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Fooled by Correlation: Common Misinterpretations
in Social "Science"
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Abstract—We present consequential mistakes in uses of
correlation in social science research:

1) use of subsampling since (absolute) correlation is
severely subadditive

2) misinterpretation of the informational value of corre-
lation owing to nonlinearities,

3) misapplication of correlation and PCA/Factor analysis
when the relationship between variables is nonlinear,

4) How to embody sampling error of the input variable
5) Intransitivity of correlation
6) Other similar problems mostly focused on psychomet-

rics (IQ testing is infected by the "dead man bias")
7) How fat tails cause R2 to be fake.

We compare to the more robust entropy approaches.

CONTENTS

I Correlation is subaditive (in absolute value) 1
I-A Intuition via one-dimensional represen-

tations . . . . . . . . . . . . . . . . . . 3
I-B Mutual Information is Additive . . . . . 3
I-C Example of Quadrants . . . . . . . . . . 3

II Rescaling: A 50% correlation doesn’t mean what
you think it means 4

II-A Variance method . . . . . . . . . . . . . 4
II-A1 Drawback . . . . . . . . . . 4
II-A2 Adjusted variance method . . 4

II-B The ϕ function . . . . . . . . . . . . . . 4
II-C Mutual Information . . . . . . . . . . . 5
II-D PCA with Mutual Information . . . . . 5

III Embedding Measurement Error 6

IV Transitivity of Correlations 6

V Nonlinearities and other defects in "IQ" studies
and psychometrics in general 7

V-A Using a detector of disease as a detector
of health . . . . . . . . . . . . . . . . . 7
V-A1 Sigmoidal functions . . . . . 8

V-B ReLu type functions (ramp payoffs) . . 8
V-C Dead man bias . . . . . . . . . . . . . . 8
V-D State dependent correlation (Proof that

psychometrics fail in their use of the "g") 8

VI Statistical Testing of Differences Between Vari-
ables 8

VII Fat Tailed Residuals in Linear Regression Mod-
els 9

Appendix 10
1 Mean Deviation vs Standard

Deviation . . . . . . . . . . . 10
2 Relative Standard Deviation

Error . . . . . . . . . . . . . 10
3 Relative Mean Deviation Error 10
4 Finalmente, the Asymptotic

Relative Efficiency For a
Gaussian . . . . . . . . . . . 10

A Effect of Fatter Tails on the "efficiency"
of STD vs MD . . . . . . . . . . . . . 10

References 11

I. CORRELATION IS SUBADITIVE (IN ABSOLUTE VALUE)
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Fig. 1. Total correlation is .75, but quadrant correlations are .52 (second and
fourth quadrant) and .18 (first and third). If in turn we make the "quadrants"
smaller, say the 2nd one into Q = (0, 2), (0, 2), correlation will be even
lowe, ≈ .38 (next figure).
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 =((0,2),(0,2)),

corr→ 0.377571

 =((0,1),(1,2))

corr → 0.112353

 =((1,2),(1,2))

corr → 0.126969

 =((0,1),(0,1))

corr → 0.13096

 =((1,2),(0,1))

corr → 0.112353

Fig. 2. Dividing the space into smaller and smaller squares yields lower
correlations
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Fig. 3. Total correlation and the corresponding ones in the 4 quadrants.

Rule 1: Subadditivity
Correlation cannot be used for nonrandom subsamples.

Let X , Y be normalized random variables, Gaussian dis-
tributed with correlation ρ and pdf f(x, y). If we sample
randomly from the distribution and break it up further into
random sub-samples, then, under adequate conditions, the
expected correlation of each sub-sample should, obviously,
converge to ρ.

However, should we break up the data into non random
subsamples, say quadrants, octants, etc. along the x and y axes,
as in Fig. 1 and measure the correlation in each square, we
end up with considerably lower (probability) weighted sums

of individual correlations in absolute value, with equality for
|ρ|= 0 and, for some cases, |ρ|= 1.

Consider 4 equal quadrants, as in Fig. 1 the correlation is
.75 but quadrant correlations have for value .52 and .18.

Let 1x,y∈Q be an indicator function taking value 1 if both
x and y are in a square partition Q and 0 otherwise. Let π(Q)
be the probability of being in partition Q,

π(Q) =

∫ ∞

−∞

∫ ∞

−∞
1x,y∈Qf(x, y)dydx.

