, H(X) = log2 K.

Conversely, the distribution with minimum entropy
(which is zero) is any delta-function that puts all its mass
on one state. Such a distribution has no uncertainty.

2.8.2 KL divergence

One way to measure the dissimilarity of two probability
distributions, p and q , is known as the Kullback-Leibler
divergence(KL divergence)or relative entropy. This is
defined as follows:

KL(P||Q)≜ ∑
x

p(x) log2
p(x)
q(x)

(2.51)

where the sum gets replaced by an integral for pdfs12. The
KL divergence is only defined if P and Q both sum to 1
and if q(x) = 0 implies p(x) = 0 for all x(absolute con-
tinuity). If the quantity 0 ln0 appears in the formula, it is
interpreted as zero because lim

x→0
x lnx. We can rewrite this

as

KL(p||q)≜ ∑
x

p(x) log2 p(x)−
K

∑
k=1

p(x) log2 q(x)

=H(p)−H(p,q)
(2.52)

where H(p,q) is called the cross entropy,

12 The KL divergence is not a distance, since it is asymmet-
ric. One symmetric version of the KL divergence is the Jensen-
Shannon divergence, defined as JS(p1, p2) = 0.5KL(p1||q) +
0.5KL(p2||q),where q = 0.5p1 +0.5p2

H(p,q) = ∑
x

p(x) log2 q(x) (2.53)

One can show (Cover and Thomas 2006) that the cross
entropy is the average number of bits needed to encode
data coming from a source with distribution p when we
use model q to define our codebook. Hence the regular
entropy H(p) = H(p, p), defined in section §2.8.1,is the
expected number of bits if we use the true model, so the
KL divergence is the diference between these. In other
words, the KL divergence is the average number of extra
bits needed to encode the data, due to the fact that we
used distribution q to encode the data instead of the true
distribution p.

The extra number of bits interpretation should make it
clear that KL(p||q) ≥ 0, and that the KL is only equal to
zero if q= p. We now give a proof of this important result.

Theorem 2.1. (Information inequality) KL(p||q) ≥
0 with equality iff p = q.

One important consequence of this result is that the
discrete distribution with the maximum entropy is the uni-
form distribution.

2.8.3 Mutual information

Definition 2.9. Mutual information or MI, is defined as
follows:

I(X ;Y)≜KL(P(X ,Y)||P(X)P(X))

= ∑
x

∑
y

p(x,y) log
p(x,y)

p(x)p(y)
(2.54)

We have I(X ;Y) ≥ 0 with equality if P(X ,Y) =
P(X)P(Y). That is, the MI is zero if the variables are
independent.

To gain insight into the meaning of MI, it helps to re-
express it in terms of joint and conditional entropies. One
can show that the above expression is equivalent to the
following:

I(X ;Y) = H(X)−H(X |Y) (2.55)
= H(Y)−H(Y |X) (2.56)
= H(X)+H(Y)−H(X ,Y) (2.57)
= H(X ,Y)−H(X |Y)−H(Y |X) (2.58)

where H(X) and H(Y) are the marginal entropies,
H(X |Y) and H(Y |X) are the conditional entropies, and
H(X ,Y) is the joint entropy of X and Y , see Fig. 2.1013.

13 http://en.wikipedia.org/wiki/Mutual_
information

http://en.wikipedia.org/wiki/Mutual_information
http://en.wikipedia.org/wiki/Mutual_information

15

Fig. 2.10: Individual H(X),H(Y), joint H(X ,Y), and
conditional entropies for a pair of correlated subsystems

X ,Y with mutual information I(X ;Y).

Intuitively, we can interpret the MI between X and Y as
the reduction in uncertainty about X after observing Y , or,
by symmetry, the reduction in uncertainty about Y after
observing X .

A quantity which is closely related to MI is the point-
wise mutual information or PMI. For two events (not
random variables) x and y, this is defined as

PMI(x,y)≜ log
p(x,y)

p(x)p(y)
= log

p(x|y)
p(x)

= log
p(y|x)
p(y)

(2.59)
This measures the discrepancy between these events

occuring together compared to what would be expected
by chance. Clearly the MI of X and Y is just the expected
value of the PMI. Interestingly, we can rewrite the PMI as
follows:

PMI(x,y) = log
p(x|y)
p(x)

= log
p(y|x)
p(y)

(2.60)

This is the amount we learn from updating the prior
p(x) into the posterior p(x|y) , or equivalently, updating
the prior p(y) into the posterior p(y|x) .

Chapter 3
Generative models for discrete data

3.1 Generative classifier

p(y = c|x,θ) = p(y = c|θ)p(x|y = c,θ)
∑c′ p(y = c′|θ)p(x|y = c′,θ)

(3.1)

This is called a generative classifier, since it specifies
how to generate the data using the class conditional den-
sity p(x|y= c) and the class prior p(y= c). An alternative
approach is to directly fit the class posterior, p(y = c|x)
;this is known as a discriminative classifier.

3.2 Bayesian concept learning

Psychological research has shown that people can learn
concepts from positive examples alone (Xu and Tenen-
baum 2007).

We can think of learning the meaning of a word as
equivalent to concept learning, which in turn is equiv-
alent to binary classification. To see this, define f (x) = 1
if xis an example of the concept C, and f (x) = 0 other-
wise. Then the goal is to learn the indicator function f ,
which just defines which elements are in the set C.

3.2.1 Likelihood

p(D|h)≜
(

1
size(h)

)N

=

(
1
|h|

)N

(3.2)

This crucial equation embodies what Tenenbaum calls
the size principle, which means the model favours the
simplest (smallest) hypothesis consistent with the data.
This is more commonly known as Occams razor14.

3.2.2 Prior

The prior is decided by human, not machines, so it is sub-
jective. The subjectivity of the prior is controversial. For
example, that a child and a math professor will reach dif-

14 http://en.wikipedia.org/wiki/Occam%27s_
razor

ferent answers. In fact, they presumably not only have dif-
ferent priors, but also different hypothesis spaces. How-
ever, we can finesse that by defining the hypothesis space
of the child and the math professor to be the same, and
then setting the childs prior weight to be zero on certain
advanced concepts. Thus there is no sharp distinction be-
tween the prior and the hypothesis space.

However, the prior is the mechanism by which back-
ground knowledge can be brought to bear on a prob-
lem. Without this, rapid learning (i.e., from small samples
sizes) is impossible.

3.2.3 Posterior

The posterior is simply the likelihood times the prior, nor-
malized.

p(h|D)≜ p(D|h)p(h)
∑h′∈H p(D|h′)p(h′)

=
I(D ∈ h)p(h)

∑h′∈H I(D ∈ h′)p(h′)
(3.3)

where I(D ∈ h)p(h) is 1 iff(iff and only if) all the data are
in the extension of the hypothesis h.

In general, when we have enough data, the posterior
p(h|D) becomes peaked on a single concept, namely the
MAP estimate, i.e.,

p(h|D)→ ĥMAP (3.4)

where ĥMAP is the posterior mode,

ĥMAP ≜ argmax
h

p(h|D) = argmax
h

p(D|h)p(h)

= argmax
h

[log p(D|h)+ log p(h)]
(3.5)

Since the likelihood term depends exponentially on N,
and the prior stays constant, as we get more and more data,
the MAP estimate converges towards the maximum like-
lihood estimate or MLE:

ĥMLE ≜ argmax
h

p(D|h) = argmax
h

log p(D|h) (3.6)

In other words, if we have enough data, we see that the
data overwhelms the prior.

17

http://en.wikipedia.org/wiki/Occam%27s_razor
http://en.wikipedia.org/wiki/Occam%27s_razor

18

3.2.4 Posterior predictive distribution

The concept of posterior predictive distribution15 is
normally used in a Bayesian context, where it makes use
of the entire posterior distribution of the parameters given
the observed data to yield a probability distribution over
an interval rather than simply a point estimate.

p(x̃|D)≜ Eh|D[p(x̃|h)] =

{
∑h p(x̃|h)p(h|D)∫

p(x̃|h)p(h|D)dh
(3.7)

This is just a weighted average of the predictions of
each individual hypothesis and is called Bayes model av-
eraging(Hoeting et al. 1999).

3.3 The beta-binomial model

3.3.1 Likelihood

Given X ∼ Bin(θ), the likelihood of D is given by

p(D|θ) = Bin(N1|N,θ) (3.8)

3.3.2 Prior

Beta(θ |a,b) ∝ θ a−1(1−θ)b−1 (3.9)

The parameters of the prior are called hyper-
parameters.

3.3.3 Posterior

p(θ |D) ∝ Bin(N1|N1 +N0,θ)Beta(θ |a,b)
= Beta(θ |N1 +a,N0b)

(3.10)

Note that updating the posterior sequentially is equiv-
alent to updating in a single batch. To see this, suppose
we have two data sets Da and Db with sufficient statistics
Na

1 ,N
a
0 and Nb

1 ,N
b
0 . Let N1 =Na

1 +Nb
1 and N0 =Na

0 +Nb
0 be

the sufficient statistics of the combined datasets. In batch
mode we have

15 http://en.wikipedia.org/wiki/Posterior_
predictive_distribution

p(θ |Da,Db) = p(θ ,Db|Da)p(Da)

∝ p(θ ,Db|Da)

= p(Db,θ |Da)

= p(Db|θ)p(θ |Da)

Combine Equation 3.10 and 2.19

= Bin(Nb
1 |θ ,Nb

1 +Nb
0)Beta(θ |Na

1 +a,Na
0 +b)

= Beta(θ |Na
1 +Nb

1 +a,Na
0 +Nb

0 +b)

This makes Bayesian inference particularly well-suited
to online learning, as we will see later.

3.3.3.1 Posterior mean and mode

From Table 2.7, the posterior mean is given by

θ̄ =
a+N1

a+b+N
(3.11)

The mode is given by

θ̂MAP =
a+N1−1

a+b+N−2
(3.12)

If we use a uniform prior, then the MAP estimate re-
duces to the MLE,

θ̂MLE =
N1

N
(3.13)

We will now show that the posterior mean is convex
combination of the prior mean and the MLE, which cap-
tures the notion that the posterior is a compromise be-
tween what we previously believed and what the data is
telling us.

3.3.3.2 Posterior variance

The mean and mode are point estimates, but it is useful to
know how much we can trust them. The variance of the
posterior is one way to measure this. The variance of the
Beta posterior is given by

var(θ |D) = (a+N1)(b+N0)

(a+N1 +b+N0)2(a+N1 +b+N0 +1)
(3.14)

We can simplify this formidable expression in the case
that N≫ a,b, to get

var(θ |D)≈ N1N0

NNN
=

θ̂MLE(1− θ̂MLE)

N
(3.15)

http://en.wikipedia.org/wiki/Posterior_predictive_distribution
http://en.wikipedia.org/wiki/Posterior_predictive_distribution

19

3.3.4 Posterior predictive distribution

So far, we have been focusing on inference of the un-
known parameter(s). Let us now turn our attention to pre-
diction of future observable data.

Consider predicting the probability of heads in a single
future trial under a Beta(a,b)posterior. We have

p(x̃|D) =
∫ 1

0
p(x̃|θ)p(θ |D)dθ

=
∫ 1

0
θBeta(θ |a,b)dθ

= E[θ |D] = a
a+b

(3.16)

3.3.4.1 Overfitting and the black swan paradox

Let us now derive a simple Bayesian solution to the prob-
lem. We will use a uniform prior, so a = b = 1. In this
case, plugging in the posterior mean gives Laplaces rule
of succession

p(x̃|D) = N1 +1
N0 +N1 +1

(3.17)

This justifies the common practice of adding 1 to the
empirical counts, normalizing and then plugging them in,
a technique known as add-one smoothing. (Note that
plugging in the MAP parameters would not have this
smoothing effect, since the mode becomes the MLE if
a = b = 1, see Section 3.3.3.1.)

3.3.4.2 Predicting the outcome of multiple future
trials

Suppose now we were interested in predicting the number
of heads, x̃, in M future trials. This is given by

p(x̃|D) =
∫ 1

0
Bin(x̃|M,θ)Beta(θ |a,b)dθ (3.18)

=

(
M
x̃

)
1

B(a,b)

∫ 1

0
θ x̃(1−θ)M−x̃θ a−1(1−θ)b−1dθ

(3.19)

We recognize the integral as the normalization constant
for a Beta(a+ x̃,Mx̃+b) distribution. Hence∫ 1

0
θ x̃(1−θ)M−x̃θ a−1(1−θ)b−1dθ =B(x̃+a,M− x̃+b)

(3.20)
Thus we find that the posterior predictive is given by

the following, known as the (compound) beta-binomial
distribution:

Bb(x|a,b,M)≜
(

M
x

)
B(x+a,M− x+b)

B(a,b)
(3.21)

This distribution has the following mean and variance

mean = M
a

a+b
, var =

Mab
(a+b)2

a+b+M
a+b+1

(3.22)

This process is illustrated in Figure 3.1. We start with
a Beta(2,2) prior, and plot the posterior predictive density
after seeing N1 = 3 heads and N0 = 17 tails. Figure 3.1(b)
plots a plug-in approximation using a MAP estimate. We
see that the Bayesian prediction has longer tails, spread-
ing its probability mass more widely, and is therefore less
prone to overfitting and blackswan type paradoxes.

(a)

(b)

Fig. 3.1: (a) Posterior predictive distributions after seeing
N1 = 3,N0 = 17. (b) MAP estimation.

3.4 The Dirichlet-multinomial model

In the previous section, we discussed how to infer the
probability that a coin comes up heads. In this section,

20

we generalize these results to infer the probability that a
dice with K sides comes up as face k.

3.4.1 Likelihood

Suppose we observe N dice rolls, D = {x1,x2, · · · ,xN},
where xi ∈ {1,2, · · · ,K}. The likelihood has the form

p(D|θ) =
(

N
N1 · · ·Nk

) K

∏
k=1

θ Nk
k where Nk =

N

∑
i=1

I(yi = k)

(3.23)
almost the same as Equation 2.21.

3.4.2 Prior

Dir(θ|α) =
1

B(α)

K

∏
k=1

θ αk−1
k I(θ ∈ SK) (3.24)

3.4.3 Posterior

p(θ|D) ∝ p(D|θ)p(θ) (3.25)

∝
K

∏
k=1

θ Nk
k θ αk−1

k =
K

∏
k=1

θ Nk+αk−1
k (3.26)

= Dir(θ|α1 +N1, · · · ,αK +NK) (3.27)

From Equation 2.38, the MAP estimate is given by

θ̂k =
Nk +αk−1
N +α0−K

(3.28)

If we use a uniform prior, αk = 1, we recover the MLE:

θ̂k =
Nk

N
(3.29)

3.4.4 Posterior predictive distribution

The posterior predictive distribution for a single multi-
noulli trial is given by the following expression:

p(X = j|D) =
∫

p(X = j|θ)p(θ|D)dθ (3.30)

=
∫

p(X = j|θ j)

[∫
p(θ− j,θ j|D)dθ− j

]
dθ j

(3.31)

=
∫

θ j p(θ j|D)dθ j = E[θ j|D] =
α j +N j

α0 +N
(3.32)

where θ− j are all the components of θ except θ j.
The above expression avoids the zero-count problem.

In fact, this form of Bayesian smoothing is even more im-
portant in the multinomial case than the binary case, since
the likelihood of data sparsity increases once we start par-
titioning the data into many categories.

3.5 Naive Bayes classifiers

Assume the features are conditionally independent given
the class label, then the class conditional density has the
following form

p(x|y = c,θ) =
D

∏
j=1

p(x j|y = c,θ jc) (3.33)

The resulting model is called a naive Bayes classi-
fier(NBC).

The form of the class-conditional density depends on
the type of each feature. We give some possibilities below:

• In the case of real-valued features, we can
use the Gaussian distribution: p(x|y,θ) =

∏D
j=1N (x j|µ jc,σ2

jc), where µ jc is the mean of
feature j in objects of class c, and σ2

jc is its variance.
• In the case of binary features, x j ∈ {0,1}, we

can use the Bernoulli distribution: p(x|y,θ) =

∏D
j=1 Ber(x j|µ jc), where µ jc is the probability that

feature j occurs in class c. This is sometimes called
the multivariate Bernoulli naive Bayes model. We
will see an application of this below.

• In the case of categorical features, x j ∈
{a j1,a j2, · · · ,a jS j}, we can use the multinoulli
distribution: p(x|y,θ) = ∏D

j=1 Cat(x j|µ jc), where µ jc
is a histogram over the K possible values for x j in
class c.

Obviously we can handle other kinds of features, or
use different distributional assumptions. Also, it is easy to
mix and match features of different types.

21

3.5.1 Optimization

We now discuss how to train a naive Bayes classifier. This
usually means computing the MLE or the MAP estimate
for the parameters. However, we will also discuss how to
compute the full posterior, p(θ|D).

3.5.1.1 MLE for NBC

The probability for a single data case is given by

p(xi,yi|θ) = p(yi|π)∏
j

p(xi j|θ j)

= ∏
c

πI(yi=c)
c ∏

j
∏

c
p(xi j|θ jc)

I(yi=c)
(3.34)

Hence the log-likelihood is given by

p(D|θ) =
C

∑
c=1

Nc logπc +
D

∑
j=1

C

∑
c=1

∑
i:yi=c

log p(xi j|θ jc)

(3.35)
where Nc ≜ ∑

i
I(yi = c) is the number of feature vectors in

class c.
We see that this expression decomposes into a series

of terms, one concerning π, and DC terms containing the
θ jcs. Hence we can optimize all these parameters sepa-
rately.

From Equation 3.29, the MLE for the class prior is
given by

π̂c =
Nc

N
(3.36)

The MLE for θ jcs depends on the type of distribution
we choose to use for each feature.

In the case of binary features, x j ∈ {0,1}, x j|y = c ∼
Ber(θ jc), hence

θ̂ jc =
N jc

Nc
(3.37)

where N jc ≜ ∑
i:yi=c

I(yi = c) is the number that feature j

occurs in class c.
In the case of categorical features, x j ∈

{a j1,a j2, · · · ,a jS j}, x j|y = c∼ Cat(θ jc), hence

θ̂ jc = (
N j1c

Nc
,

N j2c

Nc
, · · · ,

N jS j

Nc
)T (3.38)

where N jkc ≜
N
∑

i=1
I(xi j = a jk,yi = c) is the number that fea-

ture x j = a jk occurs in class c.

3.5.1.2 Bayesian naive Bayes

Use a Dir(α) prior for π.
In the case of binary features, use a Beta(β0,β1) prior

for each θ jc; in the case of categorical features, use a
Dir(α) prior for each θ jc. Often we just take α = 1 and
β = 1, corresponding to add-one or Laplace smoothing.

3.5.2 Using the model for prediction

The goal is to compute

y = f (x) = argmax
c

P(y = c|x,θ)

= P(y = c|θ)
D

∏
j=1

P(x j|y = c,θ)
(3.39)

We can the estimate parameters using MLE or MAP,
then the posterior predictive density is obtained by simply
plugging in the parameters θ̄(MLE) or θ̂(MAP).

Or we can use BMA, just integrate out the unknown
parameters.

3.5.3 The log-sum-exp trick

when using generative classifiers of any kind, comput-
ing the posterior over class labels using Equation 3.1 can
fail due to numerical underflow. The problem is that
p(x|y = c) is often a very small number, especially if x
is a high-dimensional vector. This is because we require
that ∑x p(x|y) = 1, so the probability of observing any
particular high-dimensional vector is small. The obvious
solution is to take logs when applying Bayes rule, as fol-
lows:

log p(y = c|x,θ) = bc− log

(
∑
c′

ebc′

)
(3.40)

where bc ≜ log p(x|y = c,θ)+ log p(y = c|θ).
We can factor out the largest term, and just represent

the remaining numbers relative to that. For example,

log(e−120 + e−121) = log(e−120(1+ e−1))

= log(1+ e−1)−120
(3.41)

In general, we have

∑
c

ebc = log
[
(∑ebc−B)eB

]
= log

(
∑ebc−B

)
+B (3.42)

22

where B ≜ max{bc}.
This is called the log-sum-exp trick, and is widely

used.

3.5.4 Feature selection using mutual
information

Since an NBC is fitting a joint distribution over potentially
many features, it can suffer from overfitting. In addition,
the run-time cost is O(D), which may be too high for some
applications.

One common approach to tackling both of these prob-
lems is to perform feature selection, to remove irrelevant
features that do not help much with the classification prob-
lem. The simplest approach to feature selection is to eval-
uate the relevance of each feature separately, and then take
the top K,whereKis chosen based on some tradeoff be-
tween accuracy and complexity. This approach is known
as variable ranking, filtering, or screening.

One way to measure relevance is to use mutual infor-
mation (Section 2.8.3) between feature X j and the class
label Y

I(X j,Y) = ∑
x j

∑
y

p(x j,y) log
p(x j,y)

p(x j)p(y)
(3.43)

If the features are binary, it is easy to show that the MI
can be computed as follows

I j = ∑
c

[
θ jcπc log

θ jc

θ j
+(1−θ jc)πc log

1−θ jc

1−θ j

]
(3.44)

where πc = p(y = c), θ jc = p(x j = 1|y = c), and θ j =
p(x j = 1) = ∑c πcθ jc.

3.5.5 Classifying documents using bag of
words

Document classification is the problem of classifying
text documents into different categories.

3.5.5.1 Bernoulli product model

One simple approach is to represent each document as a
binary vector, which records whether each word is present
or not, so xi j = 1 iff word j occurs in document i, other-
wise xi j = 0. We can then use the following class condi-
tional density:

p(xi|yi = c,θ) =
D

∏
j=1

Ber(xi j|θ jc)

=
D

∏
j=1

θ xi j
jc (1−θ jc)

1−xi j

(3.45)

This is called the Bernoulli product model, or the bi-
nary independence model.

3.5.5.2 Multinomial document classifier

However, ignoring the number of times each word oc-
curs in a document loses some information (McCallum
and Nigam 1998). A more accurate representation counts
the number of occurrences of each word. Specifically,
let xi be a vector of counts for document i, so xi j ∈
{0,1, · · · ,Ni}, where Ni is the number of terms in docu-

ment i(so
D
∑
j=1

xi j = Ni). For the class conditional densities,

we can use a multinomial distribution:

p(xi|yi = c,θ) = Mu(xi|Ni,θc) =
Ni!

∏D
j=1 xi j!

D

∏
j=1

θ xi j
jc

(3.46)
where we have implicitly assumed that the document
length Ni is independent of the class. Here jc is the proba-
bility of generating word j in documents of class c; these
parameters satisfy the constraint that ∑D

j=1 θ jc = 1 for
each class c.

Although the multinomial classifier is easy to train and
easy to use at test time, it does not work particularly well
for document classification. One reason for this is that it
does not take into account the burstiness of word usage.
This refers to the phenomenon that most words never ap-
pear in any given document, but if they do appear once,
they are likely to appear more than once, i.e., words occur
in bursts.

The multinomial model cannot capture the burstiness
phenomenon. To see why, note that Equation 3.46 has the
form θ xi j

jc , and since θ jc ≪ 1 for rare words, it becomes
increasingly unlikely to generate many of them. For more
frequent words, the decay rate is not as fast. To see why
intuitively, note that the most frequent words are func-
tion words which are not specific to the class, such as
and, the, and but; the chance of the word and occuring
is pretty much the same no matter how many time it has
previously occurred (modulo document length), so the in-
dependence assumption is more reasonable for common
words. However, since rare words are the ones that mat-
ter most for classification purposes, these are the ones we
want to model the most carefully.

23

3.5.5.3 DCM model

Various ad hoc heuristics have been proposed to improve
the performance of the multinomial document classifier
(Rennie et al. 2003). We now present an alternative class
conditional density that performs as well as these ad hoc
methods, yet is probabilistically sound (Madsen et al.
2005).

Suppose we simply replace the multinomial class con-
ditional density with the Dirichlet Compound Multino-
mial or DCM density, defined as follows:

p(xi|yi = c,α) =
∫

Mu(xi|Ni,θc)Dir(θc|αc)

=
Ni!

∏D
j=1 xi j!

D

∏
j=1

B(xi +αc)

B(αc)

(3.47)

(This equation is derived in Equation TODO.) Surpris-
ingly this simple change is all that is needed to capture the
burstiness phenomenon. The intuitive reason for this is as
follows: After seeing one occurence of a word, say wordj,
the posterior counts on j gets updated, making another oc-
curence of wordjmore likely. By contrast, ifj is fixed, then
the occurences of each word are independent. The multi-
nomial model corresponds to drawing a ball from an urn
with Kcolors of ball, recording its color, and then replac-
ing it. By contrast, the DCM model corresponds to draw-
ing a ball, recording its color, and then replacing it with
one additional copy; this is called the Polya urn.

Using the DCM as the class conditional density gives
much better results than using the multinomial, and has
performance comparable to state of the art methods, as de-
scribed in (Madsen et al. 2005). The only disadvantage is
that fitting the DCM model is more complex; see (Minka
2000e; Elkan 2006) for the details.

Chapter 4
Gaussian Models

In this chapter, we discuss the multivariate Gaus-
sian or multivariate normal(MVN), which is the most
widely used joint probability density function for contin-
uous variables. It will form the basis for many of the mod-
els we will encounter in later chapters.

4.1 Basics

Recall from Section 2.5.2 that the pdf for an MVN in D
dimensions is defined by the following:

N (x|µ,Σ)≜ 1

(2π)D
2 |Σ | 12

exp
[
−1

2
(x−µ)T Σ−1(x−µ)

]
(4.1)

The expression inside the exponent is the Mahalanobis
distance between a data vector x and the mean vector µ,
We can gain a better understanding of this quantity by per-
forming an eigendecomposition of Σ. That is, we write
Σ=UΛUT , where U is an orthonormal matrix of eigen-
vectors satsifying UTU = I , and Λ is a diagonal matrix
of eigenvalues. Using the eigendecomposition, we have
that

Σ−1 =U−TΛ−1U−1 =UΛ−1UT =
D

∑
i=1

1
λi
uiu

T
i (4.2)

where ui is the i’th column of U , containing the i’th
eigenvector. Hence we can rewrite the Mahalanobis dis-
tance as follows:

(x−µ)T Σ−1(x−µ) = (x−µ)T

(
D

∑
i=1

1
λi
uiu

T
i

)
(x−µ)

(4.3)

=
D

∑
i=1

1
λi
(x−µ)Tuiu

T
i (x−µ)

(4.4)

=
D

∑
i=1

y2
i

λi
(4.5)

where yi ≜ uT
i (x−µ). Recall that the equation for an el-

lipse in 2d is

y2
1

λ1
+

y2
2

λ2
= 1 (4.6)

Hence we see that the contours of equal probability
density of a Gaussian lie along ellipses. This is illustrated
in Figure 4.1. The eigenvectors determine the orientation
of the ellipse, and the eigenvalues determine how elogo-
nated it is.

