

Eric Shook †, Kalev Leetaru ‡, Guofeng Cao †, Anand Padmanabhan †§ and Shaowen Wang †§

{eshook2,leetaru,guofeng,apadmana,shaowen}@illinois.edu

 Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign
University of Illinois at Urbana-Champaign
§ National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

October 8, 2012

Untapped Spatial Information

Untapped Spatial Information

6 0380

issue do

facebook

Facebook helps you connect and share with the people in your life.

Follow your interests

Instant updates from your friends, industry experts, favorite celebrities, and what's happening around the world.

Goal

Develop a geospatial visual analytical approach and system architecture that transforms vast amounts of textual data into emotional heatmaps for capturing spatial characteristics of latent tones

System Architecture Heatmap Approach Parallelization of Spatial Methods Concluding Discussions

System Architecture

Extracting Information from Text

Fulltext Geocoding

... I love Chicago, IL ...

... New York City is awful ...

Extracting Information from Text

Point Cloud Visualization

Point Cloud Visualization

Inside the CyberGIS "Blackbox"

CyberGIS is a new generation of Geographic Information Systems (GIS), which are designed to read, write, analyze, and visualize spatiotemporal data, supported by CyberInfrastructure (CI)

Inside the CyberGIS "Blackbox"

Heatmap

"The most advanced, powerful, and robust collection of integrated advanced digital resources and services in the world" (https://www.xsede.org/overview)

Extreme Science and Engineering Discovery Environment (XSEDE)

System Architecture Heatmap Approach Parallelization of Spatial Methods Concluding Discussions

Heatmap Approach

Goal:

Capture 3 important elements extracted from text in a single map

- 1. Importance of <u>location</u> Article Density
 - 2. Prevalence of <u>topic</u> Topic intensity
 - 3. Emotion toward topic Tone

Emotional Heatmap

Article Density

*

*

Topic Intensity

Tone

The SGI Wikipedia Project

Kalev Leetaru used an SGI UV2000 supercomputer to apply fulltext geocoding and sentiment mining to the English edition of Wikipedia extracting over 80 million locations

As a case study we generated emotional heatmaps of "armed conflict" for the year 2003 from this Wikipedia dataset

Emotional Heatmap of Armed Conflict in 2003 (Wikipedia)

System Architecture Heatmap Approach **Parallelization of Spatial Methods** Concluding Discussions

Spatial Analysis Methods

- 1) Kernel density estimation (KDE) estimates a probability density function
- 2) Inverse distance weighted (IDW) interpolation estimates continuous surfaces such as tone

Both methods <u>transform point-based data into 2D</u> <u>lattice data referred to as raster surfaces</u> based on a *K* nearest neighbor search

OpenMP

- OpenMP is a shared memory paradigm to facilitate coordination amongst threads executing in parallel
- **Portable** supported by most supercomputers
- Scalable enables parallel execution of hundreds if not thousands of threads
- **Simple** The interface is designed for simplicity and flexibility

OpenMP

- Row-based spatial domain decomposition
 - Easy to parallelize in OpenMP
- Dynamic thread scheduling
 - Automatic load-balancing
 - Each thread is assigned a small chunk of rows (e.g. 2)
 - Once a thread finishes their chunk of rows they are assigned a new chunk

Concluding Discussions

CyberGIS provide new opportunities to address computationally intensive problems including the extraction and visualization of spatial information from text

G

Concluding Discussions

- System Architecture
 - Provides <u>supporting services</u> for computational methods
 - Gain straightforward access to cyberinfrastructure
 - Computational management system
- Parallelization of spatial methods using OpenMP
 - <u>Easy conversion</u> from serial to parallel
 - Automatic dynamic load-balancing
 - Excellent speedup

Acknowledgements

- National Science Foundation
 - BCS-0846655
 - OCI-1047916
 - XSEDE SES070004N

Thank you

Questions or comments?

1) Importance of Location

• Every mention of a location increases its importance

• Generate a density map of the number of times a location is mentioned in text

1) Importance of Location

2) Prevalence of topic

• We term topic intensity to capture the prevalence of a topic relative to other topics, and adopt a method commonly used in epidemiological studies to estimate it

• Relative risk is a ratio of the densities of disease infection locations and case control locations

Topic Intensity

Topic Intensity

Density of articles that mention a topic

Density of articles that do not mention a topic

Relative Risk

Density of locations with disease

Density of locations without disease

3) Emotion toward topic

• Tone map captures positive and negative tone toward a particular topic across space

3) Emotion toward topic

Algorithmic Tradeoffs

Great circle distance

$$=2r \arcsin\left(\sqrt{\sin^2\left(\frac{\phi_2-\phi_1}{2}\right)+\cos(\phi_1)\cos(\phi_2)\sin^2\left(\frac{\lambda_2-\lambda_1}{2}\right)}\right)$$

Euclidean distance

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2}$$

Algorithmic Tradeoffs

Great circle distance

Euclidean distance

 $\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$

Open Service APIs

- Goal: Provide an easy-to-use API for cyberinfrastructure-based geospatial computation
- API design
 - Not the synchronous request-response model
 - Methods:
 - Submission (as REST POST)
 - Monitoring (as REST GET)
 - Fetching results (as REST GET)

GISolve Middleware

- Resource Selection
- Task Scheduling
 - Tasks (i.e. jobs) are scheduled based on a series of dependencies (input data copy, job submission, job status, job completion, output data copy, visualization)
- Data and Visualization
 - Data and visualization management systems were developed to handle large-scale geospatial data

Spatial Domain Decomposition

Row or Column

Quadtree

Recursive Bisection

Grid

Spatial Domain Decomposition

- 1) Importance of Location (Article Density)
 - Every mention of a location increases its importance
- 2) Prevalence of topic (Topic Intensity)
 - We term topic intensity to capture the prevalence of a topic relative to other topics and map it across space
- 3) Emotion toward a topic (Tone)
 - Tone map captures positive and negative tone toward a particular topic across space

Raster Surface and Locations

KNearest Neighbor Search

Parallelization of Spatial Methods

- No data dependencies among cells
 - Embarrassingly parallel problem
- However, spatial characteristics among neighboring cells can be used to improve *k*NN search speed through spatial pruning
 - Learned search techniques
- These "soft" data dependencies should be taken into account while parallelizing methods