µx the conditional mean for x when both x and y are in Q
(and and the same for µy):

µx(Q) =
1

π(Q)

∫ ∞

−∞

∫ ∞

−∞
x1x,y∈Qf(x, y)dydx

µy(Q) =
1

π(Q)

∫ ∞

−∞

∫ ∞

−∞
y1x,y∈Qf(x, y)dydx

v. is the conditional variance, and cov(.,.) the conditional
covariance.

vx(Q) =
1

π(Q)

∫ ∞

−∞

∫ ∞

−∞
1x,y∈Qf(x, y)(x−µx(ρ,Q))2dydx

Covx,y(Q) =
1

π(Q)

∫ ∞

−∞

∫ ∞

−∞
1x,y∈Qf(x, y)(x− µx(Q))(y

− µy(Q))dydx

Finally, the local correlation:

Corr(Q) =
Covx,y(Q)√
vx(Q)vy(Q)

Theorem 1

For all Q in R2, we have

|Corr(Q)|≤ |ρ|

Proof. Appendix.
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Fig. 4. As we sample in blocks in the tails separated by 1 standard deviation
on the x axis, we observe a drop in standard deviation as the Gaussian
distribution concentrates in the left side of the partition as we go further
in the tails. Power laws have an opposite behavior.
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A. Intuition via one-dimensional representations

The problem becomes much easier when we consider the
behavior in lower dimensions –for Gaussian variables.

The intuition is as follows. Take a sample of X , a Normal-
ized Gaussian random variable. Verify that the variance is 1.
Divide the data into positive and negative. Each will have a
conditional variance of 1− 2

π =≈ 0.363. Divide the segments
further, and there will be additional drop in variance.

And, although one is programmed to think that the tail
should be more volatile, it isn’t so; the segments in the tail
have an increasingly lower variance as one gets further away,
see in Fig. 4.

Rule 2
Variance is superadditive for the subexponential class,
and subadditive outside of it.

Let p(x) be the density of the Normalized Gaussian, a, b ∈
R, a < b

(1)v(a, b) =
1

P (a, b)

∫ b

a

p(x)(x− µ(a, b))2 dx,

where

(2)
P (a, b) =

∫ ∞

−∞
p(x)1a<x<b dx

=
1

2

(
erf
(

b√
2

)
− erf

(
a√
2

))
,

(3)µ(a, b) =

√
2
π e

− a2

2 − b2

2

(
e

b2

2 − e
a2

2

)
erf
(

b√
2

)
− erf

(
a√
2

) .
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Fig. 5. Mutual Information is a nonlinear function of ρ which in fact makes
it additive. Intuitively, in the Gaussian case, ρ should never be interpreted
linearly: a ρ of 1

2
carries ≈ 4.5 times the information of a ρ = 1

4
, and a ρ

of 3
4

12.8 times!

B. Mutual Information is Additive

We define IX,Y the mutual information between r.v.s X and
Y .

IX,Y =

∫
DX

∫
DY

f(x, y) log

(
f(x, y)

f(x)f(y)

)
dx dy (4)

and of course

log
f(x, y)

f(x)f(y)
= log

f(x|y)f(y)
f(x)

= log
f(y|x)f(x)

f(y)

Theorem 2
IX,Y is additive across partitions of DX and DY .

Proof. The result is immediate. We have:
IX,Y = E (log f(x, y))−E (log f(x))−E (log f(y)). Con-

sider the additivity of measures on subintervals.

C. Example of Quadrants

Assume we are, as before, in a situation where X and
Y follow a standardized bivariate Gaussian distribution with
correlation ρ –and let’s compare to the results shown in Fig.
1.

Breaking IX,Y in 4 quadrants:

Ix <0,y≥0

=
1

Px<0,y≥0

(
−
2
√

1− ρ2ρ+ log
(
1− ρ2

)
cos−1(ρ)

4π

)
(5)

Ix ≥0,y≥0

=
1

Px≥0,y≥0

2
√
1− ρ2ρ+ log

(
1− ρ2

) (
cos−1(ρ)− π

)
4π

(6)

Ix ≥0,y<0

=
1

Px≥0,y<0

(
−2ρ

√
1− ρ2 + i log

(
1− ρ2

)
cosh−1(ρ)

4π

)
(7)

Ix <0,y<0

=
1

Px<0,y<0

4ρ
√

1− ρ2 − log
(
1− ρ2

) (
2 sin−1(ρ) + π

)
8π

(8)

We can see that

Px<0,y≥0Ix<0,y≥0 + Px≥0,y≥0Ix≥0,y≥0

+ Px≥0,y<0Ix≥0,y<0 + Px<0,y<0Ix<0,y<0

= −1

2
log
(
1− ρ2

)
(9)

− 2
√

1−ρ2ρ+log(1−ρ2) cos−1(ρ)

4π

2
√

1−ρ2ρ+log(1−ρ2)(cos−1(ρ)−π)
4π

−2ρ
√

1−ρ2+i log(1−ρ2) cosh−1(ρ)

4π

4ρ
√

1−ρ2−log(1−ρ2)(2 sin−1(ρ)+π)
8π
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II. RESCALING: A 50% CORRELATION DOESN’T MEAN
WHAT YOU THINK IT MEANS

What does a 50% correlation mean? Not much, which
shows that perhaps much of social science has little
scientific significance outside citation rings and political
agendas.