Fig. 4.1: Visualization of a 2 dimensional Gaussian
density. The major and minor axes of the ellipse are

defined by the first two eigenvectors of the covariance
matrix, namely u1 and u2. Based on Figure 2.7 of

(Bishop 2006a)

In general, we see that the Mahalanobis distance corre-
sponds to Euclidean distance in a transformed coordinate
system, where we shift by µ and rotate by U .

4.1.1 MLE for a MVN

Theorem 4.1. (MLE for a MVN) If we have N iid sam-
ples xi ∼ N (µ,Σ), then the MLE for the parameters is
given by

25

26

µ̄=
1
N

N

∑
i=1

xi ≜ x̄ (4.7)

Σ̄ =
1
N

N

∑
i=1

(xi− x̄)(xi− x̄)T (4.8)

=
1
N

(
N

∑
i=1

xix
T
i

)
− x̄x̄T (4.9)

4.1.2 Maximum entropy derivation of the
Gaussian *

In this section, we show that the multivariate Gaussian is
the distribution with maximum entropy subject to having a
specified mean and covariance (see also Section TODO).
This is one reason the Gaussian is so widely used: the first
two moments are usually all that we can reliably estimate
from data, so we want a distribution that captures these
properties, but otherwise makes as few addtional assump-
tions as possible.

To simplify notation, we will assume the mean is zero.
The pdf has the form

f (x) =
1
Z

exp
(
−1

2
xTΣ−1x

)
(4.10)

4.2 Gaussian discriminant analysis

One important application of MVNs is to define the the
class conditional densities in a generative classifier, i.e.,

p(x|y = c,θ) =N (x|µc,Σc) (4.11)

The resulting technique is called (Gaussian) discrim-
inant analysis or GDA (even though it is a generative,
not discriminative, classifier see Section TODO for more
on this distinction). If Σc is diagonal, this is equivalent to
naive Bayes.

We can classify a feature vector using the following
decision rule, derived from Equation 3.1:

y = argmax
c

[log p(y = c|π)+ log p(x|θ)] (4.12)

When we compute the probability of x under each
class conditional density, we are measuring the distance
from x to the center of each class, µc, using Mahalanobis
distance. This can be thought of as a nearest centroids
classifier.

As an example, Figure 4.2 shows two Gaussian class-
conditional densities in 2d, representing the height and
weight of men and women. We can see that the features

(a)

(b)

Fig. 4.2: (a) Height/weight data. (b) Visualization of 2d
Gaussians fit to each class. 95% of the probability mass

is inside the ellipse.

are correlated, as is to be expected (tall people tend to
weigh more). The ellipses for each class contain 95%
of the probability mass. If we have a uniform prior over
classes, we can classify a new test vector as follows:

y = argmax
c

(x−µc)
TΣ−1

c (x−µc) (4.13)

4.2.1 Quadratic discriminant analysis
(QDA)

By plugging in the definition of the Gaussian density to
Equation 3.1, we can get

p(y|x,θ)=
πc|2πΣc|−

1
2 exp

[
− 1

2 (x−µ)TΣ−1(x−µ)
]

∑c′ πc′ |2πΣc′ |−
1
2 exp

[
− 1

2 (x−µ)TΣ−1(x−µ)
]

(4.14)

27

Thresholding this results in a quadratic function of
x. The result is known as quadratic discriminant analy-
sis(QDA). Figure 4.3 gives some examples of what the
decision boundaries look like in 2D.

(a)

(b)

Fig. 4.3: Quadratic decision boundaries in 2D for the 2
and 3 class case.

4.2.2 Linear discriminant analysis (LDA)

We now consider a special case in which the covariance
matrices are tied or shared across classes,Σc =Σ. In this
case, we can simplify Equation 4.14 as follows:

p(y|x,θ) ∝ πc exp
(
µcΣ

−1x− 1
2
xTΣ−1x− 1

2
µT

c Σ
−1µc

)
= exp

(
µcΣ

−1x− 1
2
µT

c Σ
−1µc + logπc

)
exp
(
−1

2
xTΣ−1x

)
∝ exp

(
µcΣ

−1x− 1
2
µT

c Σ
−1µc + logπc

)
(4.15)

Since the quadratic term xTΣ−1x is independent of c,
it will cancel out in the numerator and denominator. If we
define

γc ≜−
1
2
µT

c Σ
−1µc + logπc (4.16)

βc ≜Σ−1µc (4.17)

then we can write

p(y|x,θ) = eβ
T
c x+γc

∑c′ e
βT

c′x+γc′
≜ σ(η,c) (4.18)

where η≜ (eβ
T
1 x+γ1, · · · ,eβ

T
Cx+γC), σ() is the softmax

activation function16, defined as follows:

σ(q, i)≜ exp(qi)

∑n
j=1 exp(q j)

(4.19)

When parameterized by some constant, α > 0, the fol-
lowing formulation becomes a smooth, differentiable ap-
proximation of the maximum function:

Sα(x) =
∑D

j=1 x jeαx j

∑D
j=1 eαx j

(4.20)

Sα has the following properties:

1. Sα →max as α → ∞
2. S0 is the average of its inputs
3. Sα →min as α →−∞

Note that the softmax activation function comes from
the area of statistical physics, where it is common to use
the Boltzmann distribution, which has the same form as
the softmax activation function.

An interesting property of Equation 4.18 is that, if we
take logs, we end up with a linear function of x. (The
reason it is linear is because the xTΣ−1x cancels from the
numerator and denominator.) Thus the decision boundary
between any two classes, says c and c′, will be a straight
line. Hence this technique is called linear discriminant
analysis or LDA.

16 http://en.wikipedia.org/wiki/Softmax_
activation_function

http://en.wikipedia.org/wiki/Softmax_activation_function
http://en.wikipedia.org/wiki/Softmax_activation_function

28

An alternative to fitting an LDA model and then de-
riving the class posterior is to directly fit p(y|x,W) =
Cat(y|Wx) for some C×D weight matrix W . This is
called multi-class logistic regression, or multinomial lo-
gistic regression. We will discuss this model in detail
in Section TODO. The difference between the two ap-
proaches is explained in Section TODO.

4.2.3 Two-class LDA

To gain further insight into the meaning of these equa-
tions, let us consider the binary case. In this case, the pos-
terior is given by

p(y = 1|x,θ) = eβ
T
1 x+γ1

eβ
T
0 x+γ0 + eβ

T
1 x+γ1

) (4.21)

=
1

1+ e(β0−β1)Tx+(γ0− γ1)
(4.22)

= sigm((β1−β0)
Tx+(γ0− γ1)) (4.23)

where sigm(x) refers to the sigmoid function17.
Now

γ1− γ0 =−
1
2
µT

1 Σ
−1µ1 +

1
2
µT

0 Σ
−1µ0 + log(π1/π0)

(4.24)

=−1
2
(µ1−µ0)

TΣ−1(µ1 +µ0)+ log(π1/π0)

(4.25)

So if we define

w = β1−β0 =Σ−1(µ1−µ0) (4.26)

x0 =
1
2
(µ1 +µ0)− (µ1−µ0)

log(π1/π0)

(µ1−µ0)TΣ−1(µ1−µ0)
(4.27)

then we have wTx0 =−(γ1− γ0), and hence

p(y = 1|x,θ) = sigm(wT (x−x0)) (4.28)

(This is closely related to logistic regression, which we
will discuss in Section TODO.) So the final decision rule
is as follows: shift x by x0, project onto the line w, and
see if the result is positive or negative.

If Σ = σ2I , then w is in the direction of µ1−µ0. So
we classify the point based on whether its projection is
closer to µ0 or µ1 . This is illustrated in Figure 4.4. Fur-
themore, if π1 =π0, then x0 =

1
2 (µ1+µ0), which is half

way between the means. If we make π1 >π0, then x0 gets

17 http://en.wikipedia.org/wiki/Sigmoid_
function

Fig. 4.4: Geometry of LDA in the 2 class case where
Σ1 =Σ2 = I .

closer to µ0, so more of the line belongs to class 1 a priori.
Conversely if π1 <π0, the boundary shifts right. Thus we
see that the class prior, c, just changes the decision thresh-
old, and not the overall geometry, as we claimed above.
(A similar argument applies in the multi-class case.)

The magnitude of w determines the steepness of the
logistic function, and depends on how well-separated the
means are, relative to the variance. In psychology and sig-
nal detection theory, it is common to define the discrim-
inability of a signal from the background noise using a
quantity called d-prime:

d′ ≜ µ1−µ0

σ
(4.29)

where µ1 is the mean of the signal and µ0 is the mean of
the noise, and σ is the standard deviation of the noise. If
d′ is large, the signal will be easier to discriminate from
the noise.

4.2.4 MLE for discriminant analysis

The log-likelihood function is as follows:

p(D|θ) =
C

∑
c=1

∑
i:yi=c

logπc +
C

∑
c=1

∑
i:yi=c

logN (xi|µc,Σc)

(4.30)
The MLE for each parameter is as follows:

µ̄c =
Nc

N
(4.31)

µ̄c =
1

Nc
∑

i:yi=c
xi (4.32)

Σ̄c =
1

Nc
∑

i:yi=c
(xi− µ̄c)(xi− µ̄c)

T (4.33)

http://en.wikipedia.org/wiki/Sigmoid_function
http://en.wikipedia.org/wiki/Sigmoid_function

29

4.2.5 Strategies for preventing overfitting

The speed and simplicity of the MLE method is one of its
greatest appeals. However, the MLE can badly overfit in
high dimensions. In particular, the MLE for a full covari-
ance matrix is singular if Nc < D. And even when Nc > D,
the MLE can be ill-conditioned, meaning it is close to sin-
gular. There are several possible solutions to this problem:

• Use a diagonal covariance matrix for each class, which
assumes the features are conditionally independent;
this is equivalent to using a naive Bayes classifier (Sec-
tion 3.5).

• Use a full covariance matrix, but force it to be the same
for all classes,Σc =Σ. This is an example of param-
eter tying or parameter sharing, and is equivalent to
LDA (Section 4.2.2).

• Use a diagonal covariance matrix and forced it to be
shared. This is called diagonal covariance LDA, and is
discussed in Section TODO.

• Use a full covariance matrix, but impose a prior and
then integrate it out. If we use a conjugate prior, this
can be done in closed form, using the results from Sec-
tion TODO; this is analogous to the Bayesian naive
Bayes method in Section 3.5.1.2. See (Minka 2000f)
for details.

• Fit a full or diagonal covariance matrix by MAP esti-
mation. We discuss two different kindsof prior below.

• Project the data into a low dimensional subspace and
fit the Gaussians there. See Section TODO for a way
to find the best (most discriminative) linear projection.

We discuss some of these options below.

4.2.6 Regularized LDA *

4.2.7 Diagonal LDA

4.2.8 Nearest shrunken centroids classifier *

One drawback of diagonal LDA is that it depends on all of
the features. In high dimensional problems, we might pre-
fer a method that only depends on a subset of the features,
for reasons of accuracy and interpretability. One approach
is to use a screening method, perhaps based on mutual in-
formation, as in Section 3.5.4. We now discuss another
approach to this problem known as the nearest shrunken
centroids classifier (Hastie et al. 2009, p652).

4.3 Inference in jointly Gaussian
distributions

Given a joint distribution, p(x1,x2), it is useful to be able
to compute marginals p(x1) and conditionals p(x1|x2).
We discuss how to do this below, and then give some ap-
plications. These operations take O(D3) time in the worst
case. See Section TODO for faster methods.

4.3.1 Statement of the result

Theorem 4.2. (Marginals and conditionals of an MVN).
Suppose X = (x1,x2)is jointly Gaussian with parameters

µ=

(
µ1
µ2

)
,Σ=

(
Σ11 Σ12
Σ21 Σ22

)
,Λ=Σ−1 =

(
Λ11 Λ12
Λ21 Λ22

)
,

(4.34)
Then the marginals are given by

p(x1) =N (x1|µ1,Σ11)

p(x2) =N (x2|µ2,Σ22)
(4.35)

and the posterior conditional is given by

p(x1|x2) =N (x1|µ1|2,Σ1|2)

µ1|2 = µ1 +Σ12Σ
−1
22 (x2−µ2)

= µ1−Λ−1
11 Λ12(x2−µ2)

=Σ1|2(Λ11µ1−Λ12(x2−µ2))

Σ1|2 =Σ11−Σ12Σ
−1
22 Σ21 =Λ−1

11

(4.36)

Equation 4.36 is of such crucial importance in this
book that we have put a box around it, so you can eas-
ily find it. For the proof, see Section TODO.

We see that both the marginal and conditional distribu-
tions are themselves Gaussian. For the marginals, we just
extract the rows and columns corresponding to x1 or x2.
For the conditional, we have to do a bit more work. How-
ever, it is not that complicated: the conditional mean is just
a linear function of x2, and the conditional covariance is
just a constant matrix that is independent of x2. We give
three different (but equivalent) expressions for the poste-
rior mean, and two different (but equivalent) expressions
for the posterior covariance; each one is useful in different
circumstances.

30

4.3.2 Examples

Below we give some examples of these equations in ac-
tion, which will make them seem more intuitive.

4.3.2.1 Marginals and conditionals of a 2d Gaussian

4.4 Linear Gaussian systems

Suppose we have two variables, x and y.Let x∈RDx be a
hidden variable, and y ∈RDy be a noisy observation of x.
Let us assume we have the following prior and likelihood:

p(x) =N (x|µx,Σx)

p(y|x) =N (y|Wx+µy,Σy)
(4.37)

where W is a matrix of size Dy×Dx. This is an exam-
ple of a linear Gaussian system. We can represent this
schematically as x→ y, meaning x generates y. In this
section, we show how to invert the arrow, that is, how to
infer x from y. We state the result below, then give sev-
eral examples, and finally we derive the result. We will see
many more applications of these results in later chapters.

4.4.1 Statement of the result

Theorem 4.3. (Bayes rule for linear Gaussian systems).
Given a linear Gaussian system, as in Equation 4.37, the
posterior p(x|y) is given by the following:

p(x|y) =N (x|µx|y,Σx|y)

Σx|y =Σ−1
x +W TΣ−1

y W

µx|y =Σx|y
[
W TΣ−1

y (y−µy)+Σ−1
x µx

] (4.38)

In addition, the normalization constant p(y) is given by

p(y) =N (y|Wµx +µy,Σy +WΣxW
T) (4.39)

For the proof, see Section 4.4.3 TODO.

4.5 Digression: The Wishart distribution *

4.6 Inferring the parameters of an MVN

4.6.1 Posterior distribution of µ

4.6.2 Posterior distribution of Σ *

4.6.3 Posterior distribution of µ and Σ *

4.6.4 Sensor fusion with unknown precisions
*

Chapter 5
Bayesian statistics

5.1 Introduction

Using the posterior distribution to summarize everything
we know about a set of unknown variables is at the core
of Bayesian statistics. In this chapter, we discuss this ap-
proach to statistics in more detail.

5.2 Summarizing posterior distributions

The posterior p(θ|D) summarizes everything we know
about the unknown quantities θ. In this section, we dis-
cuss some simple quantities that can be derived from a
probability distribution, such as a posterior. These sum-
mary statistics are often easier to understand and visualize
than the full joint.

5.2.1 MAP estimation

We can easily compute a point estimate of an unknown
quantity by computing the posterior mean, median or
mode. In Section 5.7, we discuss how to use decision the-
ory to choose between these methods. Typically the pos-
terior mean or median is the most appropriate choice for a
realvalued quantity, and the vector of posterior marginals
is the best choice for a discrete quantity. However, the
posterior mode, aka the MAP estimate, is the most pop-
ular choice because it reduces to an optimization prob-
lem, for which efficient algorithms often exist. Futher-
more, MAP estimation can be interpreted in non-Bayesian
terms, by thinking of the log prior as a regularizer (see
Section TODO for more details).

Although this approach is computationally appealing,
it is important to point out that there are various draw-
backs to MAP estimation, which we briefly discuss be-
low. This will provide motivation for the more thoroughly
Bayesian approach which we will study later in this chap-
ter(and elsewhere in this book).

5.2.1.1 No measure of uncertainty

The most obvious drawback of MAP estimation, and in-
deed of any other point estimate such as the posterior
mean or median, is that it does not provide any measure of
uncertainty. In many applications, it is important to know
how much one can trust a given estimate. We can derive
such confidence measures from the posterior, as we dis-
cuss in Section 5.2.2.

5.2.1.2 Plugging in the MAP estimate can result in
overfitting

If we dont model the uncertainty in our parameters, then
our predictive distribution will be overconfident. Over-
confidence in predictions is particularly problematic in
situations where we may be risk averse; see Section 5.7
for details.

5.2.1.3 The mode is an untypical point

Choosing the mode as a summary of a posterior distribu-
tion is often a very poor choice, since the mode is usually
quite untypical of the distribution, unlike the mean or me-
dian. The basic problem is that the mode is a point of mea-
sure zero, whereas the mean and median take the volume
of the space into account. See Figure 5.1.

How should we summarize a posterior if the mode is
not a good choice? The answer is to use decision theory,
which we discuss in Section 5.7. The basic idea is to spec-
ify a loss function, where L(θ , θ̂) is the loss you incur if
the truth is θ and your estimate is θ̂ . If we use 0-1 loss
L(θ , θ̂) = I(θ ̸= θ̂)(see section 1.2.2.1), then the opti-
mal estimate is the posterior mode. 0-1 loss means you
only get points if you make no errors, otherwise you get
nothing: there is no partial credit under this loss function!
For continuous-valued quantities, we often prefer to use
squared error loss, L(θ , θ̂) = (θ− θ̂)2 ; the corresponding
optimal estimator is then the posterior mean, as we show
in Section 5.7. Or we can use a more robust loss func-
tion, L(θ , θ̂) = |θ − θ̂ |, which gives rise to the posterior
median.

31

32

(a)

(b)

Fig. 5.1: (a) A bimodal distribution in which the mode is
very untypical of the distribution. The thin blue vertical
line is the mean, which is arguably a better summary of

the distribution, since it is near the majority of the
probability mass. (b) A skewed distribution in which the

mode is quite different from the mean.

5.2.1.4 MAP estimation is not invariant to
reparameterization *

A more subtle problem with MAP estimation is that the
result we get depends on how we parameterize the prob-
ability distribution. Changing from one representation
to another equivalent representation changes the result,
which is not very desirable, since the units of measure-
ment are arbitrary (e.g., when measuring distance, we can
use centimetres or inches).

To understand the problem, suppose we compute the
posterior forx. If we define y=f(x), the distribution for
yis given by Equation 2.44. The dx

dy term is called the
Jacobian, and it measures the change in size of a unit
volume passed through f . Let x̂ = argmaxx px(x) be the
MAP estimate for x. In general it is not the case that
x̂ = argmaxx px(x) is given by f (x̂). For example, let X ∼
N (6,1) and y = f (x), where f (x) = 1/(1+exp(−x+5)).

We can derive the distribution of y using Monte Carlo
simulation (see Section 2.7). The result is shown in Fig-
ure ??. We see that the original Gaussian has become
squashed by the sigmoid nonlinearity. In particular, we

Fig. 5.2: Example of the transformation of a density
under a nonlinear transform. Note how the mode of the

transformed distribution is not the transform of the
original mode. Based on Exercise 1.4 of (Bishop 2006b).

see that the mode of the transformed distribution is not
equal to the transform of the original mode.

The MLE does not suffer from this since the likelihood
is a function, not a probability density. Bayesian inference
does not suffer from this problem either, since the change
of measure is taken into account when integrating over the
parameter space.

5.2.2 Credible intervals

In addition to point estimates, we often want a measure
of confidence. A standard measure of confidence in some
(scalar) quantity θ is the width of its posterior distribu-
tion. This can be measured using a 100(1α)% credible in-
terval, which is a (contiguous) region C = (ℓ,u)(standing
for lower and upper) which contains 1α of the posterior
probability mass, i.e.,

Cα(D) where P(ℓ≤ θ ≤ u) = 1−α (5.1)

There may be many such intervals, so we choose one
such that there is (1α)/2 mass in each tail; this is called a
central interval.

If the posterior has a known functional form, we can
compute the posterior central interval using ℓ=F−1(α/2)
and u= F−1(1−α/2), where F is the cdf of the posterior.

If we dont know the functional form, but we can draw
samples from the posterior, then we can use a Monte Carlo
approximation to the posterior quantiles: we simply sort
the S samples, and find the one that occurs at location

33

α/S along the sorted list. As S → ∞, this converges to
the true quantile.

People often confuse Bayesian credible intervals with
frequentist confidence intervals. However, they are not the
same thing, as we discuss in Section TODO. In general,
credible intervals are usually what people want to com-
pute, but confidence intervals are usually what they actu-
ally compute, because most people are taught frequentist
statistics but not Bayesian statistics. Fortunately, the me-
chanics of computing a credible interval is just as easy as
computing a confidence interval.

5.2.3 Inference for a difference in
proportions

Sometimes we have multiple parameters, and we are in-
terested in computing the posterior distribution of some
function of these parameters. For example, suppose you
are about to buy something from Amazon.com, and there
are two sellers offering it for the same price. Seller 1 has
90 positive reviews and 10 negative reviews. Seller 2 has 2
positive reviews and 0 negative reviews. Who should you
buy from?18.

On the face of it, you should pick seller 2, but we can-
not be very confident that seller 2 is better since it has had
so few reviews. In this section, we sketch a Bayesian anal-
ysis of this problem. Similar methodology can be used to
compare rates or proportions across groups for a variety
of other settings.

Let θ1 and θ2 be the unknown reliabilities of the two
sellers. Since we dont know much about them, well en-
dow them both with uniform priors, θi ∼ Beta(1,1). The
posteriors are p(θ1|D1) = Beta(91,11) and p(θ2|D2) =
Beta(3,1).

We want to compute p(θ1 > θ2|D). For convenience,
let us define δ = θ1 − θ2 as the difference in the rates.
(Alternatively we might want to work in terms of the log-
odds ratio.) We can compute the desired quantity using
numerical integration

p(δ > 0|D) =
∫ 1

0

∫ 1

0
I(θ1 > θ2)Beta(θ1|91,11)

Beta(θ2|3,1)dθ1dθ2

(5.2)

We find p(δ > 0|D) = 0.710, which means you are
better off buying from seller 1!

18 This example is from http://www.johndcook.com/
blog/2011/09/27/bayesian-amazon/

5.3 Bayesian model selection

In general, when faced with a set of models (i.e., families
of parametric distributions) of different complexity, how
should we choose the best one? This is called the model
selection problem.

One approach is to use cross-validation to estimate the
generalization error of all the candidate models, and then
to pick the model that seems the best. However, this re-
quires fitting each model K times, where K is the number
of CV folds. A more efficient approach is to compute the
posterior over models,

p(m|D) = p(D|m)p(m)

∑m′ p(D|m′)p(m′)
(5.3)

From this, we can easily compute the MAP model,
m̂ = argmaxm p(m|D). This is called Bayesian model se-
lection.

If we use a uniform prior over models, this amounts to
picking the model which maximizes

p(D|m) =
∫

p(D|θ)p(θ|m)dθ (5.4)

This quantity is called the marginal likelihood, the in-
tegrated likelihood, or the evidence for model m. The de-
tails on how to perform this integral will be discussed in
Section 5.3.2. But first we give an intuitive interpretation
of what this quantity means.

5.3.1 Bayesian Occam’s razor

One might think that using p(D|m) to select models
would always favour the model with the most parameters.
This is true if we use p(D|θ̂m) to select models, where
θ̂m) is the MLE or MAP estimate of the parameters for
model m, because models with more parameters will
fit the data better, and hence achieve higher likelihood.
However, if we integrate out the parameters, rather than
maximizing them, we are automatically protected from
overfitting: models with more parameters do not nec-
essarily have higher marginal likelihood. This is called
the Bayesian Occams razor effect (MacKay 1995b;
Murray and Ghahramani 2005), named after the principle
known as Occams razor, which says one should pick the
simplest model that adequately explains the data.

One way to understand the Bayesian Occams razor is
to notice that the marginal likelihood can be rewritten as
follows, based on the chain rule of probability (Equation
2.3):

http://www.johndcook.com/blog/2011/09/27/bayesian-amazon/
http://www.johndcook.com/blog/2011/09/27/bayesian-amazon/

34

p(D) = p((x1,y1))p((x2,y2)|(x1,y1))

p((x3,y3)|(x1,y1) : (x2,y2)) · · ·
p((xN ,yN)|(x1,y1) : (xN−1,yN−1))

(5.5)

This is similar to a leave-one-out cross-validation es-
timate (Section 1.3.4) of the likelihood, since we predict
each future point given all the previous ones. (Of course,
the order of the data does not matter in the above expres-
sion.) If a model is too complex, it will overfit the early
examples and will then predict the remaining ones poorly.

Another way to understand the Bayesian Occams ra-
zor effect is to note that probabilities must sum to one.
Hence ∑p(D′) p(m|D′) = 1, where the sum is over all
possible data sets. Complex models, which can predict
many things, must spread their probability mass thinly,
and hence will not obtain as large a probability for any
given data set as simpler models. This is sometimes called
the conservation of probability mass principle, and is il-
lustrated in Figure 5.3.

Fig. 5.3: A schematic illustration of the Bayesian
Occams razor. The broad (green) curve corresponds to a

complex model, the narrow (blue) curve to a simple
model, and the middle (red) curve is just right. Based on

Figure 3.13 of (Bishop 2006a).

When using the Bayesian approach, we are not re-
stricted to evaluating the evidence at a finite grid of val-
ues. Instead, we can use numerical optimization to find
λ ∗ = argmaxλ p(D|λ). This technique is called empir-
ical Bayes or type II maximum likelihood (see Section
5.6 for details). An example is shown in Figure TODO(b):
we see that the curve has a similar shape to the CV esti-
mate, but it can be computed more efficiently.

5.3.2 Computing the marginal likelihood
(evidence)

When discussing parameter inference for a fixed model,
we often wrote

p(θ|D,m) ∝ p(θ|m)p(D|θ,m) (5.6)

thus ignoring the normalization constant p(D|m). This
is valid since p(D|m)is constant wrt θ. However, when
comparing models, we need to know how to compute the
marginal likelihood, p(D|m). In general, this can be quite
hard, since we have to integrate over all possible parame-
ter values, but when we have a conjugate prior, it is easy
to compute, as we now show.

