

Please ask questions!

http://research.microsoft.com/~cmbishop

First Generation

"Artificial Intelligence" (GOFAI)

Within a generation ... the problem of creating 'artificial intelligence' will largely be solved

Marvin Minsky (1967)

Expert Systems (1980s)

knowledge-based Al

rules elicited from humans

Combinatorial explosion

General theme: hand-crafted rules

Second Generation

Neural networks, support vector machines

Difficult to incorporate complex domain knowledge

General theme: black-box statistical models

Third Generation

General theme: deep integration of domain knowledge and statistical learning

Bayesian framework

Probabilistic graphical models

Fast inference using local message-passing

Origins: Bayesian networks, decision theory, HMMs, Kalman filters, MRFs, mean field theory, ...

Probability Theory

Apples and Oranges

Fruit is orange, what is probability that box was blue?

The Rules of Probability

Sum rule

$$p(X) = \sum_{Y} p(X, Y)$$

Product rule

$$p(X,Y) = p(Y|X)p(X)$$

$$p(X) \geqslant 0 \qquad \qquad \sum_{X} p(X) = 1$$

Bayes' Theorem

$$p(Y|X) = \frac{p(X,Y)}{p(X)}$$
$$= \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X,Y)$$
$$= \sum_{Y} p(X|Y)p(Y)$$

Oranges and Apples

Suppose p(B = r) = 2/5

Suppose we select an orange

Then

$$p(F = o) = p(F = o|B = r)p(B = r) + p(F = o|B = b)p(B = b)$$

= 9/20

and hence

$$p(B = r|F = o) = \frac{p(F = o|B = r)p(B = r)}{p(F = o)}$$
$$= 2/3$$

Probability Densities

Bayesian Inference

Consistent use of probability to quantify uncertainty

Predictions involve marginalisation, e.g.

$$p(\mathbf{y}|\mathbf{X}) = \int p(\mathbf{y}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X}) d\boldsymbol{\theta}$$

Why is prior knowledge important?

Probabilistic Graphical Models

Combine probability theory with graphs

- ✓ new insights into existing models
- ✓ framework for designing new models
- ✓ Graph-based algorithms for calculation and computation (c.f. Feynman diagrams in physics)
- √ efficient software implementation

Directed graphs to specify the model Factor graphs for inference and learning

Decomposition

Consider an arbitrary joint distribution

By successive application of the product rule:

$$p(x, y, z) = p(x)p(y, z|x) x$$

$$= p(x)p(y|x)p(z|x, y)$$

Directed Graphs

Arrows indicate causal relationships

MAAS

Manchester Asthma and Allergies Study

Goal: discover environmental and genetic causes of asthma

1,186 children monitored since birth

640k SNPs per child

Many environment and physiological measurements:

skin and IgE blood tests at age 1, 3, 5, and 8

wheezing, methacholine response,

pets, parental smoking, day-care, breast feeding, ...

Factor Graphs

$$p(x_1, x_2, x_3) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

From Directed Graph to Factor Graph

$$p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3|x_1, x_2)$$

Inference on Graphs

$$ab + ac = a(b+c)$$

Factor Trees: Separation

Messages: From Factors To Variables

Messages: From Variables To Factors

What if the graph is not a tree?

Keep iterating the messages:

loopy belief propagation

What if marginalisations are not tractable?

Illustration: Bayesian Ranking

Ralf Herbrich Tom Minka Thore Graepel

Goal: global ranking from noisy partial rankings

Conventional approach: Elo (used in chess)

maintains a single strength value for each player cannot handle team games, or > 2 players

Two Player Match Outcome Model

$$p(y_{12} = (1,2)|\pi_1,\pi_2) = I(\pi_1 > \pi_2)$$

Two Team Match Outcome Model

$$p(t_1|s_1, s_2) = \mathcal{N}(t_1|s_1 + s_2, 2\beta^2)$$

Multiple Team Match Outcome Model

Skill Dynamics

$$p(s_i'|s_i) = \mathcal{N}(s_i'|s_i, \tau^2)$$

*TrueSkill*TM

Xbox 360 Live: launched September 2005

TrueSkillTM for ranking and to match players

10M active users, 2.5M matches per day

"Planet-scale" application of Bayesian methods

research.microsoft.com/infernet

Tom Minka John Winn John Guiver Anitha Kannan

Infer.Net demonstration