Rule 3
Correlation should never be interpreted linearly without
translation via some rescaling.

In [1] it has been shown that great many econometricians,
while knowing their statistical equations down pat, don’t get
the real practical implication –all in one direction, the fooled
by randomness one. The authors has a version of the effect
in [2] as professionals and graduate students failed to realize
that they interpreted mean deviation as standard deviation,
therefore underestimating volatility, especially under fat tails.
That 70 pct. of econometricians misinterpreted their own data
is quite telling.

There are clearly some cognitive limitations, compounded
by the specificity and scaling of the correlation metric. A .5
correlation is vastly inferior to, say, .7 and the information
is worse that × 5

7 of the latter; there needs to be a more
idiot-proof (psychologist-proof) rescaling to compare the two.
Actually a .5 correlation has between .06 and .14 information
if a 1 correlation conveys an information content of 1 and 0
correlation one of 0.

Clearly, it is erroneous to look at correlation without some
change of metri c –rescaling –to allow for relative interpreta-
tion.

We will examine the following rescaling methods for a
vector (X,Y )T ∈ R2:

1) Conditional standard deviation
√
V(X|Y ) ∈ [0, 1]

to accommodate distances between E(X|Y ) and
E(X).

2) The ϕ metric we derive here, in [0, 1], to accommo-
date distances between E(X|Y ) and E(Y ).

3) The more rigorous mutual information, unbounded,
in [0,∞).

4) The p-Mutual information, bounded to allow for
comparisons with others in [0, 1]; 1 − p certainty
would equivalent to 1. For instant p could be 1

99 ,
with corresponding a definition of "certainty" of .99,
or 1

999 for other applications.

A. Variance method

The conditional mean for a multivariate Gaussian is:

(10)E(X|Y ) = E[X] +
σ1

σ2
ρ(y − E[[Y ])

We have a bivariate gaussian with means µ1 and µ2, variances
σ2
1 and σ2

2 , and correlation ρ. The joint distribution f(x, y):

f(x, y) =
e−

(x−µ1)2

σ2
1

− 2ρ(x−µ1)(y−µ2)
σ1σ2

+
(y−µ2)2

σ2
2

2(1−ρ2)

2π
√

1−ρ2σ1σ2

and E(X|Y ) =∫ ∞
−∞ xf(x,y) dx∫ ∞
−∞ f(x,y) dx

= µ1 +
σ1ρ(y−µ2)

σ2
.

The conditional variance for a multivariate Gaussian:

(11)V(X|Y ) = E
(
(X − E(X|Y ))2

∣∣Y ) = (1− ρ2
)
σ2
1

Which means that the expected value of X given Y is normally
distributed.

(12)

E(X|Y ) ∼ N

(
E[X]

+

√
V(X)

V(Y )
ρ(y − E[[Y ]),

(
1− ρ2

)
V(X)

)

We measure the certainty when E(X|Y ) is degenerate at
E(X), which requires ρ = 1. Hence, for normalized variables,
the rescaling metric becomes:

R(ρ) = 1−
√

V(X|Y ) = 1−
√
(1− ρ2) (13)

for Gaussian variables.

1) Drawback: The problem with such a metric is that it
ignores the (normalized) distance between X and Y , ignoring
the "similarity" between the two variables, focusing only on
its variance given a certain information.

2) Adjusted variance method: To get more information we
adjust Eq. 13 by the coefficient of similarity, using correlation
as a distance. It is similar to the ϕ function but not targeted
to specific intervals.

R(ρ)a = |ρ|
(
1−

√
(1− ρ2)

)
(14)

B. The ϕ function

Next we create a "proportion of normalized similarity"
between two random variables.

Let X and Y be normalized random variables. Consider
the ratio of the probability of both X and Y being in an
interval [K − ∆,K + ∆] under a correlation structure ρ,
over the probability of both X and Y being in same interval
assuming correlation = 1. The function ϕ is the "proportion of
normalized similarity" for Y given X . Note, unlike with the
conditional variance approach, we measure the certainty when
E(X|Y ) is degenerate at E(Y ) (instead of E(X)). Hence, for
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Fig. 6. One needs to translate ρ into information. See how ρ = .5 is much closer to 0 than to a ρ = 1. There are considerable differences between .9 and
.99

ϕmetric

1-  (Y X)

Mutual Information (unscaled)

Mutual Information (truncated .99)
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Fig. 7. Various rescaling methods,linerarizing information and putting corre-
lation in perspective.