Let p(θ) = q(θ)/Z0 be our prior, where q(θ) is an un-
normalized distribution, and Z0 is the normalization con-
stant of the prior. Let p(D|θ) = q(D|θ)/Zℓ be the likeli-
hood, where Zℓ contains any constant factors in the like-
lihood. Finally let p(θ|D) = q(θ|D)/ZN be our posterior
, where q(θ|D) = q(D|θ)q(θ) is the unnormalized poste-
rior, and ZN is the normalization constant of the posterior.
We have

p(θ|D) = p(D|θ)p(θ)
p(D)

(5.7)

q(θ|D)
ZN

=
q(D|θ)q(θ)
ZℓZ0 p(D)

(5.8)

p(D) = ZN

Z0Zℓ
(5.9)

So assuming the relevant normalization constants are
tractable, we have an easy way to compute the marginal
likelihood. We give some examples below.

5.3.2.1 Beta-binomial model

Let us apply the above result to the Beta-binomial model.
Since we know p(θ|D) = Beta(θ|a′,b′), where a′ = a+
N1, b′ = b+N0, we know the normalization constant of
the posterior is B(a′,b′). Hence

p(θ |D) = p(D|θ)p(θ)
p(D)

(5.10)

=
1

p(D)

[
1

B(a,b)
θ a−1(1−θ)b−1

]
[(

N
N1

)
θ N1(1−θ)N0

]
(5.11)

=

(
N
N1

)
1

p(D)
1

B(a,b)

[
θ a+N1−1(1−θ)b+N0−1

]
(5.12)

35

So

1
B(a+N1,b+N0)

=

(
N
N1

)
1

p(D)
1

B(a,b)
(5.13)

p(D) =
(

N
N1

)
B(a+N1,b+N0)

B(a,b)
(5.14)

The marginal likelihood for the Beta-Bernoulli model
is the same as above, except it is missingthe

(N
N1

)
term.

5.3.2.2 Dirichlet-multinoulli model

By the same reasoning as the Beta-Bernoulli case, one
can show that the marginal likelihood for the Dirichlet-
multinoulli model is given by

p(D) = B(N +α)

B(α)
(5.15)

=
Γ (∑k αk)

Γ (N +∑k αk)
∏

k

Γ (Nk +αk)

Γ (αk)
(5.16)

5.3.2.3 Gaussian-Gaussian-Wishart model

Consider the case of an MVN with a conjugate NIW prior.
Let Z0 be the normalizer for the prior, ZN be normalizer
for the posterior, and let Zℓ(2π)ND/2 = be the normalizer
for the likelihood. Then it is easy to see that

p(D) = ZN

Z0Zℓ
(5.17)

=
1

(2π)ND/2

(
2π
κN

)D/2
|SN |−νN/22(ν0+N)D/2ΓD(νN/2)(

2π
κ0

)D/2
|S0|−ν0/22ν0D/2ΓD(ν0/2)

(5.18)

=
1

πND/2

(
κ0

κN

)D/2 |S0|ν0/2

|SN |νN/2

ΓD(νN/2)
ΓD(ν0/2)

(5.19)

5.3.2.4 BIC approximation to log marginal likelihood

In general, computing the integral in Equation 5.4 can be
quite difficult. One simple but popular approximation is
known as the Bayesian information criterion or BIC,
which has the following form (Schwarz 1978):

BIC ≜ log p(D|θ̂)− dof(θ̂)
2

logN (5.20)

where dof(θ̂) is the number of degrees of freedom in
the model, and θ̂ is the MLE for the model. We see that
this has the form of a penalized log likelihood, where the

penalty term depends on the models complexity. See Sec-
tion TODO for the derivation of the BIC score.

As an example, consider linear regression. As
we show in Section TODO, the MLE is given by
ŵ = (XTX)−1XTy and σ2 = 1

N ∑N
i=1(yi− ŵTxi). The

corresponding log likelihood is given by

log p(D|θ̂) =−N
2

log(2πσ̂2)− N
2

(5.21)

Hence the BIC score is as follows (dropping constant
terms)

BIC =−N
2

log(σ̂2)− D
2

logN (5.22)

where D is the number of variables in the model. In the
statistics literature, it is common to use an alternative def-
inition of BIC, which we call the BIC cost(since we want
to minimize it):

BIC-cost ≜−2log p(D|θ̂)−dof(θ̂) logN ≈−2log p(D)
(5.23)

In the context of linear regression, this becomes

BIC-cost = N log(σ̂2)+D logN (5.24)

The BIC method is very closely related to the mini-
mum description length or MDL principle, which char-
acterizes the score for a model in terms of how well it fits
the data, minus how complex the model is to define. See
(Hansen and Yu 2001) for details.

There is a very similar expression to BIC/ MDL called
the Akaike information criterion or AIC, defined as

AIC(m,D) = log p(D|θ̂MLE)−dof(m) (5.25)

This is derived from a frequentist framework, and can-
not be interpreted as an approximation to the marginal
likelihood. Nevertheless, the form of this expression is
very similar to BIC. We see that the penalty for AIC is
less than for BIC. This causes AIC to pick more complex
models. However, this can result in better predictive ac-
curacy. See e.g., (Clarke et al. 2009, sec 10.2) for further
discussion on such information criteria.

5.3.2.5 Effect of the prior

Sometimes it is not clear how to set the prior. When
we are performing posterior inference, the details of the
prior may not matter too much, since the likelihood often
overwhelms the prior anyway. But when computing the
marginal likelihood, the prior plays a much more impor-
tant role, since we are averaging the likelihood over all
possible parameter settings, as weighted by the prior.

36

If the prior is unknown, the correct Bayesian procedure
is to put a prior on the prior. If the prior is unknown, the
correct Bayesian procedure is to put a prior on the prior.

5.3.3 Bayes factors

Suppose our prior on models is uniform, p(m) ∝ 1. Then
model selection is equivalent to picking the model with
the highest marginal likelihood. Now suppose we just
have two models we are considering, call them the null
hypothesis, M0, and the alternative hypothesis, M1. De-
fine the Bayes factor as the ratio of marginal likelihoods:

BF1,0 ≜
p(D|M1)

p(D|M0)
=

p(M1|D)
p(M2|D)

/
p(M1)

p(M0)
(5.26)

5.4 Priors

The most controversial aspect of Bayesian statistics is its
reliance on priors. Bayesians argue this is unavoidable,
since nobody is a tabula rasa or blank slate: all inference
must be done conditional on certain assumptions about
the world. Nevertheless, one might be interested in mini-
mizing the impact of ones prior assumptions. We briefly
discuss some ways to do this below.

5.4.1 Uninformative priors

If we dont have strong beliefs about what θ should be, it
is common to use an uninformative or non-informative
prior, and to let the data speak for itself.

5.4.2 Robust priors

In many cases, we are not very confident in our prior, so
we want to make sure it does not have an undue influ-
ence on the result. This can be done by using robust pri-
ors(Insua and Ruggeri 2000), which typically have heavy
tails, which avoids forcing things to be too close to the
prior mean.

5.4.3 Mixtures of conjugate priors

Robust priors are useful, but can be computationally ex-
pensive to use. Conjugate priors simplify the computation,
but are often not robust, and not flexible enough to en-
code our prior knowledge. However, it turns out that a
mixture of conjugate priors is also conjugate, and can
approximate any kind of prior (Dallal and Hall 1983;
Diaconis and Ylvisaker 1985). Thus such priors provide
a good compromise between computational convenience
and flexibility.

5.5 Hierarchical Bayes

A key requirement for computing the posterior p(θ|D) is
the specification of a prior p(θ|η), where η are the hyper-
parameters. What if we dont know how to set η? In some
cases, we can use uninformative priors, we we discussed
above. A more Bayesian approach is to put a prior on our
priors! In terms of graphical models (Chapter TODO), we
can represent the situation as follows:

η→ θ→D (5.27)

This is an example of a hierarchical Bayesian model,
also called a multi-level model, since there are multiple
levels of unknown quantities.

5.6 Empirical Bayes

Method Definition

Maximum likelihood θ̂ = argmaxθ p(D|θ)
MAP estimation θ̂ = argmaxθ p(D|θ)p(θ|η)

ML-II (Empirical Bayes) η̂ = argmaxη
∫

p(D|θ)p(θ|η)dθ
= argmaxη p(D|η)

MAP-II η̂ = argmaxη
∫

p(D|θ)p(θ|η)p(η)dθ
= argmaxη p(D|η)p(η)

Full Bayes p(θ,η|D) ∝ p(D|θ)p(θ|η)

5.7 Bayesian decision theory

We have seen how probability theory can be used to rep-
resent and updates our beliefs about the state of the world.
However, ultimately our goal is to convert our beliefs into

37

actions. In this section, we discuss the optimal way to do
this.

Our goal is to devise a decision procedure or pol-
icy, f (x) : X → Y , which minimizes the expected loss
Rexp(f)(see Equation 1.1).

In the Bayesian approach to decision theory, the opti-
mal output, having observed x, is defined as the output a
that minimizes the posterior expected loss:

ρ(f) = Ep(y|x)[L(y, f (x))] =

∑
y

L[y, f (x)]p(y|x)∫
y

L[y, f (x)]p(y|x)dy

(5.28)
Hence the Bayes estimator, also called the Bayes de-

cision rule, is given by

δ (x) = arg min
f∈H

ρ(f) (5.29)

5.7.1 Bayes estimators for common loss
functions

5.7.1.1 MAP estimate minimizes 0-1 loss

When L(y, f (x)) is 0-1 loss(Section 1.2.2.1), we can proof
that MAP estimate minimizes 0-1 loss,

arg min
f∈H

ρ(f) = arg min
f∈H

K

∑
i=1

L[Ck, f (x)]p(Ck|x)

= arg min
f∈H

K

∑
i=1

I(f (x) ̸=Ck)p(Ck|x)

= arg min
f∈H

K

∑
i=1

p(f (x) ̸=Ck|x)

= arg min
f∈H

[1− p(f (x) =Ck|x)]

= argmax
f∈H

p(f (x) =Ck|x)

5.7.1.2 Posterior mean minimizes ℓ2(quadratic) loss

For continuous parameters, a more appropriate loss func-
tion is squared error, ℓ2 loss, or quadratic loss, defined
as L(y, f (x)) = [y− f (x)]2.

The posterior expected loss is given by

ρ(f) =
∫
y

L[y, f (x)]p(y|x)dy

=
∫
y

[y− f (x)]2 p(y|x)dy

=
∫
y

[
y2−2y f (x)+ f (x)2] p(y|x)dy

(5.30)

Hence the optimal estimate is the posterior mean:

∂ρ
∂ f

=
∫
y

[−2y+2 f (x)]p(y|x)dy = 0⇒

∫
y

f (x)p(y|x)dy =
∫
y

yp(y|x)dy

f (x)
∫
y

p(y|x)dy = Ep(y|x)[y]

f (x) = Ep(y|x)[y] (5.31)

This is often called the minimum mean squared er-
ror estimate or MMSE estimate.

5.7.1.3 Posterior median minimizes ℓ1(absolute) loss

The ℓ2 loss penalizes deviations from the truth quadrat-
ically, and thus is sensitive to outliers. A more robust
alternative is the absolute or ℓ1 loss. The optimal esti-
mate is the posterior median, i.e., a value a such that
P(y < a|x) = P(y≥ a|x) = 0.5.

Proof.

ρ(f) =
∫
y

L[y, f (x)]p(y|x)dy =
∫
y

|y− f (x)|p(y|x)dy

=
∫
y

[f (x)− y]p(y < f (x)|x)+

[y− f (x)]p(y≥ f (x)|x)dy

∂ρ
∂ f

=
∫
y

[p(y < f (x)|x)− p(y≥ f (x)|x)]dy = 0⇒

p(y < f (x)|x) = p(y≥ f (x)|x) = 0.5
∴ f (x) = median

5.7.1.4 Reject option

In classification problems where p(y|x) is very uncer-
tain, we may prefer to choose a reject action, in which
we refuse to classify the example as any of the specified
classes, and instead say dont know. Such ambiguous cases

38

can be handled by e.g., a human expert. This is useful in
risk averse domains such as medicine and finance.

We can formalize the reject option as follows. Let
choosing f (x)= cK+1 correspond to picking the reject ac-
tion, and choosing f (x)∈ {C1, ...,Ck} correspond to pick-
ing one of the classes. Suppose we define the loss function
as

L(f (x),y)=

0 if f (x) = y and f (x),y ∈ {C1, ...,Ck}
λs if f (x) ̸= y and f (x),y ∈ {C1, ...,Ck}
λr if f (x) =CK+1

(5.32)
where λs is the cost of a substitution error, and λr is the
cost of the reject action.

5.7.1.5 Supervised learning

We can define the loss incurred by f (x) (i.e., using this
predictor) when the unknown state of nature is θ(the pa-
rameters of the data generating mechanism) as follows:

L(θ, f)≜ Ep(x,y|θ)[ℓ(y− f (x))] (5.33)

This is known as the generalization error. Our goal is
to minimize the posterior expected loss, given by

ρ(f |D) =
∫

p(θ|D)L(θ, f)dθ (5.34)

This should be contrasted with the frequentist risk
which is defined in Equation TODO.

5.7.2 The false positive vs false negative
tradeoff

In this section, we focus on binary decision problems,
such as hypothesis testing, two-class classification, object/
event detection, etc. There are two types of error we can
make: a false positive(aka false alarm), or a false nega-
tive(aka missed detection). The 0-1 loss treats these two
kinds of errors equivalently. However, we can consider the
following more general loss matrix:

TODO

Chapter 6
Frequentist statistics

Attempts have been made to devise approaches to sta-
tistical inference that avoid treating parameters like ran-
dom variables, and which thus avoid the use of priors and
Bayes rule. Such approaches are known as frequentist
statistics, classical statistics or orthodox statistics. In-
stead of being based on the posterior distribution, they are
based on the concept of a sampling distribution.

6.1 Sampling distribution of an estimator

In frequentist statistics, a parameter estimate θ̂ is com-
puted by applying an estimator δ to some data D, so
θ̂ = δ (D). The parameter is viewed as fixed and the data
as random, which is the exact opposite of the Bayesian
approach. The uncertainty in the parameter estimate can
be measured by computing the sampling distribution of
the estimator. To understand this

6.1.1 Bootstrap

We might think of the bootstrap distribution as a poor
mans Bayes posterior, see (Hastie et al. 2001, p235) for
details.

6.1.2 Large sample theory for the MLE *

6.2 Frequentist decision theory

In frequentist or classical decision theory, there is a loss
function and a likelihood, but there is no prior and hence
no posterior or posterior expected loss. Thus there is no
automatic way of deriving an optimal estimator, unlike
the Bayesian case. Instead, in the frequentist approach,
we are free to choose any estimator or decision procedure
f : X →Y we want.

Having chosen an estimator, we define its expected loss
or risk as follows:

Rexp(θ , f)≜ Ep(D̃|θ∗)[L(θ
∗, f (D̃))]

=
∫

L(θ ∗, f (D̃))p(D̃|θ ∗)dD̃
(6.1)

whereD̃ is data sampled from natures distribution, which
is represented by parameter θ ∗. In other words, the ex-
pectation is wrt the sampling distribution of the estimator.
Compare this to the Bayesian posterior expected loss:

ρ(f |D,) (6.2)

6.3 Desirable properties of estimators

6.4 Empirical risk minimization

6.4.1 Regularized risk minimization

6.4.2 Structural risk minimization

6.4.3 Estimating the risk using cross
validation

6.4.4 Upper bounding the risk using
statistical learning theory *

6.4.5 Surrogate loss functions

log-loss

Lnll(y,η) =− log p(y|x,w) = log(1+ e−yη) (6.3)

6.5 Pathologies of frequentist statistics *

39

Chapter 7
Linear Regression

7.1 Introduction

Linear regression is the work horse of statistics and (su-
pervised) machine learning. When augmented with ker-
nels or other forms of basis function expansion, it can
model also nonlinear relationships. And when the Gaus-
sian output is replaced with a Bernoulli or multinoulli dis-
tribution, it can be used for classification, as we will see
below. So it pays to study this model in detail.

7.2 Representation

p(y|x,θ) =N (y|wTx,σ2) (7.1)

where w and x are extended vectors, x = (1,x), w =
(b,w).

Linear regression can be made to model non-linear re-
lationships by replacing x with some non-linear function
of the inputs, ϕ(x)

p(y|x,θ) =N (y|wT ϕ(x),σ2) (7.2)

This is known as basis function expansion. (Note that
the model is still linear in the parameters w, so it is still
called linear regression; the importance of this will be-
come clear below.) A simple example are polynomial ba-
sis functions, where the model has the form

ϕ(x) = (1,x, · · · ,xd) (7.3)

7.3 MLE

Instead of maximizing the log-likelihood, we can equiva-
lently minimize the negative log likelihood or NLL:

NLL(θ)≜−ℓ(θ) =− log(D|θ) (7.4)

The NLL formulation is sometimes more convenient,
since many optimization software packages are designed
to find the minima of functions, rather than maxima.

Now let us apply the method of MLE to the linear re-
gression setting. Inserting the definition of the Gaussian
into the above, we find that the log likelihood is given by

ℓ(θ) =
N

∑
i=1

log
[

1√
2πσ

exp
(
− 1

2σ2 (yi−wTxi)
2
)]

(7.5)

=− 1
2σ2 RSS(w)− N

2
log(2πσ 2) (7.6)

RSS stands for residual sum of squares and is defined
by

RSS(w)≜
N

∑
i=1

(yi−wTxi)
2 (7.7)

We see that the MLE for w is the one that minimizes
the RSS, so this method is known as least squares.

Let’s drop constants wrt w and NLL can be written as

NLL(w) =
1
2

N

∑
i=1

(yi−wTxi)
2 (7.8)

There two ways to minimize NLL(w).

7.3.1 OLS

Define y = (y1,y2, · · · ,yN), X =

xT

1
xT

2
...
xT

N

, then NLL(w)

can be written as

NLL(w) =
1
2
(y−Xw)T (y−Xw) (7.9)

When D is small(for example, N < 1000), we can use
the following equation to compute w directly

ŵOLS = (XTX)−1XTy (7.10)

The corresponding solution ŵOLS to this linear system
of equations is called the ordinary least squares or OLS
solution.

Proof. We now state without proof some facts of matrix
derivatives (we wont need all of these at this section).

41

42

trA ≜
n

∑
i=1

Aii

∂
∂A

AB = BT (7.11)

∂
∂AT f (A) =

[
∂

∂A
f (A)

]T

(7.12)

∂
∂A

ABATC = CAB+CT ABT (7.13)

∂
∂A
|A| = |A|(A−1)T (7.14)

Then,

NLL(w) =
1

2N
(Xw−y)T (Xw−y)

∂NLL
w

=
1
2

∂
w
(wTXTXw−wTXTy−yTXw+yTy)

=
1
2

∂
w
(wTXTXw−wTXTy−yTXw)

=
1
2

∂
w

tr(wTXTXw−wTXTy−yTXw)

=
1
2

∂
w
(trwTXTXw−2tryTXw)

Combining Equations 7.12 and 7.13, we find that

∂
∂AT ABATC = BT ATCT +BATC

Let AT =w,B = BT =XTX , and C = I, Hence,

∂NLL
w

=
1
2
(XTXw+XTXw−2XTy)

=
1
2
(XTXw−XTy)

∂NLL
w

= 0⇒XTXw−XTy = 0

XTXw = XTy (7.15)
ŵOLS = (XTX)−1XTy

Equation 7.15 is known as the normal equation.

7.3.1.1 Geometric interpretation

See Figure 7.1.
To minimize the norm of the residual, y− ŷ, we want

the residual vector to be orthogonal to every column of
X ,so x̃ j(y− ŷ) = 0 for j = 1 : D. Hence

x̃ j(y− ŷ) = 0⇒XT (y−Xw) = 0

⇒w = (XTX)−1XTy
(7.16)

Fig. 7.1: Graphical interpretation of least squares for
N = 3 examples and D = 2 features. x̃1 and x̃2 are

vectors in R3; together they define a 2D plane. y is also a
vector in R3 but does not lie on this 2D plane. The

orthogonal projection of y onto this plane is denoted ŷ.
The red line from y to ŷ is the residual, whose norm we

want to minimize. For visual clarity, all vectors have
been converted to unit norm.

7.3.2 SGD

When D is large, use stochastic gradient descent(SGD).

∵ ∂
∂wi

NLL(w) =
N

∑
i=1

(wTxi− yi)xi j (7.17)

∴ w j =w j−α
∂

∂w j
NLL(w)

=w j−
N

∑
i=1

α(wTxi− yi)xi j (7.18)

∴w =w−α(wTxi− yi)x (7.19)

7.4 Ridge regression(MAP)

One problem with ML estimation is that it can result in
overfitting. In this section, we discuss a way to ameliorate
this problem by using MAP estimation with a Gaussian
prior.

43

7.4.1 Basic idea

We can encourage the parameters to be small, thus result-
ing in a smoother curve, by using a zero-mean Gaussian
prior:

p(w) = ∏
j
N (w j|0,τ2) (7.20)

where 1/τ2 controls the strength of the prior. The corre-
sponding MAP estimation problem becomes

argmax
w

N

∑
i=1

logN (yi|w0 +wTxi,σ2)+
D

∑
j=1

logN (w j|0,τ2)

(7.21)
It is a simple exercise to show that this is equivalent to

minimizing the following

J(w) =
1
N

N

∑
i=1

(yi− (w0 +wTxi))
2 +λ∥w∥2,λ ≜ σ2

τ2

(7.22)
Here the first term is the MSE/ NLL as usual, and the

second term, λ ≥ 0, is a complexity penalty. The corre-
sponding solution is given by

ŵridge = (λID +XTX)−1XTy (7.23)

This technique is known as ridge regression,or penal-
ized least squares. In general, adding a Gaussian prior to
the parameters of a model to encourage them to be small
is called ℓ2 regularization or weight decay. Note that the
offset term w0 is not regularized, since this just affects the
height of the function, not its complexity.

We will consider a variety of different priors in this
book. Each of these corresponds to a different form of
regularization. This technique is very widely used to pre-
vent overfitting.

7.4.2 Numerically stable computation *

ŵridge = V (ZTZ+λIN)
−1ZTy (7.24)

7.4.3 Connection with PCA *

7.4.4 Regularization effects of big data

Regularization is the most common way to avoid overfit-
ting. However, another effective approach which is not
always available is to use lots of data. It should be in-
tuitively obvious that the more training data we have, the
better we will be able to learn.

In domains with lots of data, simple methods can work
surprisingly well (Halevy et al. 2009). However, there are
still reasons to study more sophisticated learning methods,
because there will always be problems for which we have
little data. For example, even in such a data-rich domain
as web search, as soon as we want to start personalizing
the results, the amount of data available for any given user
starts to look small again (relative to the complexity of the
problem).

7.5 Bayesian linear regression

TODO

Chapter 8
Logistic Regression

8.1 Representation

Logistic regression can be binomial or multinomial. The
binomial logistic regression model has the following
form

p(y|x,w) = Ber(y|sigm(wTx)) (8.1)

where w and x are extended vectors, i.e.,
w = (b,w1,w2, · · · ,wD), x= (1,x1,x2, · · · ,xD).

8.2 Optimization

8.2.1 MLE

ℓ(w) = log

{
N

∏
i=1

[π(xi)]
yi [1−π(xi)]

1−yi

}
, where π(x)≜ P(y = 1|x,w)

=
N

∑
i=1

[yi logπ(xi)+(1− yi) log(1−π(xi))]

=
N

∑
i=1

[
yi log

π(xi)

1−π(xi)
+ log(1−π(xi))

]
=

N

∑
i=1

[yi(w ·xi)− log(1+ exp(w ·xi))]

J(w)≜ NLL(w) =−ℓ(w)

=−
N

∑
i=1

[yi(w ·xi)− log(1+ exp(w ·xi))] (8.2)

Equation 8.2 is also called the cross-entropy error
function (see Equation 2.53).

Unlike linear regression, we can no longer write down
the MLE in closed form. Instead, we need to use an op-
timization algorithm to compute it, see Appendix A. For
this, we need to derive the gradient and Hessian.

In the case of logistic regression, one can show that the
gradient and Hessian of this are given by the following

g(w) =
dJ
dw

=
N

∑
i=1

[π(xi)− yi]xi =X(π−y) (8.3)

H(w) =
dgT

dw
=

d
dw

(π−y)TXT

=
d

dw
πTXT

= (π(xi)(1−π(xi))xi, · · · ,)XT

=XSXT , S ≜ diag(π(xi)(1−π(xi))xi)
(8.4)

8.2.1.1 Iteratively reweighted least squares (IRLS)

TODO

8.2.2 MAP

Just as we prefer ridge regression to linear regression, so
we should prefer MAP estimation for logistic regression
to computing the MLE. ℓ2 regularization

we can use ℓ2 regularization, just as we did with ridge
regression. We note that the new objective, gradient and
Hessian have the following forms:

J′(w)≜ NLL(w)+λwTw (8.5)
g′(w) = g(w)+λw (8.6)
H ′(w) =H(w)+λI (8.7)

It is a simple matter to pass these modified equations
into any gradient-based optimizer.

8.3 Multinomial logistic regression

8.3.1 Representation

Multinomial logistic regression model is also called a
maximum entropy classifier, which has the following
form

45

46

p(y = c|x,W) =
exp(wT

c x)

∑C
c=1 exp(wT

c x)
(8.8)

8.3.2 MLE

Let yi = (I(yi = 1),I(yi = 1), · · · ,I(yi =C)), µi = (p(y =
1|xi,W), p(y = 2|xi,W), · · · , p(y =C|xi,W)), then the
log-likelihood function can be written as

ℓ(W) = log
N

∏
i=1

C

∏
c=1

µyic
ic =

N

∑
i=1

C

∑
c=1

yic log µic (8.9)

=
N

∑
i=1

[(
C

∑
c=1

yicw
T
c xi

)
− log

(
C

∑
c=1

exp(wT
c xi)

)]
(8.10)

Define the objective function as NLL

J(W) = NLL(W) =−ℓ(W) (8.11)

Define A⊗B be the kronecker product of matrices
A and B.If A is an m×n matrix and B is a p×q matrix,
then A⊗B is the mp×nq block matrix

A⊗B△

 a11B · · · a1nB
...

...
...

am1B · · · amnB

 (8.12)

The gradient and Hessian are given by

g(W) =
N

∑
i=1

(µ−yi)⊗xi (8.13)

H(W) =
N

∑
i=1

(diag(µi)−µiµ
T
i)⊗ (xix

T
i) (8.14)

where yi = (I(yi = 1),I(yi = 1), · · · ,I(yi = C− 1)) and
µi = (p(y = 1|xi,W), p(y = 2|xi,W), · · · , p(y = C −
1|xi,W)) are column vectors of length C−1.