ϕmetric
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Fig. 8. Various rescaling methods, seen around [0, | 1
2
|]

normalized variables, the rescaling metric becomes:
ϕ(ρ,K)

=
P(X ∈ (K −∆,K +∆) ∧ Y ∈ (K −∆,K +∆))|ρ

P(X ∈ (K −∆,K +∆) ∧ Y ∈ (K −∆,K +∆))|ρ=1

=
P(X ∈ (K −∆,K +∆) ∧ Y ∈ (K −∆,K +∆))

P(X ∈ (K −∆,K +∆))

= P
(
X

∈ (K −∆,K +∆)|Y ∈(K−∆,K+∆)

)
(15)

-3 -2 -1 1 2 3

-4

-2

2

4
0.627271

-2 -1 1 2 3 4

-4

-2

2

4
0.79506

Fig. 9. Correlation for twice the mutual information.

The numerator∫ ∆+K

K−∆

∫ ∆+K

K−∆

e
− x2−2ρxy+y2

2(1−ρ2)

2π
√

1− ρ2
dxdy

does not integrate, which necessitates numerical methods.

C. Mutual Information

As we saw above, IX,Y the mutual information between r.v.s
X and Y and joint PDF f(., .), because of its additive prop-
erties, allows a better representation of relative correlations,
via the rescaling function − 1

2 log
(
1− ρ2

)
. Such rescaling

function doesn’t apply in all situations and should be used
as a translator in a limited way.

Mutual information is both additive and able to detect
nonlinearities. In Fig.11, IX,Y > − 1

2 log
(
1− ρ2

)
.

D. PCA with Mutual Information

Now one can perform information based PCA maps, if the
Data is Gaussian, by rescaling substituting the performance.
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Fig. 10. Entropy rescaled principal component analysis changes the relative
distances

-4 -2 2 4

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Fig. 11. The function y = 1x≤0x−1x>0x. Correlation here between x and
y is 0, but mutual information isn’t fooled (it is maximal, or what is called
infinite). Most (if not all) paradoxes of dependence with correlation disappear
with mutual information.

III. EMBEDDING MEASUREMENT ERROR

Next we perform a new trick for error propagation under
Gaussian errors and multivariate Gaussian correlation.

Assume IQ (X) correlates with performance P (Y ) with
coefficient ρ. (Ignore for now the circularity). A certain
individual’s score, Z has a standard deviation of κ in his or
her tests score. (In other words, his or her performance on
test is normally distributed with mean X (a random variable)
and variance κ2) What is the covariance/correlation between
the score Z and performance P , that is between Z and Y ?

0.97 0.98 0.99 1.00
ρ

0.1

0.2

0.3

0.4

0.5

Measurement Error

Fig. 12. Translating correlation into measurement error expressed in standard
deviation. Consider that IQ testing has an 80% correlation between test and
retest.

Let g(µ, σ;x) be the PDF of the NormalDistribution with
mean µ and variance σ2, and f(., .) the joint distribution for
a multivariate Gaussian.

ρ′ =

∫∞
−∞

∫∞
−∞

∫∞
−∞ uyf(u, y)g(x, κ, u)dudxdy√∫∞

−∞
∫∞
−∞ u2 (g (0, σ1, x) g(x, κ, u)) dxdu

1√(∫∞
−∞ y2 (g (0, σ2, y) dy

)
=

ρ√
κ2 + 1

(16)

Another approach. When psychometricians measure IQ
(which varies for the same individual between test and retest)
and correlate it to performance, the noise between individuals
is embedded in the correlation (assuming of course linearity
and state-independence of the correlation, which is not usually
the case).

However the psychotards miss the notion of effect: for a
single individual, the noise around one’s IQ can vastly swamp
the effect from correlation! See Fig. 12.

The other problem is that psychometricians and psycholo-
gists work with correlation, when the real product is covari-
ance.

As we saw E(X|Y ) = E
[
[X] + σY

σX
ρ(y − E[[Y ]) , so if

someone takes an IQ test and gets 1 std away from the mean,
the expected result is .8 std away from the mean. Completely
missed by the psychotards. But it gets worse via the transitivity
problem.

IV. TRANSITIVITY OF CORRELATIONS

Eugenists: I spotted another error by eugenists (a
trend self-styled "race realism" found in psychology
particularly in evolutionary psychology and behavioral
genetics, a field that collects rejects and seems to have, on
the good day, the rigor of astrology). They don’t seem to
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have much going for them: the error below is pervasive.
They make the following inference:

(i) There is a positive correlation between genetics and
IQ scores.

(ii) There is a positive correlation between IQ scores
and performance.

(iii) Hence there is a positive correlation between genet-
ics and performance.

Problem is that (iii) doesn’t flow from (i) and (ii). You can have
the first two correlations positive and the third one negative.

Let us organize the correlations pairwise, where
ρ12, ρ13, ρ23 are indexed by 1 for genes, 2 for scores,
and 3 for performance. Let σ2

(.) be the respective variances.
Let Σ be the covariance matrix, without specifying the
distribution:

Σ =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 .

Let us apply Sylvester’ s criterion (a necessary and sufficient
criterion to determine whether a Hermitian matrix is positive-
semidefinite) and, using determinants, produce conditions for
the positive-definite-ness of Σ. The criterion states that a
Hermitian matrix M is positive-semidefinite if and only if the
leading principal minors are nonnegative.

The constraint on the first principal minor is obvious
(Cauchy-Schwarz):∣∣∣∣ σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

∣∣∣∣ = σ2
1σ

2
2 − ρ212σ

2
1σ

2
2 ≥ 0,

so
−1 ≤ ρ12 ≤ 1.

The second constraint:

|Σ| = −
(
ρ212 − 2ρ13ρ23ρ12 + ρ213 + ρ223 − 1

)
σ2
1σ

2
2σ

2
3 ≥ 0,

produces the following bounds on ρ13:

ρ12ρ23 −
√

(ρ212 − 1) (ρ223 − 1) ≤ ρ13 ≤√
(ρ212 − 1) (ρ223 − 1) + ρ12ρ23 (17)

Example: If we have ρ12 = 1
3 and ρ23 = 1

3 , we get the
following bound

−7

9
≤ ρ13 ≤ 1,

So obviously (iii) is false as the correlation can be negative.
Conditions for transitivity: We assume transitivity when we

have the identity ρ13 = ρ12ρ23.
Consider the situation where ρ212 + ρ223 = 1. From 17:

ρ12ρ23 −
√
ρ223 − ρ423 ≤ ρ13 ≤ ρ12ρ23 +

√
ρ223 − ρ423 (18)

The inequality tightens on both sides as ρ212+ ρ223 becomes
greater than 1.

Background: It is remarkable that people take transitivity
for granted; even maestro Terry Tao wasn’t aware of it.

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

Fig. 13. Sigmoid. The Heaviside is a special case of the Gompertz curve
with c → 0.

V. NONLINEARITIES AND OTHER DEFECTS IN "IQ"
STUDIES AND PSYCHOMETRICS IN GENERAL

We discuss the effect of nonlinearity in general but IQ
studies and psychometric is a treasure trove of defective
use of statistical metrics, especially correlation.

See IQ is largely a pseudoscientific swindle:
https://medium.com/incerto/

iq-is-largely-a-pseudoscientific-swindle-f131c101ba39

Rule 4: Nonlinearity
One cannot use total correlation entailing X1 and X2

when the association between X1 and X2 depends in
expectation on X1 or X2.

We note that the rule does not cover stochastic correlation or
heteroskedasticity where there is no "drift".

Rule 5: Dimension reduction
One cannot use orthogonal factors or apply a principal
component reduction for r.v.s X1, . . . , Xn if for all
i ̸= j the association between Xi and Xj depends in
expectation on the level of either Xi or Xj . (The flaw
infects the "g" in psychometry.)

A. Using a detector of disease as a detector of health

A metric to detect disease will masquerade as a detector
of health if one uses (Pearson) correlation! Because of the
nonlinearity of disease. Let us consider disease anything +K
STDs away.

Looking for the induced correlation of performance as a
binary variable {0, 1} for IQ > KSTDs, assuming everything
is Gaussian.

Let Ix>K be the Heaviside Theta Function. We are looking
at ρ the correlation between X and Ix>K .

ρ =
E ((x− E(x)) (Ix>K − E (Ix>K)))√

E ((x− E(x))2)E ((Ix>K − E (Ix>K)) 2)
(19)

https://medium.com/incerto/iq-is-largely-a-pseudoscientific-swindle-f131c101ba39
https://medium.com/incerto/iq-is-largely-a-pseudoscientific-swindle-f131c101ba39
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For a Gaussian:

ρ =

√
2
π e

− (K−µ)2

2σ2√
1− erf

(
K−µ√

2σ

)2 (20)

ρ/. {K → 70, µ → 100, σ → 15} ≈ .36 and for K = µ,√
2
π ≈ .798

1) Sigmoidal functions: z(x) = e−be−c(K+x)