Pass them to any gradient-based optimizer.

8.3.3 MAP

The new objective

J′(W) = NLL(w)− log p(W) (8.15)

, where p(W)≜
C

∏
c=1
N (wc|0,V 0)

= J(W)+
1
2

C

∑
c=1

wcV
−1
0 wc (8.16)

(8.17)

Its gradient and Hessian are given by

g′(w) = g(W)+V −1
0

(
C

∑
c=1

wc

)
(8.18)

H ′(w) =H(w)+IC ⊗V −1
0 (8.19)

This can be passed to any gradient-based optimizer to
find the MAP estimate. Note, however, that the Hessian
has size ((CD)(CD)), which is C times more row and
columns than in the binary case, so limited memory BFGS
is more appropriate than Newtons method.

8.4 Bayesian logistic regression

It is natural to want to compute the full posterior over the
parameters, p(w|D), for logistic regression models. This
can be useful for any situation where we want to asso-
ciate confidence intervals with our predictions (e.g., this is
necessary when solving contextual bandit problems, dis-
cussed in Section TODO).

Unfortunately, unlike the linear regression case, this
cannot be done exactly, since there is no convenient con-
jugate prior for logistic regression. We discuss one sim-
ple approximation below; some other approaches include
MCMC (Section TODO), variational inference (Section
TODO), expectation propagation (Kuss and Rasmussen
2005), etc. For notational simplicity, we stick to binary
logistic regression.

47

8.4.1 Laplace approximation

8.4.2 Derivation of the BIC

8.4.3 Gaussian approximation for logistic
regression

8.4.4 Approximating the posterior predictive

8.4.5 Residual analysis (outlier detection) *

8.5 Online learning and stochastic
optimization

Traditionally machine learning is performed offline, how-
ever, if we have streaming data, we need to perform on-
line learning, so we can update our estimates as each new
data point arrives rather than waiting until the end (which
may never occur). And even if we have a batch of data, we
might want to treat it like a stream if it is too large to hold
in main memory. Below we discuss learning methods for
this kind of scenario.

TODO

8.5.1 The perceptron algorithm

8.5.1.1 Representation

H : y = f (x) = sign(wTx+b) (8.20)

where sign(x) =

{
+1, x≥ 0
−1, x < 0

, see Fig. 8.119.

8.5.1.2 Evaluation

L(w,b) = −yi(w
Txi +b) (8.21)

Remp(f) = −∑
i

yi(w
Txi +b) (8.22)

(8.23)

8.5.1.3 Optimization

Primal form
Convergency

19 https://en.wikipedia.org/wiki/Perceptron

Fig. 8.1: Perceptron

w← 0; b← 0; k← 0;
while no mistakes made within the for loop do

for i← 1 to N do
if yi(w ·xi +b)≤ 0 then

w←w+ηyixi;
b← b+ηyi;
k← k+1;

end
end

end
Algorithm 1: Perceptron learning algorithm, primal
form, using SGD

Theorem 8.1. (Novikoff) If traning data set D is linearly
separable, then

1. There exists a hyperplane denoted as ŵopt ·x+bopt =
0 which can correctly seperate all samples, and

∃γ > 0, ∀i, yi(wopt ·xi +bopt)≥ γ (8.24)

2.

k ≤
(

R
γ

)2

, where R = max
1≤i≤N

||x̂i|| (8.25)

Proof. (1) let γ = min
i

yi(wopt · xi + bopt), then we get

yi(wopt ·xi +bopt)≥ γ .
(2) The algorithm start from x̂0 = 0, if a instance is

misclassified, then update the weight. Let ŵk−1 denotes
the extended weight before the k-th misclassified instance,
then we can get

yi(ŵk−1 · x̂i) = yi(wk−1 ·xi +bk−1)≤ 0 (8.26)
ŵk = ŵk−1 +ηyix̂i (8.27)

We could infer the following two equations, the proof
procedure are omitted.

1. ŵk · ŵopt ≥ kηγ
2. ||ŵk||2 ≤ kη2R2

https://en.wikipedia.org/wiki/Perceptron

48

From above two equations we get

kηγ ≤ ŵk · ŵopt ≤ ||ŵk||
∣∣∣∣ŵopt

∣∣∣∣≤√kηR

k2γ2 ≤ kR2

i.e. k ≤
(

R
γ

)2

Dual form

w =
N

∑
i=1

αiyixi (8.28)

b =
N

∑
i=1

αiyi (8.29)

f (x) = sign

(
N

∑
j=1

α jy jx j ·x+b

)
(8.30)

α← 0; b← 0; k← 0;
while no mistakes made within the for loop do

for i← 1 to N do

if yi

(
N
∑
j=1

α jy jx j ·xi +b

)
≤ 0 then

α←α+η ;
b← b+ηyi;
k← k+1;

end
end

end
Algorithm 2: Perceptron learning algorithm, dual form

8.6 Generative vs discriminative classifiers

8.6.1 Pros and cons of each approach

• Easy to fit? As we have seen, it is usually very easy
to fit generative classifiers. For example, in Sections
3.5.1 and 4.2.4, we show that we can fit a naive Bayes
model and an LDA model by simple counting and aver-
aging. By contrast, logistic regression requires solving
a convex optimization problem (see Section 8.2 for the
details), which is much slower.

• Fit classes separately? In a generative classifier, we
estimate the parameters of each class conditional den-
sity independently, so we do not have to retrain the
model when we add more classes. In contrast, in dis-
criminative models, all the parameters interact, so the
whole model must be retrained if we add a new class.
(This is also the case if we train a generative model

to maximize a discriminative objective Salojarvi et al.
(2005).)

• Handle missing features easily? Sometimes some of
the inputs (components ofx) are not observed. In a gen-
erative classifier, there is a simple method for dealing
with this, as we discuss in Section 8.6.2. However, in
a discriminative classifier, there is no principled solu-
tion to this problem, since the model assumes that xis
always available to be conditioned on (although see
(Marlin 2008) for some heuristic approaches).

• Can handle unlabeled training data? There is much
interest in semi-supervised learning, which uses unla-
beled data to help solve a supervised task. This is fairly
easy to do using generative models (see e.g., (Lasserre
et al. 2006; Liang et al. 2007)), but is much harder to
do with discriminative models.

• Symmetric in inputs and outputs? We can run a gen-
erative model backwards, and infer probable inputs
given the output by computing p(x|y). This is not pos-
sible with a discriminative model. The reason is that a
generative model defines a joint distribution on x and
y, and hence treats both inputs and outputs symmetri-
cally.

• Can handle feature preprocessing? A big advantage
of discriminative methods is that they allow us to pre-
process the input in arbitrary ways, e.g., we can re-
place x with ϕ(x), which could be some basis func-
tion expansion, etc. It is often hard to define a gener-
ative model on such pre-processed data, since the new
features are correlated in complex ways.

• Well-calibrated probabilities? Some generative mod-
els, such as naive Bayes, make strong independence
assumptions which are often not valid. This can re-
sult in very extreme posterior class probabilities (very
near 0 or 1). Discriminative models, such as logistic re-
gression, are usually better calibrated in terms of their
probability estimates.

See Table 8.1 for a summary of the classification and
regression techniques we cover in this book.

8.6.2 Dealing with missing data

Sometimes some of the inputs (components of x) are not
observed; this could be due to a sensor failure, or a fail-
ure to complete an entry in a survey, etc. This is called
the missing data problem (Little. and Rubin 1987). The
ability to handle missing data in a principled way is one
of the biggest advantages of generative models.

To formalize our assumptions, we can associate a bi-
nary response variable ri ∈ {0,1} that specifies whether
each value xi is observed or not. The joint model has the

49

Model Classif/regr Gen/Discr Param/Non Section

Discriminant analysis Classif Gen Param Sec. 4.2.2, 4.2.4
Naive Bayes classifier Classif Gen Param Sec. 3.5, 3.5.1.2
Tree-augmented Naive Bayes classifier Classif Gen Param Sec. 10.2.1
Linear regression Regr Discrim Param Sec. 1.4.5, 7.3, 7.6
Logistic regression Classif Discrim Param Sec. 1.4.6, 8.2.1.1, 8.4.3, 21.8.1.1
Sparse linear/ logistic regression Both Discrim Param Ch. 13
Mixture of experts Both Discrim Param Sec. 11.2.4
Multilayer perceptron (MLP)/ Neural network Both Discrim Param Ch. 16
Conditional random field (CRF) Classif Discrim Param Sec. 19.6

K nearest neighbor classifier Classif Gen Non Sec. TODO, TODO
(Infinite) Mixture Discriminant analysis Classif Gen Non Sec. 14.7.3
Classification and regression trees (CART) Both Discrim Non Sec. 16.2
Boosted model Both Discrim Non Sec. 16.4
Sparse kernelized lin/logreg (SKLR) Both Discrim Non Sec. 14.3.2
Relevance vector machine (RVM) Both Discrim Non Sec. 14.3.2
Support vector machine (SVM) Both Discrim Non Sec. 14.5
Gaussian processes (GP) Both Discrim Non Ch. 15
Smoothing splines Regr Discrim Non Section 15.4.6

Table 8.1: List of various models for classification and regression which we discuss in this book. Columns are as
follows: Model name; is the model suitable for classification, regression, or both; is the model generative or

discriminative; is the model parametric or non-parametric; list of sections in book which discuss the model. See also
http://pmtk3.googlecode.com/svn/trunk/docs/tutorial/html/tutSupervised.html for

the PMTK equivalents of these models. Any generative probabilistic model (e.g., HMMs, Boltzmann machines,
Bayesian networks, etc.) can be turned into a classifier by using it as a class conditional density

form p(xi,ri|θ,ϕ) = p(ri|xi,ϕ)p(xi|θ), where ϕ are the
parameters controlling whether the item is observed or
not.

• If we assume p(ri|xi,ϕ) = p(ri|ϕ), we say the data is
missing completely at random or MCAR.

• If we assume p(ri|xi,ϕ) = p(ri|xo
i ,ϕ), where xo

i is the
observed part of xi, we say the data is missing at ran-
dom or MAR.

• If neither of these assumptions hold, we say the data
is not missing at random or NMAR. In this case, we
have to model the missing data mechanism, since the
pattern of missingness is informative about the values
of the missing data and the corresponding parameters.
This is the case in most collaborative filtering prob-
lems, for example.

See e.g., (Marlin 2008) for further discussion. We will
henceforth assume the data is MAR.

When dealing with missing data, it is helpful to distin-
guish the cases when there is missingness only at test time
(so the training data is complete data), from the harder
case when there is missingness also at training time. We
will discuss these two cases below. Note that the class la-
bel is always missing at test time, by definition; if the class
label is also sometimes missing at training time, the prob-
lem is called semi-supervised learning.

8.6.2.1 Missing data at test time

In a generative classifier, we can handle features that are
MAR by marginalizing them out. For example, if we are
missing the value ofx1, we can compute

p(y = c|x2:D,θ) ∝ p(y = c|θ)p(x2:D|y = c,θ) (8.31)

=∝ p(y = c|θ)∑
x1

p(x1,x2:D|y = c,θ)

(8.32)

Similarly, in discriminant analysis, no matter what reg-
ularization method was used to estimate the parameters,
we can always analytically marginalize out the missing
variables (see Section 4.3):

p(x2:D|y = c,θ) =N (x2:D|µc,2:D,Σc,2:D) (8.33)

8.6.2.2 Missing data at training time

Missing data at training time is harder to deal with. In par-
ticular, computing the MLE or MAP estimate is no longer
a simple optimization problem, for reasons discussed in
Section TODO. However, soon we will study are a variety
of more sophisticated algorithms (such as EM algorithm,
in Section 11.4) for finding approximate ML or MAP es-
timates in such cases.

http://pmtk3.googlecode.com/svn/trunk/docs/tutorial/html/tutSupervised.html

50

8.6.3 Fishers linear discriminant analysis
(FLDA) *

TODO

Chapter 9
Generalized linear models and the exponential family

9.1 The exponential family

Before defining the exponential family, we mention sev-
eral reasons why it is important:

• It can be shown that, under certain regularity condi-
tions, the exponential family is the only family of dis-
tributions with finite-sized sufficient statistics, mean-
ing that we can compress the data into a fixed-sized
summary without loss of information. This is particu-
larly useful for online learning, as we will see later.

• The exponential family is the only family of distribu-
tions for which conjugate priors exist, which simplifies
the computation of the posterior (see Section 9.1.5).

• The exponential family can be shown to be the family
of distributions that makes the least set of assumptions
subject to some user-chosen constraints (see Section
9.1.6).

• The exponential family is at the core of generalized lin-
ear models, as discussed in Section 9.2.

• The exponential family is at the core of variational in-
ference, as discussed in Section TODO.

9.1.1 Definition

A pdf or pmf p(x|θ),for x ∈Rm and θ ∈RD, is said to be
in the exponential family if it is of the form

p(x|θ) = 1
Z(θ)

h(x)exp[θT ϕ(x)] (9.1)

= h(x)exp[θT ϕ(x)−A(θ)] (9.2)

where

Z(θ) =
∫

h(x)exp[θT ϕ(x)]dx (9.3)

A(θ) = logZ(θ) (9.4)

Here θ are called the natural parameters or canoni-
cal parameters, ϕ(x)∈RD is called a vector of sufficient
statistics, Z(θ) is called the partition function, A(θ) is
called the log partition function or cumulant function,
and h(x) is the a scaling constant, often 1. If ϕ(x) = x,
we say it is a natural exponential family.

Equation 9.2 can be generalized by writing

p(x|θ) = h(x)exp[η(θ)T ϕ(x)−A(η(θ))] (9.5)

where η is a function that maps the parameters θ to the
canonical parameters η = η(θ).If dim(θ) < dim(η(θ)),
it is called a curved exponential family, which means we
have more sufficient statistics than parameters. If η(θ) =
θ, the model is said to be in canonical form. We will
assume models are in canonical form unless we state oth-
erwise.

9.1.2 Examples

9.1.2.1 Bernoulli

The Bernoulli for x ∈ {0,1} can be written in exponential
family form as follows:

Ber(x|µ) = µx(1−µ)1−x

= exp[x log µ +(1− x) log(1−µ)]
(9.6)

where ϕ(x) = (I(x = 0),I(x = 1)) and θ= (log µ , log(1−
µ)).

However, this representation is over-complete since
1T ϕ(x) = I(x = 0)+ I(x = 1) = 1. Consequently θ is not
uniquely identifiable. It is common to require that the rep-
resentation be minimal, which means there is a unique θ
associated with the distribution. In this case, we can just
define

Ber(x|µ) = (1−µ)exp
(

x log
µ

1−µ

)
(9.7)

where ϕ(x) = x,θ = log
µ

1−µ
,Z =

1
1−µ

We can recover the mean parameter µ from the canon-
ical parameter using

µ = sigm(θ) =
1

1+ e−θ (9.8)

51

52

9.1.2.2 Multinoulli

We can represent the multinoulli as a minimal exponential
family as follows:

Cat(x|µ) =
K

∏
k=1

= exp

(
K

∑
k=1

xk log µk

)

= exp

[
K−1

∑
k=1

xk log µk +(1−
K−1

∑
k=1

xk) log(1−
K−1

∑
k=1

µk)

]

= exp

[
K−1

∑
k=1

xk log
µk

1−∑K−1
k=1 µk

+ log(1−
K−1

∑
k=1

µk)

]

= exp

[
K−1

∑
k=1

xk log
µk

µK
+ log µK

]
, where µK ≜ 1−

K−1

∑
k=1

µk

We can write this in exponential family form as fol-
lows:

Cat(x|µ) = exp[θT ϕ(x)−A(θ)] (9.9)

θ ≜ (log
µ1

µK
, · · · , log

µK−1

µK
) (9.10)

ϕ(x)≜ (x1, · · · ,xK−1) (9.11)

We can recover the mean parameters from the canoni-
cal parameters using

µk =
eθk

1+∑K−1
j=1 eθ j

(9.12)

µK = 1−
∑K−1

j=1 eθ j

1+∑K−1
j=1 eθ j

=
1

1+∑K−1
j=1 eθ j

(9.13)

and hence

A(θ]=− log µK = log(1+
K−1

∑
j=1

eθ j) (9.14)

9.1.2.3 Univariate Gaussian

The univariate Gaussian can be written in exponential
family form as follows:

N (x|µ ,σ2) =
1√

2πσ
exp
[
− 1

2σ2 (x−µ)2
]

=
1√

2πσ
exp
[
− 1

2σ2 x2 +
µ
σ2 x− 1

2σ2 µ2
]

=
1

Z(θ)
exp[θT ϕ(x)] (9.15)

where

θ = (
µ
σ2 ,−

1
2σ2) (9.16)

ϕ(x) = (x,x2) (9.17)

Z(θ) =
√

2πσ exp(
µ2

2σ2) (9.18)

9.1.2.4 Non-examples

Not all distributions of interest belong to the exponen-
tial family. For example, the uniform distribution,X ∼
U(a,b), does not, since the support of the distribution de-
pends on the parameters. Also, the Student T distribution
(Section TODO) does not belong, since it does not have
the required form.

9.1.3 Log partition function

An important property of the exponential family is that
derivatives of the log partition function can be used to
generate cumulants of the sufficient statistics.20 For this
reason, A(θ) is sometimes called a cumulant function.
We will prove this for a 1-parameter distribution; this can
be generalized to a K-parameter distribution in a straight-
forward way. For the first derivative we have

For the second derivative we have

dA
dθ

=
d

dθ

{
log
∫

exp [θϕ(x)]h(x)dx
}

=
d

dθ
∫

exp [θϕ(x)]h(x)dx∫
exp [θϕ(x)]h(x)dx

=

∫
ϕ(x)exp [θϕ(x)]h(x)dx

exp(A(θ))

=
∫

ϕ(x)exp [θϕ(x)−A(θ)]h(x)dx

=
∫

ϕ(x)p(x)dx = E[ϕ(x)] (9.19)

For the second derivative we have

d2A
dθ 2 =

∫
ϕ(x)exp [θϕ(x)−A(θ)]h(x)

[
ϕ(x)−A′(θ)

]
dx

=
∫

ϕ(x)p(x)
[
ϕ(x)−A′(θ)

]
dx

=
∫

ϕ 2(x)p(x)dx−A′(θ)
∫

ϕ(x)p(x)dx

= E[ϕ 2(x)]−E[ϕ(x)]2 = var[ϕ(x)] (9.20)

In the multivariate case, we have that

20 The first and second cumulants of a distribution are its mean E[X]
and variance var[X], whereas the first and second moments are its
mean E[X] and E[X2].

53

∂ 2A
∂θi∂θ j

= E[ϕi(x)ϕ j(x)]−E[ϕi(x)]E[ϕ j(x)] (9.21)

and hence
∇2A(θ) = cov[ϕ(x)] (9.22)

Since the covariance is positive definite, we see that
A(θ) is a convex function (see Section A.1).

9.1.4 MLE for the exponential family

The likelihood of an exponential family model has the
form

p(D|θ) =

[
N

∏
i=1

h(xi)

]
g(θ)N exp

[
θT

(
N

∑
i=1

ϕ(xi)

)]
(9.23)

We see that the sufficient statistics are N and

ϕ(D) =
N

∑
i=1

ϕ(xi) = (
N

∑
i=1

ϕ1(xi), · · · ,
N

∑
i=1

ϕK(xi)) (9.24)

The Pitman-Koopman-Darmois theorem states that,
under certain regularity conditions, the exponential fam-
ily is the only family of distributions with finite sufficient
statistics. (Here, finite means of a size independent of the
size of the data set.)

One of the conditions required in this theorem is that
the support of the distribution not be dependent on the
parameter.

9.1.5 Bayes for the exponential family

TODO

9.1.5.1 Likelihood

9.1.6 Maximum entropy derivation of the
exponential family *

9.2 Generalized linear models (GLMs)

Linear and logistic regression are examples of general-
ized linear models, or GLMs (McCullagh and Nelder
1989). These are models in which the output density is
in the exponential family (Section 9.1), and in which the
mean parameters are a linear combination of the inputs,
passed through a possibly nonlinear function, such as the
logistic function. We describe GLMs in more detail be-

low. We focus on scalar outputs for notational simplicity.
(This excludes multinomial logistic regression, but this is
just to simplify the presentation.)

9.2.1 Basics

9.3 Probit regression

9.4 Multi-task learning

Chapter 10
Directed graphical models (Bayes nets)

10.1 Introduction

10.1.1 Chain rule

p(x1:V) = p(x1)p(x2|x1)p(x3|x1:2) · · · p(xN |x1:V−1)
(10.1)

10.1.2 Conditional independence

X and Y are conditionally independent given Z, denoted
X ⊥Y |Z, iff the conditional joint can be written as a prod-
uct of conditional marginals, i.e.

X ⊥ Y |Z⇐⇒ p(X ,Y |Z) = p(X |Z)p(Y |Z) (10.2)

first order Markov assumption: the future is indepen-
dent of the past given the present,

xt+1 ⊥ x1:t−1|xt (10.3)

first-order Markov chain

p(x1:V) = p(x1)
V

∏
t=2

p(xt |xt−1) (10.4)

10.1.3 Graphical models

A graphical model(GM) is a way to represent a joint
distribution by making CI assumptions. In particular, the
nodes in the graph represent random variables, and the
(lack of) edges represent CI assumptions.

There are several kinds of graphical model, depend-
ing on whether the graph is directed, undirected, or some
combination of directed and undirected. In this chapter,
we just study directed graphs. We consider undirected
graphs in Chapter 19.

10.1.4 Directed graphical model

A directed graphical modelor DGM is a GM whose
graph is a DAG. These are more commonly known as
Bayesian networks. However, there is nothing inherently
Bayesian about Bayesian networks: they are just a way of
defining probability distributions. These models are also
called belief networks. The term belief here refers to sub-
jective probability. Once again, there is nothing inherently
subjective about the kinds of probability distributions rep-
resented by DGMs.

Ordered Markov property

xs ⊥ xpred(s) pa(s) ⊥ xpa(s) (10.5)

where pa(s) are the parents of nodes, and pred(s) are the
predecessors of nodes in the DAG.

Markov chain on a DGM

p(x1:V |G) =
V

∏
t=1

p(xt |xpa(t)) (10.6)

Fig. 10.1: (a) A simple DAG on 5 nodes, numbered in
topological order. Node 1 is the root, nodes 4 and 5 are

the leaves. (b) A simple undirected graph, with the
following maximal cliques: 1,2,3, 2,3,4, 3,5.

55

56

10.2 Examples

10.2.1 Naive Bayes classifiers

Fig. 10.2: (a) A naive Bayes classifier represented as a
DGM. We assume there are D = 4 features, for

simplicity. Shaded nodes are observed, unshaded nodes
are hidden. (b) Tree-augmented naive Bayes classifier for
D = 4 features. In general, the tree topology can change

depending on the value of y.

10.2.2 Markov and hidden Markov models

Fig. 10.3: A first and second order Markov chain.

Fig. 10.4: A first-order HMM.

10.3 Inference

Suppose we have a set of correlated random variables with
joint distribution p(x1:V |θ). Let us partition this vector
into the visible variables xv, which are observed, and the
hidden variables, xh, which are unobserved. Inference
refers to computing the posterior distribution of the un-
knowns given the knowns:

p(xh|xv,θ) =
p(xh,xv|θ)

p(xv|θ)
=

p(xh,xv|θ)
∑x′h

p(x′h,xv|θ)
(10.7)

Sometimes only some of the hidden variables are of
interest to us. So let us partition the hidden variables into
query variables, xq, whose value we wish to know, and
the remaining nuisance variables, xn, which we are not
interested in. We can compute what we are interested in
by marginalizing out the nuisance variables:

p(xq|xv,θ) = ∑
xn

p(xq,xn|xv,θ) (10.8)

10.4 Learning

MAP estimate:

θ̂ = argmax
θ

N

∑
i=1

log p(xi,v|θ)+ log p(θ) (10.9)

10.4.1 Learning from complete data

If all the variables are fully observed in each case, so there
is no missing data and there are no hidden variables, we
say the data is complete. For a DGM with complete data,
the likelihood is given by

p(D|θ) =
N

∏
i=1

p(xi|θ)

=
N

∏
i=1

V

∏
t=1

p(xit |xi,pa(t),θt)

=
V

∏
t=1

p(Dt |θt)

(10.10)

whereDt is the data associated with node t and its parents,
i.e., the t’th family.

Now suppose that the prior factorizes as well:

p(θ) =
V

∏
t=1

p(θt) (10.11)

Then clearly the posterior also factorizes:

p(θ|D) ∝ p(D|θ)p(θ) =
V

∏
t=1

p(Dt |θt)p(θt) (10.12)

57

10.4.2 Learning with missing and/or latent
variables

If we have missing data and/or hidden variables, the like-
lihood no longer factorizes, and indeed it is no longer con-
vex, as we explain in detail in Section TODO. This means
we will usually can only compute a locally optimal ML
or MAP estimate. Bayesian inference of the parameters
is even harder. We discuss suitable approximate inference
techniques in later chapters.

10.5 Conditional independence properties of
DGMs

10.5.1 d-separation and the Bayes Ball
algorithm (global Markov properties)

1. P contains a chain

p(x,z|y) = p(x,y,z)
p(y)

=
p(x)p(y|x)p(z|y)

p(y)

=
p(x,y)p(z|y)

p(y)
= p(x|y)p(z|y)

(10.13)

2. P contains a fork

p(x,z|y)= p(x,y,z)
p(y)

=
p(y)p(x|y)p(z|y)

p(y)
= p(x|y)p(z|y)

(10.14)
3. P contains v-structure

p(x,z|y)= p(x,y,z)
p(y)

=
p(x)p(z)p(y|x,z)

p(y)
̸= p(x|y)p(z|y)

(10.15)

10.5.2 Other Markov properties of DGMs

10.5.3 Markov blanket and full conditionals

mb(t) = ch(t)∪ pa(t)∪ copa(t) (10.16)

10.5.4 Multinoulli Learning

Multinoulli Distribution

Cat(x|µ) =
K

∏
k=1

µxk
k (10.17)

then from ?? and 10.17:

p(x|G,θ) =
V

∏
v=1

Cv

∏
c=1

K

∏
k=1

θ yvck
vck (10.18)

Likelihood

p(D|G,θ) =
N

∏
n=1

p(xn|G,θ) =
N

∏
n=1

V

∏
v=1

Cnv

∏
c=1

K

∏
k=1

θ ynvck
vck

(10.19)
where ynv = f (pa(xnv)), f(x) is a map from x to a vector,
there is only one element in the vector is 1.