B. ReLu type functions (ramp payoffs)

Let us look at how correlation misrepresents of association
in Fig. 11. Let f(x) = (−R1 + x)1x<R1

, R1 ≤ 0, x ∈ R
We can prove that: if for any piecewise linear function f(.)
such that ρ−R,R1 = 1, ρR,R1 = 0, where ρ.,. denote piece-
wise correlation in [−R,R1) and (R1, R], the unconditional
correlation is ρ = 2R−R1

R
√

−3+ 8R
R+R1

where

ρ−R,R =

∫ R

−R
(x− µx)

(
f(x)− µf(x)

)
dx√∫ R

−R
(x− µx)

2
dx
(∫ R

−R

(
f(x)− µf(x)

)2)
dx

where µx = 1
2R

∫ R

−R
x dx and µf(x) =

1
2R

∫ R

−R
f(x) dx

In the special symmetric case where R1 = 0, we get ρ =
2√
5
≈ .894.

C. Dead man bias

QUIZ: You administer IQ tests to 10K people, then
give them a "performance test" for anything, any task.
2000 of them are dead. Dead people score 0 on IQ and
0 on performance. The rest have the IQ uncorrelated
to the performance. What is the spurious correlation
IQ/performance?

Answer: roughly 37%
The systematic bias comes from the fact that if you hit

someone on the head with a hammer, he or she will be bad
at everything. (And any test of incompetence can work there).
There is no equivalent to someone suddenly becoming good
at everything.

Hence all tests of competence will show some positive
correlation to IQ even if they are random! And if you see a
low correlation, means that the real correlation is... negative.

Assume X,Y ∼ Uniform Distribution[0,1] as most repre-
sentative, p alive, (1− p) dead (or in the clinical tails)

(21)

ρ =
1

(1− p)
∫ 1

0
(0− µx)2 dx+ p

∫ 1

0
(x− µx)2 dx

(
(1

− p)

∫ 1

0

∫ 1

0

(0− µx)(0− µy) dx dy

+ p

∫ 1

0

∫ 1

0

(x− µx)(y − µy) dx dy

)
=

1

3p− 4
+ 1

D. State dependent correlation (Proof that psychometrics fail
in their use of the "g")

We simplify the proof in 2D. Traditionally one writes the
covariance matrix

Σ =

(
σ2
11 ρσ11σ22

ρσ11σ22 σ2
22

)
Here we can’t anymore since ρ is X dependent

Σx =

(
σ2
11 σ11σ22(fx)

σ11σ22(fx) σ2
22

)
;

Now the eigenvalues of the matrix Σ are also X dependent.

λ(x)

=

{
1

2

(
−
√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22 + σ2
11

+ σ2
22

)
,
1

2

(√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22

+ σ2
11 + σ2

22

)}
.

(22)

We have the second derivative no longer flat–as we see in
the graph the function is not just non constant but nonlin-
ear;nonlinearities show in second derivative,

λ′(x) =

{
1

2

(
− 4σ2

11σ
2
22f(x)f

′′(x)√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22

+
16σ4

11σ
4
22f(x)

2f ′(x)2

(4σ2
22σ

2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22)
3/2

− 4σ2
11σ

2
22f

′(x)2√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22

)
,

1

2

(
4σ2

11σ
2
22f(x)f

′′(x)√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22

− 16σ4
11σ

4
22f(x)

2f ′(x)2

(4σ2
22σ

2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22)
3/2

+
4σ2

11σ
2
22f

′(x)2√
4σ2

22σ
2
11f(x)

2 + σ4
11 − 2σ2

22σ
2
11 + σ4

22

)}
(23)

implying yuuuge random terms affecting loads and the "fac-
tors".

VI. STATISTICAL TESTING OF DIFFERENCES BETWEEN
VARIABLES

A pervasive error: Where X and Y are two random vari-
ables, the properties of X−Y , say the variance, probabilities,
and higher order attributes are markedly different from the
difference in properties. So E (X − Y ) = E(X) − E(Y ) but
of course, V ar(X−Y ) ̸= V ar(X)−V ar(Y ), etc. for higher
norms. It means that P-values are different, and of course the
coefficient of variation ("Sharpe"). Where σ is the standard
deviation of the variable (or sample):

E(X − Y )

σ(X − Y )
̸= E(X)

σ(X)
− E(Y ))

σ(Y )
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σ(X − Y ) =
√
−2ρ12σ2σ1 + σ2

1 + σ2
2

In Fooled by Randomness (2001):
A far more acute problem relates to the outperfor-
mance, or the comparison, between two or more
persons or entities. While we are certainly fooled
by randomness when it comes to a single times
series, the foolishness is compounded when it comes
to the comparison between, say, two people, or a
person and a benchmark. Why? Because both are
random. Let us do the following simple thought
experiment. Take two individuals, say, a person and
his brother-in-law, launched through life. Assume
equal odds for each of good and bad luck. Out-
comes: lucky-lucky (no difference between them),
unlucky-unlucky (again, no difference), lucky- un-
lucky (a large difference between them), unlucky-
lucky (again, a large difference).

Ten years later (2011) it was found that 50% of neuroscience
papers (peer-reviewed in "prestigious journals") that compared
variables got it wrong.

In theory, a comparison of two experimental ef-
fects requires a statistical test on their difference.
In practice, this comparison is often based on an
incorrect procedure involving two separate tests in
which researchers conclude that effects differ when
one effect is significant (P < 0.05) but the other
is not (P > 0.05). We reviewed 513 behavioral,
systems and cognitive neuroscience articles in five
top-ranking journals (Science, Nature, Nature Neu-
roscience, Neuron and The Journal of Neuroscience)
and found that 78 used the correct procedure and 79
used the incorrect procedure. An additional analysis
suggests that incorrect analyses of interactions are
even more common in cellular and molecular neu-
roscience.

In Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.
J. (2011). Erroneous analyses of interactions in neuroscience:
a problem of significance. Nature neuroscience, 14(9), 1105-
1107.

Fooled by Randomness was read by many professionals (to
put it mildly); the mistake is still being made. Ten years from
now, they will still be making the mistake.

VII. FAT TAILED RESIDUALS IN LINEAR REGRESSION
MODELS

We mentioned in Chapter ?? that linear regression fails to
inform under fat tails. Yet it is practiced. For instance, it is
patent that income and wealth variables are power law dis-
tributed (with a spate of problems, see our Gini discussions in
[3]). However IQ scores are Gaussian (seemingly by design).
Yet people regress one on the other failing to see that it is
improper.

Consider the following linear regression in which the inde-
pendent and independent are of different classes:

Y = aX + b+ ϵ,

2×106 5×106 1×107
ϵ^2

0.001

0.010

0.100

P>

Fig. 14. The loglogplot of the squared residuals ϵ2 for the IQ-income linear
regression using standard Winsconsin Longitudinal Studies (WLS) data. We
notice that the income variables are winsorized. Clipping the tails creates the
illusion of a high R2. Actually, even without clipping the tail, the coefficient
of determination will show much higher values owing to the small sample
properties for the variance of a power law..

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.5

1.0

1.5

2.0

R2

Fig. 15. An infinite variance case that shows a high R2 in sample; but it
ultimately has a value of 0. Remember that R2 is stochastic. The problem
greatly resembles that of P values in Chapter ?? owing to the complication
of a metadistribution in [0, 1].

where X is standard Gaussian (N (0, 1)) and ϵ is power law
distributed, with E(ϵ) = 0 and E(ϵ2) < +∞. There are no
restrictions on the parameters.

Clearly we can compute the coefficient of determination R2

as 1 minus the ratio of the expectation of the sum of residuals
over the total squared variations, so we get the more general
answer to our idiosyncratic model. Since X ∼ N (0, 1), Y ∼
N (b, |a|), we have

E(R2) = 1−
E
(
ϵ2
)

a2 + E (ϵ2)
. (24)

Proof. Since the expectation of the total variation of Y is
E
(
(aX + b− b+ ϵ) 2

)
.

And of course, for infinite variance:

lim
E(ϵ2)→+∞

E(R2) = 0.

We can also compute it by taking, simply, the square of
the correlation between X and Y . For instance, assume the
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distribution for ϵ is the Student T distribution with zero
mean, scale σ and tail exponent α < 2 (as we saw earlier,
we get identical results with other ones so long as we
constrain the mean to be 0). Let’s start by computing the
correlation: the numerator is the covariance Cov(X,Y ) =
E ((aX + b+ ϵ)X) = a. The denominator (standard deviation
for Y ) becomes

√
E (((aX + ϵ)− a)2) =

√
2αa2−4a2+ασ2

α−2 .
So

E(R2) =
a2(α− 2)

2(α− 2)a2 + ασ2
(25)

And the Dirac the limit from above:

lim
α→2+

E(R2) = 0.

We are careful here to use E(R2) rather than the seemingly
deterministic R2 because it is a stochastic variable that will be
extremely sample dependent. Indeed, given that in sample the
expectation will always be finite. Even if the ϵ are Cauchy!
The point is illustrated in Fig. 15. The point invalidates much
studies of the relations IQ-wealth and IQ-income of the kind
[4]; we can see the striking effect in Fig. 14. Given that R is
bounded in [0, 1], it will reach its true value very slowly, see
the P-Value problem in Chapter ??.