10.6 Influence (decision) diagrams *

Chapter 11
Mixture models and the EM algorithm

11.1 Latent variable models

In Chapter 10 we showed how graphical models can be
used to define high-dimensional joint probability distri-
butions. The basic idea is to model dependence between
two variables by adding an edge between them in the
graph. (Technically the graph represents conditional in-
dependence, but you get the point.)

An alternative approach is to assume that the observed
variables are correlated because they arise from a hid-
den common cause. Model with hidden variables are also
known as latent variable models or LVMs. As we will
see in this chapter, such models are harder to fit than mod-
els with no latent variables. However, they can have sig-
nificant advantages, for two main reasons.

• First, LVMs often have fewer parameters than models
that directly represent correlation in the visible space.

• Second, the hidden variables in an LVM can serve as a
bottleneck, which computes a compressed representa-
tion of the data. This forms the basis of unsupervised
learning, as we will see. Figure 11.1 illustrates some
generic LVM structures that can be used for this pur-
pose.

Fig. 11.1: A latent variable model represented as a DGM.
(a) Many-to-many. (b) One-to-many. (c) Many-to-one.

(d) One-to-one.

11.2 Mixture models

The simplest form of LVM is when zi ∈ {1, · · · ,K}, rep-
resenting a discrete latent state. We will use a discrete
prior for this, p(zi) = Cat(π). For the likelihood, we use
p(xi|zi = k) = pk(xi), where pk is the k’th base distri-
bution for the observations; this can be of any type. The
overall model is known as a mixture model, since we are
mixing together the K base distributions as follows:

p(xi|θ) =
K

∑
k=1

πk pk(xi|θ) (11.1)

Depending on the form of the likelihood p(xi|zi) and
the prior p(zi), we can generate a variety of different
models, as summarized in Table 11.1.

p(xi|zi) p(zi) Name Section

MVN Discrete Mixture of Gaussians 11.2.1
Prod. Discrete Discrete Mixture of multinomials 11.2.2

Prod. Gaussian Prod. Gaussian Factor analysis/ 12.1.5probabilistic PCA

Prod. Gaussian Prod. Laplace Probabilistic ICA/ 12.6sparse coding
Prod. Discrete Prod. Gaussian Multinomial PCA 27.2.3

Prod. Discrete Dirichlet Latent Dirichlet 27.3allocation
Prod. Noisy-OR Prod. Bernoulli BN20/ QMR 10.2.3
Prod. Bernoulli Prod. Bernoulli Sigmoid belief net 27.7

Table 11.1: Summary of some popular directed latent
variable models. Here Prod means product, so Prod.

Discrete in the likelihood means a factored distribution of
the form ∏ j Cat(xi j|zi), and Prod. Gaussian means a

factored distribution of the form ∏ jN (xi j|zi).

11.2.1 Mixtures of Gaussians

pk(xi|θ) =N (xi|µk,Σk) (11.2)

59

60

11.2.2 Mixtures of multinoullis

pk(xi|θ) =
D

∏
j=1

Ber(xi j|µ jk) =
D

∏
j=1

µxi j
jk (1−µ jk)

1−xi j

(11.3)
where µ jk is the probability that bit j turns on in cluster k.

The latent variables do not have to any meaning, we
might simply introduce latent variables in order to make
the model more powerful. For example, one can show that
the mean and covariance of the mixture distribution are
given by

E[x] =
K

∑
k=1

πkµk (11.4)

Cov[x] =
K

∑
k=1

πk(Σk +µkµ
T
k)−E[x]E[x]T (11.5)

where Σk = diag(µ jk(1− µ jk)). So although the compo-
nent distributions are factorized, the joint distribution is
not. Thus the mixture distribution can capture correlations
between variables, unlike a single product-of-Bernoullis
model.

11.2.3 Using mixture models for clustering

There are two main applications of mixture models, black-
box density model(see Section 14.7.3 TODO) and cluster-
ing(see Chapter 25 TODO).

Soft clustering

rik ≜ p(zi = k|xi,θ) =
p(zi = k,xi|θ)

p(xi|θ)

=
p(zi = k|θ)p(xi|zi = k,θ)

∑K
k′=1 p(zi = k′|θ)p(xi|zi = k′,θ)

(11.6)

where rik is known as the responsibility of cluster k for
point i.

Hard clustering

z∗i ≜ argmax
k

rik = argmax
k

p(zi = k|xi,θ) (11.7)

The difference between generative classifiers and mix-
ture models only arises at training time: in the mixture
case, we never observe zi, whereas with a generative clas-
sifier, we do observe yi(which plays the role of zi).

11.2.4 Mixtures of experts

Section 14.7.3 TODO described how to use mixture mod-
els in the context of generative classifiers. We can also
use them to create discriminative models for classification
and regression. For example, consider the data in Figure
11.2(a). It seems like a good model would be three differ-
ent linear regression functions, each applying to a differ-
ent part of the input space. We can model this by allowing
the mixing weights and the mixture densities to be input-
dependent:

p(yi|xi,zi = k,θ) =N (yi|wT
k x,σ

2
k) (11.8)

p(zi|xi,θ) = Cat(zi|S(V Txi)) (11.9)

See Figure 11.3(a) for the DGM.
This model is called a mixture of experts or MoE (Jor-

dan and Jacobs 1994). The idea is that each submodel is
considered to be an expert in a certain region of input
space. The function p(zi|xi,θ) is called a gating func-
tion, and decides which expert to use, depending on the
input values. For example, Figure 11.2(b) shows how the
three experts have carved up the 1d input space, Figure
11.2(a) shows the predictions of each expert individually
(in this case, the experts are just linear regression mod-
els), and Figure 11.2(c) shows the overall prediction of
the model, obtained using

p(yi|xi,θ) =
K

∑
k=1

p(zi = k|xi,θ)p(yi|xi,zi = k,θ)

(11.10)
We discuss how to fit this model in Section TODO

11.4.3.

11.3 Parameter estimation for mixture
models

11.3.1 Unidentifiability

11.3.2 Computing a MAP estimate is
non-convex

11.4 The EM algorithm

11.4.1 Introduction

For many models in machine learning and statistics, com-
puting the ML or MAP parameter estimate is easy pro-
vided we observe all the values of all the relevant random

61

(a)

(b)

(c)

Fig. 11.2: (a) Some data fit with three separate regression
lines. (b) Gating functions for three different experts. (c)
The conditionally weighted average of the three expert

predictions.

Fig. 11.3: (a) A mixture of experts. (b) A hierarchical
mixture of experts.

variables, i.e., if we have complete data. However, if we
have missing data and/or latent variables, then computing
the ML/MAP estimate becomes hard.

One approach is to use a generic gradient-based op-
timizer to find a local minimum of the NLL(θ). How-
ever, we often have to enforce constraints, such as the fact
that covariance matrices must be positive definite, mix-
ing weights must sum to one, etc., which can be tricky.
In such cases, it is often much simpler (but not always
faster) to use an algorithm called expectation maximiza-
tion,or EM for short (Dempster et al. 1977; Meng and van
Dyk 1997; McLachlan and Krishnan 1997). This is is an
efficient iterative algorithm to compute the ML or MAP
estimate in the presence of missing or hidden data, often
with closed-form updates at each step. Furthermore, the
algorithm automatically enforce the required constraints.

See Table 11.2 for a summary of the applications of
EM in this book.

Table 11.2: Some models discussed in this book for
which EM can be easily applied to find the ML/ MAP

parameter estimate.

Model Section

Mix. Gaussians 11.4.2
Mix. experts 11.4.3
Factor analysis 12.1.5
Student T 11.4.5
Probit regression 11.4.6
DGM with hidden variables 11.4.4
MVN with missing data 11.6.1
HMMs 17.5.2
Shrinkage estimates of Gaussian means Exercise 11.13

62

11.4.2 Basic idea

EM exploits the fact that if the data were fully observed,
then the ML/ MAP estimate would be easy to compute. In
particular, each iteration of the EM algorithm consists of
two processes: The E-step, and the M-step.

• In the E-step, the missing data are inferred given the
observed data and current estimate of the model pa-
rameters. This is achieved using the conditional expec-
tation, explaining the choice of terminology.

• In the M-step, the likelihood function is maximized
under the assumption that the missing data are known.
The missing data inferred from the E-step are used in
lieu of the actual missing data.

Let xi be the visible or observed variables in case i,
and let zi be the hidden or missing variables. The goal is
to maximize the log likelihood of the observed data:

ℓ(θ)= log p(D|θ)=
N

∑
i=1

log p(xi|θ)=
N

∑
i=1

log∑
zi

p(xi,zi|θ)

(11.11)
Unfortunately this is hard to optimize, since the log

cannot be pushed inside the sum.
EM gets around this problem as follows. Define the

complete data log likelihood to be

ℓc(θ) =
N

∑
i=1

log p(xi,zi|θ) (11.12)

This cannot be computed, since zi is unknown. So let
us define the expected complete data log likelihood as
follows:

Q(θ,θt−1)≜ Ez|D,θ t−1 [ℓc(θ)] = E
[
ℓc(θ)|D,θ t−1]

(11.13)
where t is the current iteration number. Q is called the
auxiliary function(see Section 11.4.9 for derivation). The
expectation is taken wrt the old parameters, θt−1, and the
observed data D. The goal of the E-step is to compute
Q(θ,θt−1), or rather, the parameters inside of it which
the MLE(or MAP) depends on; these are known as the
expected sufficient statistics or ESS. In the M-step, we
optimize the Q function wrt θ:

θt = argmax
θ

Q(θ,θt−1) (11.14)

To perform MAP estimation, we modify the M-step as
follows:

θt = argmax
θ

Q(θ,θt−1)+ log p(θ) (11.15)

The E step remains unchanged.

In summary, the EM algorithm’s pseudo code is as fol-
lows

input : observed data D = {x1,x2, · · · ,xN},joint distribution
P(x,z|θ)

output: model’s parameters θ
// 1. identify hidden variables z, write out the log likelihood
function ℓ(x,z|θ)
θ(0) = ... // initialize
while (!convergency) do

// 2. E-step: plug in P(x,z|θ), derive the formula of
Q(θ,θt−1)
Q(θ,θt−1) = E

[
ℓc(θ)|D,θ t−1

]
// 3. M-step: find θ that maximizes the value of
Q(θ,θt−1)
θt = argmax

θ
Q(θ,θt−1)

end
Algorithm 3: EM algorithm

Below we explain how to perform the E and M steps
for several simple models, that should make things clearer.

11.4.3 EM for GMMs

11.4.3.1 Auxiliary function

Q(θ,θt−1) = Ez|D,θ t−1 [ℓc(θ)]

= Ez|D,θ t−1

[
N

∑
i=1

log p(xi,zi|θ)

]

=
N

∑
i=1

Ez|D,θ t−1

{
log

[
K

∏
k=1

(πk p(xi|θk))
I(zi=k)

]}

=
N

∑
i=1

K

∑
k=1

E[I(zi = k)] log [πk p(xi|θk)]

=
N

∑
i=1

K

∑
k=1

p(zi = k|xi,θ
t−1) log [πk p(xi|θk)]

=
N

∑
i=1

K

∑
k=1

rik logπk +
N

∑
i=1

K

∑
k=1

rik log p(xi|θk)

(11.16)

where rik ≜ E[I(zi = k)] = p(zi = k|xi,θ
t−1) is the re-

sponsibility that cluster k takes for data point i. This is
computed in the E-step, described below.

11.4.3.2 E-step

The E-step has the following simple form, which is the
same for any mixture model:

63

rik = p(zi = k|xi,θ
t−1) =

p(zi = k,xi|θt−1)

p(xi|θt−1)

=
πk p(xi|θt−1

k)

∑K
k′=1 πk′ p(xi|θt−1

k)

(11.17)

11.4.3.3 M-step

In the M-step, we optimize Q wrt π and θk.
For π, grouping together only the terms that depend

on πk, we find that we need to maximize
N
∑

i=1

K
∑

k=1
rik logπk.

However, there is an additional constraint
K
∑

k=1
πk = 1, since

they represent the probabilities πk = P(zi = k). To deal
with the constraint we construct the Lagrangian

L(π) =
N

∑
i=1

K

∑
k=1

rik logπk +β

(
K

∑
k=1

πk−1

)

where β is the Lagrange multiplier. Taking derivatives, we
find

π̂k =

N
∑

i=1
r̂ik

N
(11.18)

This is the same for any mixture model, whereas θk de-
pends on the form of p(x|θk).

For θk, plug in the pdf to Equation 11.16

Q(θ,θt−1) =
N

∑
i=1

K

∑
k=1

rik logπk−
1
2

N

∑
i=1

K

∑
k=1

rik [log |Σk|+

(xi−µk)
TΣ−1

k (xi−µk)
]

Take partial derivatives of Q wrt µk, Σk and let them
equal to 0, we can get

∂Q
∂µk

=−1
2

N

∑
i=1

rik
[
(Σ−1

k +Σ−T
k)(xi−µk)

]
=−

N

∑
i=1

rik
[
Σ−1

k (xi−µk)
]
= 0⇒

µ̂k =
∑N

i=1 r̂ikxi

∑N
i=1 r̂ik

(11.19)

∂Q
∂Σk

=−1
2

N

∑
i=1

rik

[
1
Σk
− 1

Σ2
k
(xi−µk)(xi−µk)

T
]
= 0⇒

Σ̂k =
∑N

i=1 r̂ik(xi−µk)(xi−µk)
T

∑N
i=1 r̂ik

(11.20)

=
∑N

i=1 r̂ikxix
T
i

∑N
i=1 r̂ik

−µkµ
T
k (11.21)

11.4.3.4 Algorithm pseudo code

input : observed data D = {x1,x2, · · · ,xN},GMM
output: GMM’s parameters π,µ,Σ
// 1. initialize
π(0) = ...
µ(0) = ...
Σ(0) = ...
t = 0
while (!convergency) do

// 2. E-step

r̂ik =
πk p(xi|θt−1

k)

∑K
k′=1 πk′ p(xi|µt−1

k ,Σt−1
k)

// 3. M-step

π̂k =
∑N

i=1 r̂ik
N

µ̂k =
∑N

i=1 r̂ikxi

∑N
i=1 r̂ik

Σ̂k =
∑N

i=1 r̂ikxix
T
i

∑N
i=1 r̂ik

−µkµ
T
k

++t
end

Algorithm 4: EM algorithm for GMM

11.4.3.5 MAP estimation

As usual, the MLE may overfit. The overfitting problem is
particularly severe in the case of GMMs. An easy solution
to this is to perform MAP estimation. The new auxiliary
function is the expected complete data log-likelihood plus
the log prior:

Q(θ,θt−1) =
N

∑
i=1

K

∑
k=1

rik logπk +
N

∑
i=1

K

∑
k=1

rik log p(xi|θk)

+ log p(π)+
K

∑
k=1

log p(θk)

(11.22)

It is natural to use conjugate priors.

p(π) = Dir(π|α)

p(µk,Σk) = NIW(µk,Σk|m0,κ0,ν0,S0)

From Equation 3.28 and Section 4.6.3, the MAP esti-
mate is given by

64

π̂k =
∑N

i=1 rik +αk−1
N +∑K

k=1 αk−K
(11.23)

µ̂k =
∑N

i=1 rikxi +κ0m0

∑N
i=1 rik +κ0

(11.24)

Σ̂k =
S0 +Sk +

κ0rk
κ0+rk

(x̄k−m0)(x̄k−m0)
T

ν0 + rk +D+2
(11.25)

where rk ≜
N

∑
i=1

rik, x̄k ≜
∑N

i=1 rikxi

rk
,

Sk ≜
N

∑
i=1

rik(xi− x̄k)(xi− x̄k)
T

11.4.4 EM for K-means

11.4.4.1 Representation

y j = k if ∥x j−µk∥2
2 is minimal (11.26)

where µk is the centroid of cluster k.

11.4.4.2 Evaluation

argmin
µ

N

∑
j=1

K

∑
k=1

γ jk∥x j−µk∥2
2 (11.27)

The hidden variable is γ jk, which’s meanining is:

γ jk =

{
1, if ∥x j−µk∥2 is minimal for µk

0, otherwise

11.4.4.3 Optimization

E-Step:

γ(i+1)
jk =

{
1, if ∥x j−µ

(i)
k ∥2 is minimal for µ(i)

k

0, otherwise
(11.28)

M-Step:

µ
(i+1)
k =

∑N
j=1 γ(i+1)

jk x j

∑γ(i+1)
jk

(11.29)

11.4.4.4 Tricks

Choosing k
TODO
Choosing the initial centroids(seeds)

1. K-means++.
The intuition that spreading out the k initial cluster cen-
ters is a good thing is behind this approach: the first
cluster center is chosen uniformly at random from the
data points that are being clustered, after which each
subsequent cluster center is chosen from the remaining
data points with probability proportional to its squared
distance from the point’s closest existing cluster cen-
ter21.
The exact algorithm is as follows:

a. Choose one center uniformly at random from
among the data points.

b. For each data point x, compute D(x), the distance
between x and the nearest center that has already
been chosen.

c. Choose one new data point at random as a new cen-
ter, using a weighted probability distribution where
a point x is chosen with probability proportional to
D(x)2.

d. Repeat Steps 2 and 3 until k centers have been cho-
sen.

e. Now that the initial centers have been chosen, pro-
ceed using standard k-means clustering.

2. TODO

11.4.5 EM for mixture of experts

11.4.6 EM for DGMs with hidden variables

11.4.7 EM for the Student distribution *

11.4.8 EM for probit regression *

11.4.9 Derivation of the Q function

Theorem 11.1. (Jensen’s inequality) Let f be a convex
function(see Section A.1) defined on a convex set S . If

x1,x2, · · · ,xn ∈ S and λ1,λ2, · · · ,λn ≥ 0 with
n
∑

i=1
λi = 1,

f

(
n

∑
i=1

λixi

)
≤

n

∑
i=1

λi f (xi) (11.30)

Proposition 11.1.

log

(
n

∑
i=1

λixi

)
≥

n

∑
i=1

λi log(xi) (11.31)

21 http://en.wikipedia.org/wiki/K-means++

http://en.wikipedia.org/wiki/K-means++

65

Now let’s proof why the Q function should look like
Equation 11.13:

ℓ(θ) = logP(D|θ)
= log∑

z

P(D,z|θ)

= log∑
z

P(D|z,θ)P(z|θ)

ℓ(θ)− ℓ(θt−1) = log
[
∑
z

P(D|z,θ)P(z|θ)
]
− logP(D|θt−1)

= log
[
∑
z

P(D|z,θ)P(z|θ)P(z|D,θ t−1)

P(z|D,θ t−1)

]
− logP(D|θt−1)

= log
[
∑
z

P(z|D,θ t−1)
P(D|z,θ)P(z|θ)

P(z|D,θ t−1)

]
− logP(D|θt−1)

≥∑
z

P(z|D,θ t−1) log
[

P(D|z,θ)P(z|θ)
P(z|D,θ t−1)

]
− logP(D|θt−1)

= ∑
z

{
P(z|D,θ t−1)

log
[

P(D|z,θ)P(z|θ)
P(z|D,θ t−1)P(D|θt−1)

]}

B(θ,θt−1)≜ ℓ(θt−1)+

∑
z

P(z|D,θ t−1) log
[

P(D|z,θ)P(z|θ)
P(z|D,θ t−1)P(D|θt−1)

]
⇒

θt = argmax
θ

B(θ,θt−1)

= argmax
θ

{
ℓ(θt−1)+

∑
z

P(z|D,θ t−1) log
[

P(D|z,θ)P(z|θ)
P(z|D,θ t−1)P(D|θt−1)

]}
Now drop terms which are constant w.r.t. θ

= argmax
θ

{
∑
z

P(z|D,θ t−1) log [P(D|z,θ)P(z|θ)]
}

= argmax
θ

{
∑
z

P(z|D,θ t−1) log [P(D,z|θ)]
}

= argmax
θ

{
Ez|D,θ t−1 log [P(D,z|θ)]

}
(11.32)

≜ argmax
θ

Q(θ,θt−1) (11.33)

11.4.10 Convergence of the EM Algorithm *

11.4.10.1 Expected complete data log likelihood is a
lower bound

Note that ℓ(θ)≥ B(θ,θt−1), and ℓ(θt−1)≥ B(θt−1,θt−1),
which means B(θ,θt−1) is an lower bound of ℓ(θ). If we
maximize B(θ,θt−1), then ℓ(θ) gets maximized, see Fig-
ure 11.4.

Fig. 11.4: Graphical interpretation of a single iteration of
the EM algorithm: The function B(θ,θt−1) is bounded

above by the log likelihood function ℓ(θ). The functions
are equal at θ = θt−1. The EM algorithm chooses θt−1 as
the value of θ for which B(θ,θt−1) is a maximum. Since
ℓ(θ)≥ B(θ,θt−1) increasing B(θ,θt−1) ensures that the
value of the log likelihood function ℓ(θ) is increased at

each step.

Since the expected complete data log likelihood Q is
derived from B(θ,θt−1) by dropping terms which are con-
stant w.r.t. θ, so it is also a lower bound to a lower bound
of ℓ(θ).

11.4.10.2 EM monotonically increases the observed
data log likelihood

11.4.11 Generalization of EM Algorithm *

EM algorithm can be interpreted as F function’s
maximization-maximization algorithm, based on this in-
terpretation there are many variations and generalization,
e.g., generalized EM Algorithm(GEM).

66

11.4.11.1 F function’s maximization-maximization
algorithm

Definition 11.1. Given the probability distribution of the
hidden variable Z is P̃(Z), define F function as the fol-
lowing:

F(P̃,θ) = EP̃ [logP(X ,Z|θ)]+H(P̃) (11.34)

Where H(P̃) = −EP̃ log P̃(Z), which is P̃(Z)’s entropy.
Usually we assume that P(X ,Z|θ) is continuous w.r.t. θ,
therefore F(P̃,θ) is continuous w.r.t. P̃ and θ.

Lemma 11.1. For a fixed θ, there is only one distribution
P̃θ which maximizes F(P̃,θ)

P̃θ (Z) = P(Z|X ,θ) (11.35)

and P̃θ is continuous w.r.t. θ.

Proof. Given a fixed θ, we can get P̃θ which maximizes
F(P̃,θ). we construct the Lagrangian

L(P̃,θ) = EP̃ [logP(X ,Z|θ)]−EP̃ log P̃θ (Z)

+λ

[
1−∑

Z
P̃(Z)

]
(11.36)

Take partial derivative with respect to P̃θ (Z) then we
get

∂L
∂ P̃θ (Z)

= logP(X ,Z|θ)− log P̃θ (Z)−1−λ

Let it equal to 0, we can get

λ = logP(X ,Z|θ)− log P̃θ (Z)−1

Then we can derive that P̃θ (Z) is proportional to
P(X ,Z|θ)

P(X ,Z|θ)
P̃θ (Z)

= e1+λ

⇒ P̃θ (Z) =
P(X ,Z|θ)

e1+λ

∑
Z

P̃θ (Z) = 1⇒∑
Z

P(X ,Z|θ)
e1+λ = 1⇒ P(X |θ) = e1+λ

P̃θ (Z) =
P(X ,Z|θ)

e1+λ =
P(X ,Z|θ)
P(X |θ)

= P(Z|X ,θ)

Lemma 11.2. If P̃θ (Z) = P(Z|X ,θ), then

F(P̃,θ) = logP(X |θ) (11.37)

Theorem 11.2. One iteration of EM algorithm can be im-
plemented as F function’s maximization-maximization.

Assume θt−1 is the estimation of θ in the (t−1)-th iter-
ation, P̃t−1 is the estimation of P̃ in the (t−1)-th iteration.
Then in the t-th iteration two steps are:

1. for fixed θt−1, find P̃t that maximizes F(P̃,θt−1);
2. for fixed P̃t , find θt that maximizes F(P̃t ,θ).

Proof. (1) According to Lemma 11.1, we can get

P̃t(Z) = P(Z|X ,θt−1)

(2) According above, we can get

F(P̃t ,θ) = EP̃t [logP(X ,Z|θ)]+H(P̃t)

= ∑
Z

P(Z|X ,θt−1) logP(X ,Z|θ)+H(P̃t)

= Q(θ,θt−1)+H(P̃t)

Then

θt = argmax
θ

F(P̃t ,θ) = argmax
θ

Q(θ,θt−1)

11.4.11.2 The Generalized EM Algorithm(GEM)

In the formulation of the EM algorithm described above,
θt was chosen as the value of θ for which Q(θ,θt−1)
was maximized. While this ensures the greatest increase
in ℓ(θ), it is however possible to relax the requirement of
maximization to one of simply increasing Q(θ,θt−1) so
that Q(θt ,θt−1) ≥ Q(θt−1,θt−1). This approach, to sim-
ply increase and not necessarily maximize Q(θt ,θt−1)
is known as the Generalized Expectation Maximization
(GEM) algorithm and is often useful in cases where the
maximization is difficult. The convergence of the GEM
algorithm is similar to the EM algorithm.

11.4.12 Online EM

11.4.13 Other EM variants *

11.5 Model selection for latent variable
models

When using LVMs, we must specify the number of latent
variables, which controls the model complexity. In partic-
ular, in the case of mixture models, we must specify K,
the number of clusters. Choosing these parameters is an
example of model selection. We discuss some approaches
below.

67

11.5.1 Model selection for probabilistic
models

The optimal Bayesian approach, discussed in Section 5.3,
is to pick the model with the largest marginal likelihood,
K∗ = argmaxk p(D|k).

There are two problems with this. First, evaluating the
marginal likelihood for LVMs is quite difficult. In prac-
tice, simple approximations, such as BIC, can be used (see
e.g., (Fraley and Raftery 2002)). Alternatively, we can use
the cross-validated likelihood as a performance measure,
although this can be slow, since it requires fitting each
model F times, where Fis the number of CV folds.

The second issue is the need to search over a poten-
tially large number of models. The usual approach is to
perform exhaustive search over all candidate values ofK.
However, sometimes we can set the model to its maximal
size, and then rely on the power of the Bayesian Occams
razor to kill off unwanted components. An example of this
will be shown in Section TODO 21.6.1.6, when we dis-
cuss variational Bayes.

An alternative approach is to perform stochastic sam-
pling in the space of models. Traditional approaches, such
as (Green 1998, 2003; Lunn et al. 2009), are based on
reversible jump MCMC, and use birth moves to propose
new centers, and death moves to kill off old centers. How-
ever, this can be slow and difficult to implement. A sim-
pler approach is to use a Dirichlet process mixture model,
which can be fit using Gibbs sampling, but still allows for
an unbounded number of mixture components; see Sec-
tion TODO 25.2 for details.