Property 1. When a fat tailed random variable is regressed
over a thin tailed one, the coefficient of determination R2 will
be biased higher, and requires a much larger sample size to
converge (if it ever does).

We will examine in [5] the slow convergence of power laws
distributed variables under the law of large numbers (LLN): it
can be as much as 1013 times slower than the Gaussian.

APPENDIX

1) Mean Deviation vs Standard Deviation: The metric
standard deviation itself is a computational metric and does
not map to distances as interpreted. Mean absolute deviation
does.

Why the [REDACTED] did statistical science pick STD
over Mean Deviation? Here is the story, with analytical
derivations not seemingly available in the literature. In Huber
[6]:

There had been a dispute between Eddington
and Fisher, around 1920, about the relative merits
of dn (mean deviation) and Sn (standard deviation).
Fisher then pointed out that for exactly normal
observations, Sn is 12% more efficient than dn, and
this seemed to settle the matter. (My emphasis)

Let us rederive and see what Fisher meant.
Let n be the number of summands: the Asymptotic Relative

Efficiency (ARE) is

ARE = lim
n→∞

(
V(Std)
E(Std)2

/
V(Mad)

E(Mad)2

)
Assume we are certain that Xi, the components of sample

follow a Gaussian distribution, normalized to mean=0 and a
standard deviation of 1.

2) Relative Standard Deviation Error: The characteris-
tic function Ψ1(t) of the distribution of x2: Ψ1(t) =∫∞
−∞

e−
x2

2
+itx2

√
2π

dx = 1√
1−2it

. With the squared deviation
z = x2, f , the pdf for n summands becomes:

(26)

fZ(z) =
1

2π

∫ ∞

−∞
exp(−itz)

(
1√

1− 2it

)n

dt

=
2−

n
2 e−

z
2 z

n
2 −1

Γ
(
n
2

) , z

> 0.

Now take y =
√
z, fY (y) = 21−

n
2 e−

z2

2 zn−1

Γ(n
2 )

, z > 0, which
corresponds to the Chi Distribution with n degrees of freedom.

Integrating to get the variance: Vstd(n) = n − 2Γ(n+1
2 )

2

Γ(n
2 )

2 .

And, with the mean equalling
√
2Γ(n+1

2 )
Γ(n

2 )
, we get V(Std)

E(Std)2 =

nΓ(n
2 )

2

2Γ(n+1
2 )

2 − 1.

3) Relative Mean Deviation Error: Characteristic function
again for |x| is that of a folded Normal distribution, but let us
redo it:
Ψ2(t) =

∫∞
0

√
2
π e

− x2

2 +itx = e−
t2

2

(
1 + i erfi

(
t√
2

))
,

where erfi is the imaginary error function erf(iz)/i.
The first moment:
M1 = −i ∂

∂t1

(
e−

t2

2n2

(
1 + i erfi

(
t√
2n

)))n ∣∣∣
t=0

=
√

2
π .

The second moment,
M2 = (−i)2 ∂2

∂t2

(
e−

t2

2n2

(
1 + i erfi

(
t√
2n

)))n ∣∣∣
t=0

=

2n+π−2
πn . Hence, V(Mad)

E(Mad)2 =
M2−M2

1

M2
1

= π−2
2n .

4) Finalmente, the Asymptotic Relative Efficiency For a
Gaussian:

ARE = lim
n→∞

n

(
nΓ(n

2 )
2

Γ(n+1
2 )

2 − 2

)
π − 2

=
1

π − 2
≈ .875

which means that the standard deviation is 12.5% more
"efficient" than the mean deviation conditional on the data
being Gaussian and these blokes bought the argument. Except
that the slightest contamination blows up the ratio. Norm ℓ2

is not appropriate for about anything.

A. Effect of Fatter Tails on the "efficiency" of STD vs MD

Consider a standard mixing model for volatility with an
occasional jump with a probability p. We switch between
Gaussians (keeping the mean constant and central at 0) with:

V(x) =
{

σ2(1 + a)
σ2

with probability p
with probability (1− p)

For ease, a simple Monte Carlo simulation would do. Using
p = .01 and n = 1000... Figure 16 shows how a=2 causes
degradation. A minute presence of outliers makes MAD more
"efficient" than STD. Small "outliers" of 5 standard deviations
cause MAD to be five times more efficient.1

1The natural way is to center MAD around the median; we find it more
informative for many of our purposes here (and, more generally, in decision
theory) to center it around the mean.
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Fig. 16. A simulation of the Relative Efficiency ratio of Standard deviation
over Mean deviation when injecting a jump size

√
(1 + a)×σ, as a multiple

of σ the standard deviation.
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