Perhaps surprisingly, these sampling-based methods
can be faster than the simple approach of evaluating the
quality of eachKseparately. The reason is that fitting the
model for each K is often slow. By contrast, the sampling
methods can often quickly determine that a certain value
of K is poor, and thus they need not waste time in that part
of the posterior.

11.5.2 Model selection for non-probabilistic
methods

What if we are not using a probabilistic model? For ex-
ample, how do we choose K for the K-means algorithm?
Since this does not correspond to a probability model,
there is no likelihood, so none of the methods described
above can be used.

An obvious proxy for the likelihood is the reconstruc-
tion error. Define the squared reconstruction error of a
data set D, using model complexity K, as follows:

E(D,K)≜ 1
|D|

N

∑
i=1
∥xi− x̂i∥2 (11.38)

In the case of K-means, the reconstruction is given by
x̂i = µzi , where zi = argmink∥xi− µ̂k∥2, as explained in
Section 11.4.2.6 TODO.

In supervised learning, we can always use cross valida-
tion to select between non-probabilistic models of differ-
ent complexity, but this is not the case with unsupervised
learning. The most common approach is to plot the recon-
struction error on the training set versus K, and to try to
identify a knee or kink in the curve.

11.6 Fitting models with missing data

Suppose we want to fit a joint density model by maxi-
mum likelihood, but we have holes in our data matrix,
due to missing data (usually represented by NaNs). More
formally, let Oi j = 1 if component j of data case i is ob-
served, and let Oi j = 0 otherwise. Let Xv = {xi j : Oi j =
1} be the visible data, and Xh = {xi j : Oi j = 0} be the
missing or hidden data. Our goal is to compute

θ̂ = argmax
θ

p(Xv|θ,O) (11.39)

Under the missing at random assumption (see Section
8.6.2), we have

TODO

11.6.1 EM for the MLE of an MVN with
missing data

TODO

Chapter 12
Latent linear models

12.1 Factor analysis

One problem with mixture models is that they only use a
single latent variable to generate the observations. In par-
ticular, each observation can only come from one of K
prototypes. One can think of a mixture model as using
K hidden binary variables, representing a one-hot encod-
ing of the cluster identity. But because these variables are
mutually exclusive, the model is still limited in its repre-
sentational power.

An alternative is to use a vector of real-valued latent
variables,zi ∈ RL. The simplest prior to use is a Gaussian
(we will consider other choices later):

p(zi) =N (zi|µ0,Σ0) (12.1)

If the observations are also continuous, so xi ∈ RD, we
may use a Gaussian for the likelihood. Just as in linear
regression, we will assume the mean is a linear function
of the (hidden) inputs, thus yielding

p(xi|zi,θ) =N (xi|Wzi +µ,Ψ) (12.2)

where W is a D×L matrix, known as the factor loading
matrix, and Ψ is a D×D covariance matrix. We take Ψ
to be diagonal, since the whole point of the model is to
force zi to explain the correlation, rather than baking it
in to the observations covariance. This overall model is
called factor analysis or FA. The special case in which
Ψ = σ2I is called probabilistic principal components
analysis or PPCA. The reason for this name will become
apparent later.

12.1.1 FA is a low rank parameterization of
an MVN

FA can be thought of as a way of specifying a joint density
model on x using a small number of parameters. To see
this, note that from Equation 4.39, the induced marginal
distribution p(xi|θ) is a Gaussian:

p(xi|θ) =
∫
N (xi|Wzi +µ,Ψ)N (zi|µ0,Σ0)dzi

=N (xi|Wµ0 +µ,Ψ +WΣ0W) (12.3)

From this, we see that we can set µ0 = 0 without loss
of generality, since we can always absorb Wµ0 into µ.
Similarly, we can set Σ0 = I without loss of generality,
because we can always emulate a correlated prior by using

defining a new weight matrix, W̃ =WΣ
− 1

2
0 . So we can

rewrite Equation 12.6 and 12.2 as:

p(zi) =N (zi|0,I) (12.4)
p(xi|zi,θ) =N (xi|Wzi +µ,Ψ) (12.5)

We thus see that FA approximates the covariance ma-
trix of the visible vector using a low-rank decomposition:

C ≜ cov[x] =WW T +Ψ (12.6)

This only uses O(LD) parameters, which allows a flexi-
ble compromise between a full covariance Gaussian, with
O(D2) parameters, and a diagonal covariance, with O(D)
parameters. Note that if we did not restrict Ψ to be diag-
onal, we could trivially set Ψ to a full covariance matrix;
then we could set W = 0, in which case the latent factors
would not be required.

12.1.2 Inference of the latent factors

p(zi|xi,θ) =N (zi|µi,Σi) (12.7)

Σi ≜ (Σ−1
0 +W TΨ−1W)−1 (12.8)

= (I+W TΨ−1W)−1 (12.9)

µi ≜Σi[W
TΨ−1(xi−µ)+Σ−1

0 µ0] (12.10)

=ΣiW
TΨ−1(xi−µ) (12.11)

Note that in the FA model, Σi is actually independent of
i, so we can denote it by Σ. Computing this matrix takes
O(L3 +L2D) time, and computing each µi = E[zi|xi,θ]
takes O(L2 +LD) time. The µi are sometimes called the
latent scores, or latent factors.

69

70

12.1.3 Unidentifiability

Just like with mixture models, FA is also unidentifiable.
To see this, suppose R is an arbitrary orthogonal rotation
matrix, satisfying RRT = I . Let us define W̃ = WR,
then the likelihood function of this modified matrix is the
same as for the unmodified matrix, since WRRTW T +
Ψ = WW T +Ψ . Geometrically, multiplying W by an
orthogonal matrix is like rotating z before generating x.

To ensure a unique solution, we need to remove L(L−
1)/2 degrees of freedom, since that is the number of or-
thonormal matrices of size L×L.22 In total, the FA model
has D+LD−L(L− 1)/2 free parameters (excluding the
mean), where the first term arises from Ψ . Obviously we
require this to be less than or equal to D(D+1)/2, which
is the number of parameters in an unconstrained (but sym-
metric) covariance matrix. This gives us an upper bound
on L, as follows:

Lmax = ⌊D+0.5(1−
√

1+8D)⌋ (12.12)

For example, D = 6 implies L ≤ 3. But we usually
never choose this upper bound, since it would result in
overfitting (see discussion in Section 12.3 on how to
choose L).

Unfortunately, even if we set L < Lmax, we still cannot
uniquely identify the parameters, since the rotational am-
biguity still exists. Non-identifiability does not affect the
predictive performance of the model. However, it does af-
fect the loading matrix, and hence the interpretation of
the latent factors. Since factor analysis is often used to
uncover structure in the data, this problem needs to be ad-
dressed. Here are some commonly used solutions:

• Forcing W to be orthonormal Perhaps the cleanest
solution to the identifiability problem is to force W to
be orthonormal, and to order the columns by decreas-
ing variance of the corresponding latent factors. This
is the approach adopted by PCA, which we will dis-
cuss in Section 12.2. The result is not necessarily more
interpretable, but at least it is unique.

• Forcing W to be lower triangular One way
to achieve identifiability, which is popular in the
Bayesian community (e.g., (Lopes and West 2004)), is
to ensure that the first visible feature is only generated
by the first latent factor, the second visible feature is
only generated by the first two latent factors, and so
on. For example, if L = 3 and D = 4, the correspond
factor loading matrix is given by

22 To see this, note that there are L− 1 free parameters in R in the
first column (since the column vector must be normalized to unit
length), there are L−2 free parameters in the second column (which
must be orthogonal to the first), and so on.

W =

w11 0 0
w21 w22 0
w31 w32 w33
w41 w32 w43

We also require that w j j > 0 for j = 1 : L. The to-
tal number of parameters in this constrained matrix is
D+DL−L(L−1)/2, which is equal to the number of
uniquely identifiable parameters. The disadvantage of
this method is that the first L visible variables, known
as the founder variables, affect the interpretation of
the latent factors, and so must be chosen carefully.

• Sparsity promoting priors on the weights Instead of
pre-specifying which entries in W are zero, we can
encourage the entries to be zero, using ℓ1 regulariza-
tion (Zou et al. 2006), ARD (Bishop 1999; Archam-
beau and Bach 2008), or spike-and-slab priors (Rattray
et al. 2009). This is called sparse factor analysis. This
does not necessarily ensure a unique MAP estimate,
but it does encourage interpretable solutions. See Sec-
tion 13.8 TODO.

• Choosing an informative rotation matrix There are
a variety of heuristic methods that try to find rotation
matrices R which can be used to modify W (and hence
the latent factors) so as to try to increase the inter-
pretability, typically by encouraging them to be (ap-
proximately) sparse. One popular method is known as
varimax(Kaiser 1958).

• Use of non-Gaussian priors for the latent factors In
Section 12.6, we will dicuss how replacing p(zi) with a
non-Gaussian distribution can enable us to sometimes
uniquely identify W as well as the latent factors. This
technique is known as ICA.

12.1.4 Mixtures of factor analysers

The FA model assumes that the data lives on a low di-
mensional linear manifold. In reality, most data is better
modeled by some form of low dimensional curved mani-
fold. We can approximate a curved manifold by a piece-
wise linear manifold. This suggests the following model:
let the k’th linear subspace of dimensionality Lk be rep-
resented by W k, for k = 1 : K. Suppose we have a latent
indicator qi ∈ {1, · · · ,K} specifying which subspace we
should use to generate the data. We then sample zi from a
Gaussian prior and pass it through the W k matrix (where
k = qi), and add noise. More precisely, the model is as
follows:

p(qi|θ) = Cat(qiπ) (12.13)
p(zi|θ) =N (zi|0,I) (12.14)

p(xi|qi = k,zi,θ) =N (xi|Wzi +µk,Ψ) (12.15)

71

This is called a mixture of factor analysers(MFA) (Hin-
ton et al. 1997).

Another way to think about this model is as a low-rank
version of a mixture of Gaussians. In particular, this model
needs O(KLD) parameters instead of the O(KD2) param-
eters needed for a mixture of full covariance Gaussians.
This can reduce overfitting. In fact, MFA is a good generic
density model for high-dimensional real-valued data.

12.1.5 EM for factor analysis models

Below we state the results without proof. The derivation
can be found in (Ghahramani and Hinton 1996a). To ob-
tain the results for a single factor analyser, just set ric = 1
and c= 1 in the equations below. In Section 12.2.4 we will
see a further simplification of these equations that arises
when fitting a PPCA model, where the results will turn out
to have a particularly simple and elegant interpretation.

In the E-step, we compute the posterior responsibility
of cluster k for data point i using

rik ≜ p(qi = k|xi,θ)∝ πkN (xi|µk,W kW
T
k Ψ k) (12.16)

The conditional posterior for zi is given by

p(zi|xi,qi = k,θ) =N (zi|µik,Σik) (12.17)

Σik ≜ (I+W T
k Ψ
−1
k W)−1

k (12.18)

µik ≜ΣikW
T
k Ψ
−1
k (xi−µk) (12.19)

In the M step, it is easiest to estimate µk and W k at the
same time, by defining W̃ k = (W k,µk), z̃ = (z,1), also,
define

W̃ k = (W k,µk) (12.20)
z̃ = (z,1) (12.21)

bik ≜ E[z̃|xi,qi = k] = E[(µik;1)] (12.22)

C ik ≜ E[z̃z̃T |xi,qi = k] (12.23)

=

(
E[zzT |xi,qi = k] E[z|xi,qi = k]
E[z|xi,qi = k]T 1

)
(12.24)

Then the M step is as follows:

π̂k =
1
N

N

∑
i=1

rik (12.25)

ˆ̃W k =

(
N

∑
i=1

rikxib
T
ik

)(
N

∑
i=1

rikxiC
T
ik

)−1

(12.26)

Ψ̂ =
1
N

diag

[
N

∑
i=1

rik(xi− ˆ̃W ikbik)x
T
i

]
(12.27)

Note that these updates are for vanilla EM. A much
faster version of this algorithm, based on ECM, is de-
scribed in (Zhao and Yu 2008).

12.1.6 Fitting FA models with missing data

In many applications, such as collaborative filtering, we
have missing data. One virtue of the EM approach to fit-
ting an FA/PPCA model is that it is easy to extend to this
case. However, overfitting can be a problem if there is a
lot of missing data. Consequently it is important to per-
form MAP estimation or to use Bayesian inference. See
e.g., (Ilin and Raiko 2010) for details.

12.2 Principal components analysis (PCA)

Consider the FA model where we constrain Ψ = σ2I ,
and W to be orthonormal. It can be shown (Tipping
and Bishop 1999) that, as σ2 → 0, this model reduces to
classical (nonprobabilistic) principal components anal-
ysis(PCA), also known as the Karhunen Loeve trans-
form. The version where σ2 > 0 is known as probabilis-
tic PCA(PPCA) (Tipping and Bishop 1999), orsensible
PCA(Roweis 1997).

12.2.1 Classical PCA

12.2.1.1 Statement of the theorem

The synthesis viewof classical PCA is summarized in the
forllowing theorem.

Theorem 12.1. Suppose we want to find an orthogonal set
of L linear basis vectors w j ∈RD, and the corresponding
scores zi ∈RL, such that we minimize the average recon-
struction error

J(W ,Z) =
1
N

N

∑
i=1
∥xi− x̂i∥2 (12.28)

where x̂i =Wzi, subject to the constraint that W is or-
thonormal. Equivalently, we can write this objective as
follows

J(W ,Z) =
1
N
∥X−WZT∥2 (12.29)

where Z is an N×L matrix with the zi in its rows, and
∥A∥F is the Frobenius norm of matrix A, defined by

72

∥A∥F ≜

√√√√ M

∑
i=1

N

∑
j=1

a2
i j =

√
tr(ATA) (12.30)

The optimal solution is obtained by setting Ŵ = V L,
where V L contains the L eigenvectors with largest
eigenvalues of the empirical covariance matrix,
Σ̂ = 1

N ∑N
i=1xix

T
i . (We assume the xi have zero

mean, for notational simplicity.) Furthermore, the op-
timal low-dimensional encoding of the data is given by
ẑi = W Txi, which is an orthogonal projection of the
data onto the column space spanned by the eigenvectors.

An example of this is shown in Figure 12.1(a) for D= 2
and L= 1. The diagonal line is the vector w1; this is called
the first principal component or principal direction. The
data points xi ∈ R2 are orthogonally projected onto this
line to get zi ∈R. This is the best 1-dimensional approxi-
mation to the data. (We will discuss Figure 12.1(b) later.)

(a)

(b)

Fig. 12.1: An illustration of PCA and PPCA where D = 2
and L = 1. Circles are the original data points, crosses are

the reconstructions. The red star is the data mean. (a)
PCA. The points are orthogonally projected onto the line.

(b) PPCA. The projection is no longer orthogonal: the
reconstructions are shrunk towards the data mean (red

star).

The principal directions are the ones along which the
data shows maximal variance. This means that PCA can
be misled by directions in which the variance is high
merely because of the measurement scale. It is therefore

standard practice to standardize the data first, or equiv-
alently, to work with correlation matrices instead of co-
variance matrices.

12.2.1.2 Proof *

See Section 12.2.2 of MLAPP.

12.2.2 Singular value decomposition (SVD)

We have defined the solution to PCA in terms of eigenvec-
tors of the covariance matrix. However, there is another
way to obtain the solution, based on the singular value
decomposition, or SVD. This basically generalizes the
notion of eigenvectors from square matrices to any kind
of matrix.

Theorem 12.2. (SVD). Any matrix can be decomposed as
follows

X︸︷︷︸
N×D

= U︸︷︷︸
N×N

Σ︸︷︷︸
N×D

V T︸︷︷︸
D×D

(12.31)

where U is an N × N matrix whose columns are or-
thornormal(so UTU = I), V is D×D matrix whose rows
and columns are orthonormal (so V TV = V V T = ID),
and Σ is a N ×D matrix containing the r = min(N,D)
singular values σi ≥ 0 on the main diagonal, with 0s fill-
ing the rest of the matrix.

This shows how to decompose the matrix X into the
product of three matrices: V describes an orthonormal ba-
sis in the domain, and U describes an orthonormal basis
in the co-domain, and Σ describes how much the vectors
in V are stretched to give the vectors in U .

Since there are at most D singular values (assuming
N > D), the last ND columns of U are irrelevant, since
they will be multiplied by 0. The economy sized SVD, or
thin SVD, avoids computing these unnecessary elements.
Let us denote this decomposition by ÛΣ̂V̂

T
.If N > D,

we have
X︸︷︷︸

N×D

= Û︸︷︷︸
N×D

Σ̂︸︷︷︸
D×D

V̂
T︸︷︷︸

D×D

(12.32)

as in Figure 12.2(a). If N < D, we have

X︸︷︷︸
N×D

= Û︸︷︷︸
N×N

Σ̂︸︷︷︸
N×N

V̂
T︸︷︷︸

N×D

(12.33)

Computing the economy-sized SVD takes
O(NDmin(N,D)) time (Golub and van Loan 1996,
p254).

The connection between eigenvectors and singular vec-
tors is the following:

73

(a)

(b)

Fig. 12.2: (a) SVD decomposition of non-square matrices
X =UΣV T . The shaded parts of Σ, and all the

off-diagonal terms, are zero. The shaded entries in U and
Σ are not computed in the economy-sized version, since
they are not needed. (b) Truncated SVD approximation

of rank L.

U = evec(XXT) (12.34)

V = evec(XTX) (12.35)

Σ2 = eval(XXT) = eval(XTX) (12.36)

For the proof please read Section 12.2.3 of MLAPP.
Since the eigenvectors are unaffected by linear scaling

of a matrix, we see that the right singular vectors of X are
equal to the eigenvectors of the empirical covariance Σ̂.
Furthermore, the eigenvalues of Σ̂ are a scaled version of
the squared singular values.

However, the connection between PCA and SVD goes
deeper. From Equation 12.31, we can represent a rank r
matrix as follows:

X = σ1

 |u1
|

(− v1 −
)
+ · · ·+σr

 |ur
|

(− vT
r −

)
If the singular values die off quickly, we can produce a
rank L approximation to the matrix as follows:

X ≈ σ1

 |u1
|

(− v1 −
)
+ · · ·+σr

 |
uL
|

(− vT
L −

)
=U :,1:LΣ1:L,1:LV

T
:,1:L (12.37)

This is called a truncated SVD (see Figure 12.2(b)).
One can show that the error in this approximation is

given by

∥X−XL∥F ≈ σL (12.38)

Furthermore, one can show that the SVD offers the best
rank L approximation to a matrix (best in the sense of
minimizing the above Frobenius norm).

Let us connect this back to PCA. Let X =UΣV T be
a truncated SVD of X . We know that Ŵ = V , and that
Ẑ =XŴ , so

Ẑ =UΣV TV =UΣ (12.39)

Furthermore, the optimal reconstruction is given by X̂ =
ZŴ ,so we find

X̂ =UΣV T (12.40)

This is precisely the same as a truncated SVD approxima-
tion! This is another illustration of the fact that PCA is the
best low rank approximation to the data.

12.2.3 Probabilistic PCA

Theorem 12.3. ((Tipping and Bishop 1999)). Consider a
factor analysis model in which Ψ = σ2I and W is or-
thogonal. The observed data log likelihood is given by

log p(X|W ,σ2I) =−N
2

ln |C|− 1
2

N

∑
i=1

xT
i C
−1xi

=−N
2

ln |C|+ tr(C−1Σ) (12.41)

where C = WW T + σ2I and Σ = 1
N ∑N

i=1xix
T
i =

1
NXXT . (We are assuming centred data, for notational
simplicity.) The maxima of the log-likelihood are given by

Ŵ = V (Λ−σ2I)
1
2 R (12.42)

where R is an arbitrary L× L orthogonal matrix, V is
the D×L matrix whose columns are the first L eigenvec-
tors of Σ, and Λ is the corresponding diagonal matrix of
eigenvalues. Without loss of generality, we can set R= I .
Furthermore, the MLE of the noise variance is given by

σ̂2 =
1

D−L

D

∑
j=L+1

λ j (12.43)

which is the average variance associated with the dis-
carded dimensions.

Thus, as σ2 → 0, we have Ŵ → V , as in classical
PCA. What about Ẑ? It is easy to see that the posterior
over the latent factors is given by

74

p(zi|xi, θ̂) =N (zi|F̂
−1
Ŵ

T
xi,σ2F̂

−1
) (12.44)

F̂ ≜ Ŵ
T
Ŵ +σ2I (12.45)

(Do not confuse F =W TW +σ2I with C =WW T +
σ2I .) Hence, as σ2 → 0, we find Ŵ → V , F̂ → I and
zi → V Txi. Thus the posterior mean is obtained by an
orthogonal projection of the data onto the column space
of V , as in classical PCA.

Note, however, that if σ2 → 0, the posterior mean is
not an orthogonal projection, since it is shrunk somewhat
towards the prior mean, as illustrated in Figure 12.1(b).
This sounds like an undesirable property, but it means that
the reconstructions will be closer to the overall data mean,
µ̂= x̄.

12.2.4 EM algorithm for PCA

Although the usual way to fit a PCA model uses eigen-
vector methods, or the SVD, we can also use EM, which
will turn out to have some advantages that we discuss be-
low. EM for PCA relies on the probabilistic formulation
of PCA. However the algorithm continues to work in the
zero noise limit, σ2 = 0, as shown by (Roweis 1997).

Let Z̃ be a L×N matrix storing the posterior means
(low-dimensional representations) along its columns.
Similarly, let X̃ = XT store the original data along its
columns. From Equation 12.44, when σ2 = 0, we have

Z̃ = (W TW)−1W T X̃ (12.46)

This constitutes the E step. Notice that this is just an or-
thogonal projection of the data.

From Equation 12.26, the M step is given by

Ŵ =

(
N

∑
i=1

xiE[zi]
T

)(
N

∑
i=1

E[zi]E[zi]
T

)−1

(12.47)

where we exploited the fact that Σ = cov[zi|xi,θ] = 0
when σ2 = 0.

(Tipping and Bishop 1999) showed that the only sta-
ble fixed point of the EM algorithm is the globally op-
timal solution. That is, the EM algorithm converges to a
solution where W spans the same linear subspace as that
defined by the first L eigenvectors. However, if we want
W to be orthogonal, and to contain the eigenvectors in
descending order of eigenvalue, we have to orthogonalize
the resulting matrix (which can be done quite cheaply).
Alternatively, we can modify EM to give the principal ba-
sis directly (Ahn and Oh 2003).

This algorithm has a simple physical analogy in the
case D = 2 and L = 1(Roweis 1997). Consider some

points in R2 attached by springs to a rigid rod, whose ori-
entation is defined by a vector w. Let zi be the location
where the i’th spring attaches to the rod. See Figure 12.11
of MLAPP for an illustration.

Apart from this pleasing intuitive interpretation, EM
for PCA has the following advantages over eigenvector
methods:

• EM can be faster. In particular, assuming N,D≫ L,
the dominant cost of EM is the projection operation
in the E step, so the overall time is O(T LND), where
T is the number of iterations. This is much faster
than the O(min(ND2,DN2)) time required by straight-
forward eigenvector methods, although more sophisti-
cated eigenvector methods, such as the Lanczos algo-
rithm, have running times comparable to EM.

• EM can be implemented in an online fashion, i.e., we
can update our estimate of W as the data streams in.

• EM can handle missing data in a simple way (see Sec-
tion 12.1.6).

• EM can be extended to handle mixtures of PPCA/ FA
models.

• EM can be modified to variational EM or to variational
Bayes EM to fit more complex models.

12.3 Choosing the number of latent
dimensions

In Section 11.5, we discussed how to choose the number
of components K in a mixture model. In this section, we
discuss how to choose the number of latent dimensions L
in a FA/PCA model.

12.3.1 Model selection for FA/PPCA

TODO

12.3.2 Model selection for PCA

TODO

12.4 PCA for categorical data

In this section, we consider extending the factor analy-
sis model to the case where the observed data is categori-
cal rather than real-valued. That is, the data has the form

75

yi j ∈ {1, ...,C}, where j = 1 : R is the number of observed
response variables. We assume each yi j is generated from
a latent variable zi ∈ RL, with a Gaussian prior, which is
passed through the softmax function as follows:

p(zi) =N (zi|0,I) (12.48)

p(yi|zi,θ) =
R

∏
j=1

Cat(yir|S(W T
r zi +w0r)) (12.49)

where W r ∈ RL is the factor loading matrix for response
j, and W 0r ∈ RM is the offset term for response r, and
θ = (W r,W 0r)

R
r=1. (We need an explicit offset term,

since clamping one element of zi to 1 can cause problems
when computing the posterior covariance.) As in factor
analysis, we have defined the prior mean to be µ0 = 0
and the prior covariance V 0 = I , since we can capture
non-zero mean by changing w0 j and non-identity covari-
ance by changing W r. We will call this categorical PCA.
See Chapter 27 TODO for a discussion of related models.

In (Khan et al. 2010), we show that this model out-
performs finite mixture models on the task of imputing
missing entries in design matrices consisting of real and
categorical data. This is useful for analysing social science
survey data, which often has missing data and variables of
mixed type.

12.5 PCA for paired and multi-view data

12.5.1 Supervised PCA (latent factor
regression)

12.5.2 Discriminative supervised PCA

12.5.3 Canonical correlation analysis

12.6 Independent Component Analysis
(ICA)

Let xt ∈ RD be the observed signal at the sensors at time
t, and zt ∈RL be the vector of source signals. We assume
that

xt =Wzt +ϵt (12.50)

where W is an D×L matrix, and ϵt ∼ N (0,Ψ). In this
section, we treat each time point as an independent obser-
vation, i.e., we do not model temporal correlation (so we
could replace the t index with i, but we stick with t to be
consistent with much of the ICA literature). The goal is to
infer the source signals, p(zt |xt ,θ). In this context, W is
called the mixing matrix. If L = D (number of sources =

number of sensors), it will be a square matrix. Often we
will assume the noise level, |Ψ |, is zero, for simplicity.

So far, the model is identical to factor analysis. How-
ever, we will use a different prior for p(zt). In PCA, we
assume each source is independent, and has a Gaussian
distribution. We will now relax this Gaussian assumption
and let the source distributions be any non-Gaussian dis-
tribution

p(zt) =
L

∏
j=1

p j(zt j) (12.51)

Without loss of generality, we can constrain the variance
of the source distributions to be 1, because any other vari-
ance can be modelled by scaling the rows of W appro-
priately. The resulting model is known as independent
component analysis or ICA.

The reason the Gaussian distribution is disallowed as a
source prior in ICA is that it does not permit unique recov-
ery of the sources. This is because the PCA likelihood is
invariant to any orthogonal transformation of the sources
zt and mixing matrix W . PCA can recover the best lin-
ear subspace in which the signals lie, but cannot uniquely
recover the signals themselves.

ICA requires that W is square and hence invertible.
In the non-square case (e.g., where we have more sources
than sensors), we cannot uniquely recover the true sig-
nal, but we can compute the posterior p(zt |xt ,Ŵ), which
represents our beliefs about the source. In both cases, we
need to estimate Was well as the source distributions p j.
We discuss how to do this below.

12.6.1 Maximum likelihood estimation

In this section, we discuss ways to estimate square mix-
ing matrices W for the noise-free ICA model. As usual,
we will assume that the observations have been centered;
hence we can also assume z is zero-mean. In addition, we
assume the observations have been whitened, which can
be done with PCA.

If the data is centered and whitened, we have E[xxT] =
I . But in the noise free case, we also have

cov[x] = E[xxT] =WE[zzT]W T (12.52)

Hence we see that W must be orthogonal. This reduces
the number of parameters we have to estimate from D2 to
D(D− 1)/2. It will also simplify the math and the algo-
rithms.

Let V = W−1; these are often called the recogni-
tion weights, as opposed to W , which are the generative
weights.

Since x=Wz, we have, from Equation 2.46,

76

px(Wzt) = pz(zt)|det(W−1)|
= pz(V xt)|det(V)| (12.53)

Hence we can write the log-likelihood, assuming T iid
samples, as follows:

1
T

log p(D|V) = log |det(V)|+ 1
T

L

∑
j=1

T

∑
t=1

log p j(v
T
j xt)

where v j is the j’th row of V . Since we are constraining
V to be orthogonal, the first term is a constant, so we can
drop it. We can also replace the average over the data with
an expectation operator to get the following objective

NLL(V) =
L

∑
j=1

E[G j(z j)] (12.54)

where z j = vT
j x and G j(z) ≜ − log p j(z). We want to

minimize this subject to the constraint that the rows of V
are orthogonal. We also want them to be unit norm, since
this ensures that the variance of the factors is unity (since,
with whitened data, E[vT

j x] = ∥v j∥2, which is necessary
to fix the scale of the weights. In otherwords, V should be
an orthonormal matrix.

It is straightforward to derive a gradient descent algo-
rithm to fit this model; however, it is rather slow. One can
also derive a faster algorithm that follows the natural gra-
dient; see e.g., (MacKay 2003, ch 34) for details. A pop-
ular alternative is to use an approximate Newton method,
which we discuss in Section 12.6.2. Another approach is
to use EM, which we discuss in Section 12.6.3.

12.6.2 The FastICA algorithm

12.6.3 Using EM

12.6.4 Other estimation principles *

Chapter 13
Sparse linear models

77

Chapter 14
Kernels

14.1 Introduction

So far in this book, we have been assuming that each ob-
ject that we wish to classify or cluster or process in any-
way can be represented as a fixed-size feature vector, typ-
ically of the form xi ∈ RD. However, for certain kinds of
objects, it is not clear how to best represent them as fixed-
sized feature vectors. For example, how do we represent a
text document or protein sequence, which can be of vari-
able length? or a molecular structure, which has complex
3d geometry? or an evolutionary tree, which has variable
size and shape?

One approach to such problems is to define a genera-
tive model for the data, and use the inferred latent repre-
sentation and/or the parameters of the model as features,
and then to plug these features in to standard methods. For
example, in Chapter 28 TODO, we discuss deep learning,
which is essentially an unsupervised way to learn good
feature representations.

Another approach is to assume that we have some way
of measuring the similarity between objects, that doesnt
require preprocessing them into feature vector format. For
example, when comparing strings, we can compute the
edit distance between them. Let κ(x,x′) ≥ 0 be some
measure of similarity between objects κ(x,x′) ∈ X , we
will call κ a kernel function. Note that the word kernel
has several meanings; we will discuss a different interpre-
tation in Section 14.7.1 TODO.

In this chapter, we will discuss several kinds of kernel
functions. We then describe some algorithms that can be
written purely in terms of kernel function computations.
Such methods can be used when we dont have access to
(or choose not to look at) the inside of the objects x that
we are processing.

14.2 Kernel functions

Definition 14.1. A kernel function23 is a real-valued
function of two arguments, κ(x,x′) ∈ R. Typically the
function is symmetric (i.e., κ(x,x′) = κ(x′,x), and
non-negative (i.e., κ(x,x′)≥ 0).

23 http://en.wikipedia.org/wiki/Kernel_
function

We give several examples below.

14.2.1 RBF kernels

The Gaussian kernel or squared exponential kernel(SE
kernel) is defined by

κ(x,x′) = exp
(
−1

2
(x−x′)TΣ−1(x−x′)

)
(14.1)

If Σ is diagonal, this can be written as

κ(x,x′) = exp

(
−1

2

D

∑
j=1

1
σ2

j
(x j− x′j)

2

)
(14.2)

We can interpret the σ j as defining the characteristic
length scale of dimension j.If σ j = ∞, the corresponding
dimension is ignored; hence this is known as the ARD
kernel. If Σ is spherical, we get the isotropic kernel

κ(x,x′) = exp
(
−∥x−x′∥2

2σ2

)
(14.3)

Here σ2 is known as the bandwidth. Equation 14.4
is an example of a radial basis function or RBF kernel,
since it is only a function of ∥x−x′∥2.

14.2.2 TF-IDF kernels

κ(x,x′) =
ϕ(x)T ϕ(x′)

∥ϕ(vecx)∥2∥ϕ(x′)∥2
(14.4)

where ϕ(x) = tf-idf(x).

14.2.3 Mercer (positive definite) kernels

If the kernel function satisfies the requirement that the
Gram matrix, defined by

79

http://en.wikipedia.org/wiki/Kernel_function
http://en.wikipedia.org/wiki/Kernel_function

80

K ≜

 κ(x1,x2) · · ·κ(x1,xN)
...

...
...

κ(xN ,x1) · · ·κ(xN ,xN)

 (14.5)

be positive definite for any set of inputs {xi}N
i=1. We call

such a kernel a Mercer kernel,or positive definite ker-
nel.

If the Gram matrix is positive definite, we can compute
an eigenvector decomposition of it as follows

K =UTΛU (14.6)

where Λ is a diagonal matrix of eigenvalues λi > 0.
Now consider an element of K:

ki j = (Λ
1
2 U :,i)

T (Λ
1
2 U :, j) (14.7)

Let us define ϕ(xi) =Λ
1
2 U :,i, then we can write

ki j = ϕ(xi)
T ϕ(x j) (14.8)

Thus we see that the entries in the kernel matrix can
be computed by performing an inner product of some fea-
ture vectors that are implicitly defined by the eigenvectors
U . In general, if the kernel is Mercer, then there exists a
function ϕ mapping x ∈ X to RD such that

κ(x,x′) = ϕ(x)T ϕ(x′) (14.9)

where ϕ depends on the eigen functions of κ(so D is a
potentially infinite dimensional space).

For example, consider the (non-stationary) polynomial
kernel κ(x,x′) = (γxx′ + r)M , where r > 0. One can
show that the corresponding feature vector ϕ(x) will con-
tain all terms up to degree M. For example, if M = 2,γ =
r = 1 and x,x′ ∈ R2, we have

(xx′+1)2 = (1+ x1x′1 + x2 + x′2)
2

= 1+2x1x′1 +2x2x′2 +(x1x′1)
2 +(x2x′2)

2x1x′1x2x′2
= ϕ(x)T ϕ(x′)

where ϕ(x) = (1,
√

2x1,
√

2x2,x2
1,x

2
2,
√

2x1x2)

In the case of a Gaussian kernel, the feature map lives
in an infinite dimensional space. In such a case, it is
clearly infeasible to explicitly represent the feature vec-
tors.

In general, establishing that a kernel is a Mercer kernel
is difficult, and requires techniques from functional anal-
ysis. However, one can show that it is possible to build up
new Mercer kernels from simpler ones using a set of stan-
dard rules. For example, if κ1 and κ2 are both Mercer, so is
κ(x,x′) = κ1(x,x

′)+κ2(x,x
′) =. See e.g., (Schoelkopf

and Smola 2002) for details.

14.2.4 Linear kernels

κ(x,x′) = xTx′ (14.10)

14.2.5 Matern kernels

The Matern kernel, which is commonly used in Gaussian
process regression (see Section 15.2), has the following
form

κ(r) =
21−ν

Γ (ν)

(√
2νr
ℓ

)ν

Kν

√
2νr
ℓ

(14.11)

where r = ∥x−x′∥, ν > 0, ℓ > 0, and Kν is a modified
Bessel function. As ν→∞, this approaches the SE kernel.
If ν = 1

2 , the kernel simplifies to

κ(r) = exp(−r/ℓ) (14.12)

If D = 1, and we use this kernel to define a Gaussian
process (see Chapter 15 TODO), we get the Ornstein-
Uhlenbeck process, which describes the velocity of a
particle undergoing Brownian motion (the corresponding
function is continuous but not differentiable, and hence is
very jagged).

14.2.6 String kernels

Now let ϕs(x) denote the number of times that substrings
appears in string x. We define the kernel between two
strings x and x′ as

κ(x,x′) = ∑
s∈A∗

wsϕs(x)ϕs(x
′) (14.13)

where ws ≥ 0 and A∗ is the set of all strings (of any
length) from the alphabet A(this is known as the Kleene
star operator). This is a Mercer kernel, and be computed
in O(|x|+ |x′|) time (for certain settings of the weights
{ws}) using suffix trees (Leslie et al. 2003; Vishwanathan
and Smola 2003; Shawe-Taylor and Cristianini 2004).

There are various cases of interest. If we set ws = 0for
|s| > 1 we get a bag-of-characters kernel. This defines
ϕ(x) to be the number of times each character in A oc-
curs in x.If we require s to be bordered by white-space,
we get a bag-of-words kernel, where ϕ(x) counts how
many times each possible word occurs. Note that this is
a very sparse vector, since most words will not be present.
If we only consider strings of a fixed lengthk, we get the k-
spectrum kernel. This has been used to classify proteins
into SCOP superfamilies (Leslie et al. 2003).

81

14.2.7 Pyramid match kernels

14.2.8 Kernels derived from probabilistic
generative models

Suppose we have a probabilistic generative model of
feature vectors, p(x|θ). Then there are several ways we
can use this model to define kernel functions, and thereby
make the model suitable for discriminative tasks. We
sketch two approaches below.

14.2.8.1 Probability product kernels

κ(xi,x j) =
∫

p(x|xi)
ρ p(x|x j)

ρ dx (14.14)

where ρ > 0, and p(x|xi) is often approximated
by p(x|θ̂(xi)),where θ̂(xi) is a parameter estimate
computed using a single data vector. This is called a
probability product kernel(Jebara et al. 2004).

Although it seems strange to fit a model to a single data
point, it is important to bear in mind that the fitted model
is only being used to see how similar two objects are. In
particular, if we fit the model to xi and then the model
thinks x j is likely, this means that xi and x j are similar.
For example, suppose p(x|θ)∼N (µ,σ2I), where σ2 is
fixed. If ρ = 1, and we use µ̂(xi) = xi and µ̂(x j) = x j,
we find (Jebara et al. 2004, p825) that

κ(xi,x j) =
1

(4πσ 2)D/2 exp
(
− 1

4σ2 ∥xi−x j∥2
)

(14.15)
which is (up to a constant factor) the RBF kernel.

It turns out that one can compute Equation 14.14 for
a variety of generative models, including ones with latent
variables, such as HMMs. This provides one way to de-
fine kernels on variable length sequences. Furthermore,
this technique works even if the sequences are of real-
valued vectors, unlike the string kernel in Section 14.2.6.
See (Jebara et al. 2004) for further details

14.2.8.2 Fisher kernels

A more efficient way to use generative models to define
kernels is to use a Fisher kernel (Jaakkola and Haussler
1998) which is defined as follows:

κ(xi,x j) = g(xi)
TF−1g(x j) (14.16)

where g is the gradient of the log likelihood, or score vec-
tor, evaluated at the MLE θ̂

g(x)≜ d
dθ

log p(x|θ)|θ̂ (14.17)

and F is the Fisher information matrix, which is essen-
tially the Hessian:

F ≜
[

∂ 2

∂θi∂θ j
log p(x|θ)

]
|θ̂ (14.18)

Note that θ̂ is a function of all the data, so the similarity
of xi and x j is computed in the context of all the data as
well. Also, note that we only have to fit one model.

14.3 Using kernels inside GLMs

14.3.1 Kernel machines

We define a kernel machine to be a GLM where the input
feature vector has the form

ϕ(x) = (κ(x,µ1), · · · ,κ(x,µK)) (14.19)

where µk ∈ X are a set of K centroids. If κ is an RBF
kernel, this is called an RBF network. We discuss ways
to choose the µk parameters below. We will call Equation
14.19 a kernelised feature vector. Note that in this ap-
proach, the kernel need not be a Mercer kernel.

We can use the kernelized feature vector for logistic
regression by defining p(y|x,θ) = Ber(y|wT ϕ(x)). This
provides a simple way to define a non-linear decision
boundary. For example, see Figure 14.1.

We can also use the kernelized feature vec-
tor inside a linear regression model by defining
p(y|x,θ) =N (y|wT ϕ(x),σ2).

14.3.2 L1VMs, RVMs, and other sparse
vector machines

The main issue with kernel machines is: how do we
choose the centroids µk? We can use sparse vector
machine, L1VM, L2VM, RVM, SVM.

14.4 The kernel trick

Rather than defining our feature vector in terms of kernels,
ϕ(x) = (κ(x,x1), · · · ,κ(x,xN)), we can instead work
with the original feature vectors x, but modify the algo-
rithm so that it replaces all inner products of the form

82

(a)

(b)

(c)

Fig. 14.1: (a) xor truth table. (b) Fitting a linear logistic
regression classifier using degree 10 polynomial

expansion. (c) Same model, but using an RBF kernel
with centroids specified by the 4 black crosses.

< xi,x j > with a call to the kernel function, κ(xi,x j).
This is called the kernel trick. It turns out that many al-
gorithms can be kernelized in this way. We give some ex-
amples below. Note that we require that the kernel be a
Mercer kernel for this trick to work.

14.4.1 Kernelized KNN

The Euclidean distance can be unrolled as

∥xi−x j∥=< xi,xi >+< x j,x j >−2 < xi,x j >
(14.20)

then by replacing all < xi,x j > with κ(xi,x j) we get
Kernelized KNN.

14.4.2 Kernelized K-medoids clustering

K-medoids algorothm is similar to K-means(see Section
11.4.4), but instead of representing each clusters centroid
by the mean of all data vectors assigned to this cluster, we
make each centroid be one of the data vectors themselves.
Thus we always deal with integer indexes, rather than data
objects.

This algorithm can be kernelized by using Equation
14.20 to replace the distance computation.

14.4.3 Kernelized ridge regression

Applying the kernel trick to distance-based methods was
straightforward. It is not so obvious how to apply it to
parametric models such as ridge regression. However, it
can be done, as we now explain. This will serve as a good
warm up for studying SVMs.

14.4.3.1 The primal problem

we rewrite Equation 7.22 as the following

J(w) = (y−Xw)T (y−Xw)+λ∥w∥2 (14.21)

and its solution is given by Equation 7.23.

14.4.3.2 The dual problem

Equation 14.21 is not yet in the form of inner products.
However, using the matrix inversion lemma (Equation
4.107 TODO) we rewrite the ridge estimate as follows

w =XT (XXT +λIN)
−1y (14.22)

which takes O(N3 +N2D) time to compute. This can be
advantageous if D is large. Furthermore, we see that we
can partially kernelize this, by replacing XXT with the
Gram matrix K. But what about the leading XT term?

83

Let us define the following dual variables:

α= (K+λIN)
−1y (14.23)

Then we can rewrite the primal variables as follows

w =XTα=
N

∑
i=1

αixi (14.24)

This tells us that the solution vector is just a linear sum
of the N training vectors. When we plug this in at test time
to compute the predictive mean, we get

y = f (x) =
N

∑
i=1

αix
T
i x=

N

∑
i=1

αiκ(xi,x) (14.25)

So we have succesfully kernelized ridge regression by
changing from primal to dual variables. This technique
can be applied to many other linear models, such as logis-
tic regression.

14.4.3.3 Computational cost

The cost of computing the dual variables α is O(N3),
whereas the cost of computing the primal variables w is
O(D3). Hence the kernel method can be useful in high
dimensional settings, even if we only use a linear kernel
(c.f., the SVD trick in Equation 7.24). However, predic-
tion using the dual variables takes O(ND) time, while pre-
diction using the primal variables only takes O(D) time.
We can speedup prediction by making α sparse, as we
discuss in Section 14.5.

14.4.4 Kernel PCA

TODO

14.5 Support vector machines (SVMs)

In Section 14.3.2, we saw one way to derive a sparse ker-
nel machine, namely by using a GLM with kernel basis
functions, plus a sparsity-promoting prior such as ℓ1 or
ARD. An alternative approach is to change the objective
function from negative log likelihood to some other loss
function, as we discussed in Section 6.4.5. In particular,
consider the ℓ2 regularized empirical risk function

J(w,λ) = ∑ i = 1NL(yi, ŷi)+λ∥w∥2 (14.26)

where ŷi =wTxi +w0.

If L is quadratic loss, this is equivalent to ridge regres-
sion, and if L is the log-loss defined in Equation 6.3, this
is equivalent to logistic regression.

However, if we replace the loss function with some
other loss function, to be explained below, we can ensure
that the solution is sparse, so that predictions only depend
on a subset of the training data, known as support vec-
tors. This combination of the kernel trick plus a modified
loss function is known as a support vector machine or
SVM.

Note that SVMs are very unnatural from a probabilistic
point of view.

• First, they encode sparsity in the loss function rather
than the prior.

• Second, they encode kernels by using an algorithmic
trick, rather than being an explicit part of the model.

• Finally, SVMs do not result in probabilistic outputs,
which causes various difficulties, especially in the
multi-class classification setting (see Section 14.5.2.4
TODO for details).

It is possible to obtain sparse, probabilistic, multi-class
kernel-based classifiers, which work as well or better than
SVMs, using techniques such as the L1VM or RVM, dis-
cussed in Section 14.3.2. However, we include a discus-
sion of SVMs, despite their non-probabilistic nature, for
two main reasons.

• First, they are very popular and widely used, so all stu-
dents of machine learning should know about them.

• Second, they have some computational advantages
over probabilistic methods in the structured output
case; see Section 19.7 TODO.

14.5.1 SVMs for classification

14.5.1.1 Primal form

Representation

H : y = f (x) = sign(wx+b) (14.27)

Evaluation

min
w,b

1
2
∥w∥2 (14.28)

s.t. yi(wxi +b)⩾ 1, i = 1,2, . . . ,N (14.29)

14.5.1.2 Dual form

Representation

84

H : y = f (x) = sign

(
N

∑
i=1

αiyi(x ·xi)+b

)
(14.30)

Evaluation

min
α

1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j(xi ·x j)−
N

∑
i=1

αi(14.31)

s.t.
N

∑
i=1

αiyi = 0 (14.32)

αi ⩾ 0, i = 1,2, . . . ,N (14.33)

14.5.1.3 Primal form with slack variables

Representation

H : y = f (x) = sign(wx+b) (14.34)

Evaluation

min
w,b

C
N

∑
i=1

ξi +
1
2
∥w∥2 (14.35)

s.t. yi(wxi +b)⩾ 1−ξi (14.36)
ξi ⩾ 0, i = 1,2, . . . ,N (14.37)

14.5.1.4 Dual form with slack variables

Representation

H : y = f (x) = sign

(
N

∑
i=1

αiyi(x ·xi)+b

)
(14.38)

Evaluation

min
α

1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j(xi ·x j)−
N

∑
i=1

αi(14.39)

s.t.
N

∑
i=1

αiyi = 0 (14.40)

0 ⩽ αi ⩽C, i = 1,2, . . . ,N (14.41)

αi = 0⇒ yi(w ·xi +b)⩾ 1 (14.42)
αi =C⇒ yi(w ·xi +b)⩽ 1 (14.43)

0 < αi <C⇒ yi(w ·xi +b) = 1 (14.44)

14.5.1.5 Hinge Loss

Linear support vector machines can also be interpreted as
hinge loss minimization:

min
w,b

N

∑
i=1

L(yi, f (xi))+λ∥w∥2 (14.45)

where L(y, f (x)) is a hinge loss function:

L(y, f (x)) =

{
1− y f (x), 1− y f (x)> 0
0, 1− y f (x)⩽ 0

(14.46)

Proof. We can write equation 14.45 as equations 14.35 ∼
14.37.

Define slack variables

ξi ≜ 1− yi(w ·xi +b),ξi ⩾ 0 (14.47)

Then w,b,ξi satisfy the constraints 14.35 and 14.36.
And objective function 14.37 can be written as

min
w,b

N

∑
i=1

ξi +λ∥w∥2

If λ =
1

2C
, then

min
w,b

1
C

(
C

N

∑
i=1

ξi +
1
2
∥w∥2

)
(14.48)

It is equivalent to equation 14.35.

14.5.1.6 Optimization

QP, SMO

14.5.2 SVMs for regression

14.5.2.1 Representation

H : y = f (x) =wTx+b (14.49)

14.5.2.2 Evaluation

J(w) =C
N

∑
i=1

L(yi, f (xi))++
1
2
∥w∥2 (14.50)

where L(y, f (x)) is a epsilon insensitive loss function:

85

L(y, f (x)) =

{
0 , |y− f (x)|< ε
|y− f (x)|− ε , otherwise

(14.51)

and C = 1/λ is a regularization constant.
This objective is convex and unconstrained, but not dif-

ferentiable, because of the absolute value function in the
loss term. As in Section 13.4 TODO, where we discussed
the lasso problem, there are several possible algorithms
we could use. One popular approach is to formulate the
problem as a constrained optimization problem. In partic-
ular, we introduce slack variables to represent the degree
to which each point lies outside the tube:

yi ≤ f (xi)+ ε +ξ+
i

yi ≥ f (xi)− ε−ξ−i

Given this, we can rewrite the objective as follows:

J(w) =C
N

∑
i=1

(ξ+
i +ξ−i)++

1
2
∥w∥2 (14.52)

This is a standard quadratic problem in 2N +D+ 1 vari-
ables.

14.5.3 Choosing C

SVMs for both classification and regression require that
you specify the kernel function and the parameter C. Typ-
ically C is chosen by cross-validation. Note, however, that
C interacts quite strongly with the kernel parameters. For
example, suppose we are using an RBF kernel with pre-
cision γ = 1

2σ2 . If γ = 5, corresponding to narrow ker-
nels, we need heavy regularization, and hence small C(so
λ = 1/Cis big). If γ = 1, a larger value of Cshould be
used. So we see that γ and C are tightly coupled. This is
illustrated in Figure 14.2, which shows the CV estimate
of the 0-1 risk as a function of C and γ .

The authors of libsvm recommend (Hsu et al. 2009)
using CV over a 2d grid with values C ∈ {25,23, · · · ,215}
and γ ∈ {215,213, · · · ,23}. In addition, it is important to
standardize the data first, for a spherical Gaussian kernel
to make sense.

To choose C efficiently, one can develop a path follow-
ing algorithm in the spirit of lars (Section 13.3.4 TODO).
The basic idea is to start with λ large, so that the margin
1/∥w(λ)∥ is wide, and hence all points are inside of it
and have αi = 1. By slowly decreasing λ , a small set of
points will move from inside the margin to outside, and
their αi values will change from 1 to 0, as they cease to
be support vectors. When λ is maximal, the function is
completely smoothed, and no support vectors remain. See
(Hastie et al. 2004) for the details.

(a)

(b)

Fig. 14.2: (a) A cross validation estimate of the 0-1 error
for an SVM classifier with RBF kernel with different

precisions γ = 1/(2σ2) and different regularizer
γ = 1/C, applied to a synthetic data set drawn from a

mixture of 2 Gaussians. (b) A slice through this surface
for γ = 5 The red dotted line is the Bayes optimal error,
computed using Bayes rule applied to the model used to
generate the data. Based on Figure 12.6 of (Hastie et al.

2009).

14.5.4 A probabilistic interpretation of
SVMs

TODO see MLAPP Section 14.5.5

14.5.5 Summary of key points

Summarizing the above discussion, we recognize that
SVM classifiers involve three key ingredients: the kernel
trick, sparsity, and the large margin principle. The kernel
trick is necessary to prevent underfitting, i.e., to ensure
that the feature vector is sufficiently rich that a linear
classifier can separate the data. (Recall from Section
14.2.3 that any Mercer kernel can be viewed as implicitly
defining a potentially high dimensional feature vector.) If
the original features are already high dimensional (as in
many gene expression and text classification problems),
it suffices to use a linear kernel, κ(x,x′) = xTx′ , which
is equivalent to working with the original features.

The sparsity and large margin principles are necessary
to prevent overfitting, i.e., to ensure that we do not use all

86

the basis functions. These two ideas are closely related to
each other, and both arise (in this case) from the use of the
hinge loss function. However, there are other methods of
achieving sparsity (such as ℓ1), and also other methods of
maximizing the margin(such as boosting). A deeper dis-
cussion of this point takes us outside of the scope of this
book. See e.g., (Hastie et al. 2009) for more information.

14.6 Comparison of discriminative kernel
methods

We have mentioned several different methods for classifi-
cation and regression based on kernels, which we summa-
rize in Table 14.1. (GP stands for Gaussian process, which
we discuss in Chapter 15 TODO.) The columns have the
following meaning:

• Optimize w: a key question is whether the objective
J(w = − log p(D|w)− log p(w)) is convex or not.
L2VM, L1VM and SVMs have convex objectives.
RVMs do not. GPs are Bayesian methods that do not
perform parameter estimation.

• Optimize kernel: all the methods require that one tune
the kernel parameters, such as the bandwidth of the
RBF kernel, as well as the level of regularization. For
methods based on Gaussians, including L2VM, RVMs
and GPs, we can use efficient gradient based optimiz-
ers to maximize the marginal likelihood. For SVMs,
and L1VM, we must use cross validation, which is
slower (see Section 14.5.3).

• Sparse: L1VM, RVMs and SVMs are sparse kernel
methods, in that they only use a subset of the train-
ing examples. GPs and L2VM are not sparse: they use
all the training examples. The principle advantage of
sparsity is that prediction at test time is usually faster.
In addition, one can sometimes get improved accuracy.

• Probabilistic: All the methods except for SVMs pro-
duce probabilistic output of the form p(y|x). SVMs
produce a confidence value that can be converted to
a probability, but such probabilities are usually very
poorly calibrated (see Section 14.5.2.3 TODO).

• Multiclass: All the methods except for SVMs naturally
work in the multiclass setting, by using a multinoulli
output instead of Bernoulli. The SVM can be made into
a multiclass classifier, but there are various difficulties
with this approach, as discussed in Section 14.5.2.4
TODO.

• Mercer kernel: SVMs and GPs require that the kernel
is positive definite; the other techniques do not.

Method Opt. w Opt. Sparse Prob. Multiclass Non-Mercer Section

L2VM Convex EB No Yes Yes Yes 14.3.2
L1VM Convex CV Yes Yes Yes Yes 14.3.2
RVM Not convex EB Yes Yes Yes Yes 14.3.2
SVM Convex CV Yes No Indirectly No 14.5
GP N/A EB No Yes Yes No 15

Table 14.1: Comparison of various kernel based
classifiers. EB = empirical Bayes, CV = cross validation.

See text for details

14.7 Kernels for building generative models

TODO

Chapter 15
Gaussian processes

15.1 Introduction

In supervised learning, we observe some inputs xi and
some outputs yi. We assume that yi = f (xi), for some un-
known function f , possibly corrupted by noise. The opti-
mal approach is to infer a distribution over functions given
the data, p(f |D), and then to use this to make predictions
given new inputs, i.e., to compute

p(y|x,D) =
∫

p(y| f ,x)p(f |D)d f (15.1)

Up until now, we have focussed on parametric repre-
sentations for the function f , so that instead of inferring
p(f |D), we infer p(θ|D). In this chapter, we discuss a
way to perform Bayesian inference over functions them-
selves.

Our approach will be based on Gaussian processes or
GPs. A GP defines a prior over functions, which can be
converted into a posterior over functions once we have
seen some data.

It turns out that, in the regression setting, all these com-
putations can be done in closed form, in O(N3) time. (We
discuss faster approximations in Section 15.6.) In the clas-
sification setting, we must use approximations, such as the
Gaussian approximation, since the posterior is no longer
exactly Gaussian.

GPs can be thought of as a Bayesian alternative to
the kernel methods we discussed in Chapter 14, includ-
ing L1VM, RVM and SVM.

15.2 GPs for regression

Let the prior on the regression function be a GP, denoted
by

f (x)∼ GP(m(x),κ(x,x′)) (15.2)

where m(x is the mean function and κ(x,x′) is the kernel
or covariance function, i.e.,

m(x= E[f (x)] (15.3)

κ(x,x′) = E[(f (x)−m(x))(f (x)−m(x))T] (15.4)

where κ is a positive definite kernel.

15.3 GPs meet GLMs

15.4 Connection with other methods

15.5 GP latent variable model

15.6 Approximation methods for large
datasets

87

Chapter 16
Adaptive basis function models

16.1 AdaBoost

16.1.1 Representation

y = sign(f (x)) = sign

(
m

∑
i=1

αmGm(x)

)
(16.1)

where Gm(x) are sub classifiers.

16.1.2 Evaluation

L(y, f (x)) = exp[−y f (x)] i.e., exponential loss function

(αm,Gm(x)) = argmin
α,G

N

∑
i=1

exp [−yi(fm−1(xi)+αG(xi))]

(16.2)
Define w̄mi = exp [−yi(fm−1(xi)], which is constant

w.r.t. α,G

(αm,Gm(x)) = argmin
α ,G

N

∑
i=1

w̄mi exp(−yiαG(xi)) (16.3)

16.1.3 Optimization

16.1.3.1 Input

D = {(x1,y1),(x2,y2), . . . ,(xN ,yN)}
where xi ∈ RD, yi ∈ {−1,+1}

Weak classifiers {G1,G2, . . . ,Gm}

16.1.3.2 Output

Final classifier: G(x)

16.1.3.3 Algorithm

1. Initialize the weights’ distribution of training
data(when m = 1)

D0 = (w11,w12, · · · ,w1n) = (
1
N
,

1
N
, · · · , 1

N
)

2. Iterate over m = 1,2, . . . ,M
(a) Use training data with current weights’ distribu-

tion Dm to get a classifier Gm(x)
(b) Compute the error rate of Gm(x) over the

training data

em = P(Gm(xi) ̸= yi) =
N

∑
i=1

wmiI(Gm(xi) ̸= yi) (16.4)

(c) Compute the coefficient of classifier Gm(x)

αm =
1
2

log
1− em

em
(16.5)

(d) Update the weights’ distribution of training data

wm+1,i =
wmi

Zm
exp(−αmyiGm(xi)) (16.6)

where Zm is the normalizing constant

Zm =
N

∑
i=1

wmi exp(−αmyiGm(xi)) (16.7)

3. Ensemble M weak classifiers

G(x) = sign f (x) = sign

[
M

∑
m=1

αmGm(x)

]
(16.8)

16.1.4 The upper bound of the training
error of AdaBoost

Theorem 16.1. The upper bound of the training error of
AdaBoost is

1
N

N

∑
i=1

I(G(xi) ̸= yi)≤
1
N

N

∑
i=1

exp(−yi f (xi)) =
M

∏
m=1

Zm

(16.9)

89

90

Note: the following equation would help proof this the-
orem

wmi exp(−αmyiGm(xi)) = Zmwm+1,i (16.10)

Chapter 17
Hidden markov Model

17.1 Introduction

17.2 Markov models

91

Chapter 18
State space models

93

Chapter 19
Undirected graphical models (Markov random fields)

95

Chapter 20
Exact inference for graphical models

97

Chapter 21
Variational inference

99

Chapter 22
More variational inference

101

Chapter 23
Monte Carlo inference

103

Chapter 24
Markov chain Monte Carlo (MCMC)inference

24.1 Introduction

In Chapter 23, we introduced some simple Monte Carlo
methods, including rejection sampling and importance
sampling. The trouble with these methods is that they do
not work well in high dimensional spaces. The most pop-
ular method for sampling from high-dimensional distribu-
tions is Markov chain Monte Carlo or MCMC.

The basic idea behind MCMC is to construct a Markov
chain (Section 17.2) on the state space X whose station-
ary distribution is the target density p∗(x) of interest (this
may be a prior or a posterior). That is, we perform a ran-
dom walk on the state space, in such a way that the frac-
tion of time we spend in each state x is proportional to
p∗(x). By drawing (correlated!) samples x0,x1,x2, · · ·
from the chain, we can perform Monte Carlo integration
wrt p∗.

24.2 Metropolis Hastings algorithm

24.3 Gibbs sampling

24.4 Speed and accuracy of MCMC

24.5 Auxiliary variable MCMC *

105

Chapter 25
Clustering

107

Chapter 26
Graphical model structure learning

109

Chapter 27
Latent variable models for discrete data

27.1 Introduction

In this chapter, we are concerned with latent variable mod-
els for discrete data, such as bit vectors, sequences of cat-
egorical variables, count vectors, graph structures, rela-
tional data, etc. These models can be used to analyse vot-
ing records, text and document collections, low-intensity
images, movie ratings, etc. However, we will mostly focus
on text analysis, and this will be reflected in our terminol-
ogy.

Since we will be dealing with so many different kinds
of data, we need some precise notation to keep things
clear. When modeling variable-length sequences of cat-
egorical variables (i.e., symbols or tokens), such as words
in a document, we will let yil ∈ {1, · · · ,V} represent the
identity of the l’th word in document i,where V is the
number of possible words in the vocabulary. We assume
l = 1 : Li, where Li is the (known) length of document i,
and i = 1 : N, where N is the number of documents.

We will often ignore the word order, resulting in a bag
of words. This can be reduced to a fixed length vector of
counts (a histogram). We will use niv ∈ {0,1, · · · ,Li} to
denote the number of times word v occurs in document i,
for v = 1 : V . Note that the N×V count matrix N is often
large but sparse, since we typically have many documents,
but most words do not occur in any given document.

In some cases, we might have multiple different bags of
words, e.g., bags of text words and bags of visual words.
These correspond to different channels or types of fea-
tures. We will denote these by yirl , for r = 1 : R(the num-
ber of responses) and l = 1 : Lir. If Lir = 1,it means we
have a single token (a bag of length 1); in this case, we
just write yir ∈ {1, · · · ,Vr} for brevity. If every channel is
just a single token, we write the fixed-size response vec-
tor as yi,1:R; in this case, the N×R design matrix Y will
not be sparse. For example, in social science surveys, yir
could be the response of personito the r’th multi-choice
question.

Out goal is to build joint probability models of p(yi)
or p(ni) using latent variables to capture the correlations.
We will then try to interpret the latent variables, which
provide a compressed representation of the data. We pro-
vide an overview of some approaches in Section 27.2
TODO, before going into more detail in later sections.

27.2 Distributed state LVMs for discrete
data

111

Chapter 28
Deep learning

113

Appendix A
Optimization methods

A.1 Convexity

Definition A.1. (Convex set) We say aset S is convex if
for any x1,x2 ∈ S, we have

λx1 +(1−λ)x2 ∈ S,∀λ ∈ [0,1] (A.1)

Definition A.2. (Convex function) A function f (x) is
called convex if its epigraph(the set of points above the
function) defines a convex set. Equivalently, a function
f (x) is called convex if it is defined on a convex set and
if, for any x1,x2 ∈ S , and any λ ∈ [0,1], we have

f (λx1 +(1−λ)x2)≤ λ f (x1)+(1−λ) f (x2) (A.2)

Definition A.3. A function f (x) is said to be strictly con-
vex if the inequality is strict

f (λx1 +(1−λ)x2)< λ f (x1)+(1−λ) f (x2) (A.3)

Definition A.4. A function f (x) is said to be (strictly)
concave if − f (x) is (strictly) convex.

Theorem A.1. If f (x) is twice differentiable on [a,b] and
f ′′(x)≥ 0 on [a,b] then f (x) is convex on [a,b].

Proposition A.1. log(x) is strictly convex on (0,∞).

Intuitively, a (strictly) convex function has a bowl
shape, and hence has a unique global minimum x∗ cor-
responding to the bottom of the bowl. Hence its second
derivative must be positive everywhere, d2

dx2 f (x) > 0. A
twice-continuously differentiable, multivariate function
f is convex iff its Hessian is positive definite for all x.
In the machine learning context, the function f often
corresponds to the NLL.

Models where the NLL is convex are desirable, since
this means we can always find the globally optimal MLE.
We will see many examples of this later in the book. How-
ever, many models of interest will not have concave like-
lihoods. In such cases, we will discuss ways to derive lo-
cally optimal parameter estimates.

A.2 Gradient descent

A.2.1 Stochastic gradient descent

input : Training data D = {(xi,yi)|i = 1 : N}
output: A linear model: yi = θTx

w← 0; b← 0; k← 0;
while no mistakes made within the for loop do

for i← 1 to N do
if yi(w ·xi +b)≤ 0 then

w←w+ηyixi;
b← b+ηyi;
k← k+1;

end
end

end
Algorithm 5: Stochastic gradient descent

A.2.2 Batch gradient descent

A.2.3 Line search

The line search1 approach first finds a descent direc-
tion along which the objective function f will be reduced
and then computes a step size that determines how far x
should move along that direction. The descent direction
can be computed by various methods, such as gradient
descent(Section A.2), Newton’s method(Section A.4) and
Quasi-Newton method(Section A.5). The step size can be
determined either exactly or inexactly.

1 http://en.wikipedia.org/wiki/Line_search

115

http://en.wikipedia.org/wiki/Line_search

116 A Optimization methods

A.2.4 Momentum term

A.3 Lagrange duality

A.3.1 Primal form

Consider the following, which we’ll call the primal opti-
mization problem:

xyz (A.4)

A.3.2 Dual form

A.4 Newton’s method

f (x)≈ f (xk)+gT
k (x−xk)+

1
2
(x−xk)

THk(x−xk)

where gk ≜ g(xk) = f ′(xk),Hk ≜H(xk),

H(x)≜
[

∂ 2 f
∂xi∂x j

]
D×D

(Hessian matrix)

f ′(x) = gk +Hk(x−xk) = 0⇒ (A.5)

xk+1 = xk−H−1
k gk (A.6)

Initialize x0
while (!convergency) do

Evaluate gk = ∇ f (xk)
Evaluate Hk = ∇2 f (xk)
dk =−H−1

k gk
Use line search to find step size ηk along dk
xk+1 = xk +ηkdk

end
Algorithm 6: Newtons method for minimizing a strictly
convex function

A.5 Quasi-Newton method

From Equation A.5 we can infer out the quasi-Newton
condition as follows:

f ′(x)−gk =Hk(x−xk)

gk−1−gk =Hk(xk−1−xk)⇒
gk−gk−1 =Hk(xk−xk−1)

gk+1−gk =Hk+1(xk+1−xk) (quasi-Newton condition)
(A.7)

The idea is to replace H−1
k with a approximation Bk,

which satisfies the following properties:

1. Bk must be symmetric
2. Bk must satisfies the quasi-Newton condition, i.e.,

gk+1−gk =Bk+1(xk+1−xk).
Let yk = gk+1−gk, δk = xk+1−xk, then

Bk+1yk = δk (A.8)

3. Subject to the above, Bk should be as close as possible
to Bk−1.

Note that we did not require that Bk be positive defi-
nite. That is because we can show that it must be positive
definite if Bk−1 is. Therefore, as long as the initial Hes-
sian approximation B0 is positive definite, all Bk are, by
induction.

A.5.1 DFP

Updating rule:

Bk+1 =Bk +P k +Qk (A.9)

From Equation A.8 we can get

Bk+1yk =Bkyk +P kyk +Qkyk = δk

To make the equation above establish, just let

P kyk = δk

Qkyk =−Bkyk

In DFP algorithm, P k and Qk are

P k =
δkδ

T
k

δT
k yk

(A.10)

Qk =−
Bkyky

T
k Bk

yT
k Bkyk

(A.11)

A.5.2 BFGS

Use Bk as a approximation to Hk, then the quasi-Newton
condition becomes

Bk+1δk = yk (A.12)

The updating rule is similar to DFP, but P k and Qk are
different. Let

A.5 Quasi-Newton method 117

P kδk = yk

Qkδk =−Bkδk

Then

P k =
yky

T
k

yT
k δk

(A.13)

Qk =−
Bkδkδ

T
k Bk

δT
k Bkδk

(A.14)

A.5.3 Broyden

Broyden’s algorithm is a linear combination of DFP and
BFGS.

Glossary

feture vector A feture vector to represent one data.

loss function a function that maps an event onto a real
number intuitively representing some ”cost” associated
with the event.

glossary term Write here the description of the glos-
sary term. Write here the description of the glossary term.
Write here the description of the glossary term.

119

	Contents
	Notation
	1 Introduction
	1.1 Types of machine learning
	1.2 Three elements of a machine learning model
	1.2.1 Representation
	1.2.2 Evaluation
	1.2.3 Optimization

	1.3 Some basic concepts
	1.3.1 Parametric vs non-parametric models
	1.3.2 A simple non-parametric classifier: K-nearest neighbours
	1.3.3 Overfitting
	1.3.4 Cross validation
	1.3.5 Model selection

	2 Probability
	2.1 Frequentists vs. Bayesians
	2.2 A brief review of probability theory
	2.2.1 Basic concepts
	2.2.2 Mutivariate random variables
	2.2.3 Bayes rule
	2.2.4 Independence and conditional independence
	2.2.5 Quantiles
	2.2.6 Mean and variance

	2.3 Some common discrete distributions
	2.3.1 The Bernoulli and binomial distributions
	2.3.2 The multinoulli and multinomial distributions
	2.3.3 The Poisson distribution
	2.3.4 The empirical distribution

	2.4 Some common continuous distributions
	2.4.1 Gaussian (normal) distribution
	2.4.2 Student's t-distribution
	2.4.3 The Laplace distribution
	2.4.4 The gamma distribution
	2.4.5 The beta distribution
	2.4.6 Pareto distribution

	2.5 Joint probability distributions
	2.5.1 Covariance and correlation
	2.5.2 Multivariate Gaussian distribution
	2.5.3 Multivariate Student's t-distribution
	2.5.4 Dirichlet distribution

	2.6 Transformations of random variables
	2.6.1 Linear transformations
	2.6.2 General transformations
	2.6.3 Central limit theorem

	2.7 Monte Carlo approximation
	2.8 Information theory
	2.8.1 Entropy
	2.8.2 KL divergence
	2.8.3 Mutual information

	3 Generative models for discrete data
	3.1 Generative classifier
	3.2 Bayesian concept learning
	3.2.1 Likelihood
	3.2.2 Prior
	3.2.3 Posterior
	3.2.4 Posterior predictive distribution

	3.3 The beta-binomial model
	3.3.1 Likelihood
	3.3.2 Prior
	3.3.3 Posterior
	3.3.4 Posterior predictive distribution

	3.4 The Dirichlet-multinomial model
	3.4.1 Likelihood
	3.4.2 Prior
	3.4.3 Posterior
	3.4.4 Posterior predictive distribution

	3.5 Naive Bayes classifiers
	3.5.1 Optimization
	3.5.2 Using the model for prediction
	3.5.3 The log-sum-exp trick
	3.5.4 Feature selection using mutual information
	3.5.5 Classifying documents using bag of words

	4 Gaussian Models
	4.1 Basics
	4.1.1 MLE for a MVN
	4.1.2 Maximum entropy derivation of the Gaussian *

	4.2 Gaussian discriminant analysis
	4.2.1 Quadratic discriminant analysis (QDA)
	4.2.2 Linear discriminant analysis (LDA)
	4.2.3 Two-class LDA
	4.2.4 MLE for discriminant analysis
	4.2.5 Strategies for preventing overfitting
	4.2.6 Regularized LDA *
	4.2.7 Diagonal LDA
	4.2.8 Nearest shrunken centroids classifier *

	4.3 Inference in jointly Gaussian distributions
	4.3.1 Statement of the result
	4.3.2 Examples

	4.4 Linear Gaussian systems
	4.4.1 Statement of the result

	4.5 Digression: The Wishart distribution *
	4.6 Inferring the parameters of an MVN
	4.6.1 Posterior distribution of
	4.6.2 Posterior distribution of *
	4.6.3 Posterior distribution of and *
	4.6.4 Sensor fusion with unknown precisions *

	5 Bayesian statistics
	5.1 Introduction
	5.2 Summarizing posterior distributions
	5.2.1 MAP estimation
	5.2.2 Credible intervals
	5.2.3 Inference for a difference in proportions

	5.3 Bayesian model selection
	5.3.1 Bayesian Occam's razor
	5.3.2 Computing the marginal likelihood (evidence)
	5.3.3 Bayes factors

	5.4 Priors
	5.4.1 Uninformative priors
	5.4.2 Robust priors
	5.4.3 Mixtures of conjugate priors

	5.5 Hierarchical Bayes
	5.6 Empirical Bayes
	5.7 Bayesian decision theory
	5.7.1 Bayes estimators for common loss functions
	5.7.2 The false positive vs false negative tradeoff

	6 Frequentist statistics
	6.1 Sampling distribution of an estimator
	6.1.1 Bootstrap
	6.1.2 Large sample theory for the MLE *

	6.2 Frequentist decision theory
	6.3 Desirable properties of estimators
	6.4 Empirical risk minimization
	6.4.1 Regularized risk minimization
	6.4.2 Structural risk minimization
	6.4.3 Estimating the risk using cross validation
	6.4.4 Upper bounding the risk using statistical learning theory *
	6.4.5 Surrogate loss functions

	6.5 Pathologies of frequentist statistics *

	7 Linear Regression
	7.1 Introduction
	7.2 Representation
	7.3 MLE
	7.3.1 OLS
	7.3.2 SGD

	7.4 Ridge regression(MAP)
	7.4.1 Basic idea
	7.4.2 Numerically stable computation *
	7.4.3 Connection with PCA *
	7.4.4 Regularization effects of big data

	7.5 Bayesian linear regression

	8 Logistic Regression
	8.1 Representation
	8.2 Optimization
	8.2.1 MLE
	8.2.2 MAP

	8.3 Multinomial logistic regression
	8.3.1 Representation
	8.3.2 MLE
	8.3.3 MAP

	8.4 Bayesian logistic regression
	8.4.1 Laplace approximation
	8.4.2 Derivation of the BIC
	8.4.3 Gaussian approximation for logistic regression
	8.4.4 Approximating the posterior predictive
	8.4.5 Residual analysis (outlier detection) *

	8.5 Online learning and stochastic optimization
	8.5.1 The perceptron algorithm

	8.6 Generative vs discriminative classifiers
	8.6.1 Pros and cons of each approach
	8.6.2 Dealing with missing data
	8.6.3 Fisher’s linear discriminant analysis (FLDA) *

	9 Generalized linear models and the exponential family
	9.1 The exponential family
	9.1.1 Definition
	9.1.2 Examples
	9.1.3 Log partition function
	9.1.4 MLE for the exponential family
	9.1.5 Bayes for the exponential family
	9.1.6 Maximum entropy derivation of the exponential family *

	9.2 Generalized linear models (GLMs)
	9.2.1 Basics

	9.3 Probit regression
	9.4 Multi-task learning

	10 Directed graphical models (Bayes nets)
	10.1 Introduction
	10.1.1 Chain rule
	10.1.2 Conditional independence
	10.1.3 Graphical models
	10.1.4 Directed graphical model

	10.2 Examples
	10.2.1 Naive Bayes classifiers
	10.2.2 Markov and hidden Markov models

	10.3 Inference
	10.4 Learning
	10.4.1 Learning from complete data
	10.4.2 Learning with missing and/or latent variables

	10.5 Conditional independence properties of DGMs
	10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties)
	10.5.2 Other Markov properties of DGMs
	10.5.3 Markov blanket and full conditionals
	10.5.4 Multinoulli Learning

	10.6 Influence (decision) diagrams *

	11 Mixture models and the EM algorithm
	11.1 Latent variable models
	11.2 Mixture models
	11.2.1 Mixtures of Gaussians
	11.2.2 Mixtures of multinoullis
	11.2.3 Using mixture models for clustering
	11.2.4 Mixtures of experts

	11.3 Parameter estimation for mixture models
	11.3.1 Unidentifiability
	11.3.2 Computing a MAP estimate is non-convex

	11.4 The EM algorithm
	11.4.1 Introduction
	11.4.2 Basic idea
	11.4.3 EM for GMMs
	11.4.4 EM for K-means
	11.4.5 EM for mixture of experts
	11.4.6 EM for DGMs with hidden variables
	11.4.7 EM for the Student distribution *
	11.4.8 EM for probit regression *
	11.4.9 Derivation of the Q function
	11.4.10 Convergence of the EM Algorithm *
	11.4.11 Generalization of EM Algorithm *
	11.4.12 Online EM
	11.4.13 Other EM variants *

	11.5 Model selection for latent variable models
	11.5.1 Model selection for probabilistic models
	11.5.2 Model selection for non-probabilistic methods

	11.6 Fitting models with missing data
	11.6.1 EM for the MLE of an MVN with missing data

	12 Latent linear models
	12.1 Factor analysis
	12.1.1 FA is a low rank parameterization of an MVN
	12.1.2 Inference of the latent factors
	12.1.3 Unidentifiability
	12.1.4 Mixtures of factor analysers
	12.1.5 EM for factor analysis models
	12.1.6 Fitting FA models with missing data

	12.2 Principal components analysis (PCA)
	12.2.1 Classical PCA
	12.2.2 Singular value decomposition (SVD)
	12.2.3 Probabilistic PCA
	12.2.4 EM algorithm for PCA

	12.3 Choosing the number of latent dimensions
	12.3.1 Model selection for FA/PPCA
	12.3.2 Model selection for PCA

	12.4 PCA for categorical data
	12.5 PCA for paired and multi-view data
	12.5.1 Supervised PCA (latent factor regression)
	12.5.2 Discriminative supervised PCA
	12.5.3 Canonical correlation analysis

	12.6 Independent Component Analysis (ICA)
	12.6.1 Maximum likelihood estimation
	12.6.2 The FastICA algorithm
	12.6.3 Using EM
	12.6.4 Other estimation principles *

	13 Sparse linear models
	14 Kernels
	14.1 Introduction
	14.2 Kernel functions
	14.2.1 RBF kernels
	14.2.2 TF-IDF kernels
	14.2.3 Mercer (positive definite) kernels
	14.2.4 Linear kernels
	14.2.5 Matern kernels
	14.2.6 String kernels
	14.2.7 Pyramid match kernels
	14.2.8 Kernels derived from probabilistic generative models

	14.3 Using kernels inside GLMs
	14.3.1 Kernel machines
	14.3.2 L1VMs, RVMs, and other sparse vector machines

	14.4 The kernel trick
	14.4.1 Kernelized KNN
	14.4.2 Kernelized K-medoids clustering
	14.4.3 Kernelized ridge regression
	14.4.4 Kernel PCA

	14.5 Support vector machines (SVMs)
	14.5.1 SVMs for classification
	14.5.2 SVMs for regression
	14.5.3 Choosing C
	14.5.4 A probabilistic interpretation of SVMs
	14.5.5 Summary of key points

	14.6 Comparison of discriminative kernel methods
	14.7 Kernels for building generative models

	15 Gaussian processes
	15.1 Introduction
	15.2 GPs for regression
	15.3 GPs meet GLMs
	15.4 Connection with other methods
	15.5 GP latent variable model
	15.6 Approximation methods for large datasets

	16 Adaptive basis function models
	16.1 AdaBoost
	16.1.1 Representation
	16.1.2 Evaluation
	16.1.3 Optimization
	16.1.4 The upper bound of the training error of AdaBoost

	17 Hidden markov Model
	17.1 Introduction
	17.2 Markov models

	18 State space models
	19 Undirected graphical models (Markov random fields)
	20 Exact inference for graphical models
	21 Variational inference
	22 More variational inference
	23 Monte Carlo inference
	24 Markov chain Monte Carlo (MCMC)inference
	24.1 Introduction
	24.2 Metropolis Hastings algorithm
	24.3 Gibbs sampling
	24.4 Speed and accuracy of MCMC
	24.5 Auxiliary variable MCMC *

	25 Clustering
	26 Graphical model structure learning
	27 Latent variable models for discrete data
	27.1 Introduction
	27.2 Distributed state LVMs for discrete data

	28 Deep learning
	A Optimization methods
	A.1 Convexity
	A.2 Gradient descent
	A.2.1 Stochastic gradient descent
	A.2.2 Batch gradient descent
	A.2.3 Line search
	A.2.4 Momentum term

	A.3 Lagrange duality
	A.3.1 Primal form
	A.3.2 Dual form

	A.4 Newton's method
	A.5 Quasi-Newton method
	A.5.1 DFP
	A.5.2 BFGS
	A.5.3 Broyden

	Glossary

