arXiv:1703.03864v1 [stat.ML] 10 Mar 2017

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans ! Jonathan Ho' Xi Chen' Ilya Sutskever'

Abstract

We explore the use of Evolution Strategies, a
class of black box optimization algorithms, as
an alternative to popular RL techniques such as
Q-learning and Policy Gradients. Experiments
on MuJoCo and Atari show that ES is a viable
solution strategy that scales extremely well with
the number of CPUs available: By using hun-
dreds to thousands of parallel workers, ES can
solve 3D humanoid walking in 10 minutes and
obtain competitive results on most Atari games
after one hour of training time. In addition, we
highlight several advantages of ES as a black box
optimization technique: it is invariant to action
frequency and delayed rewards, tolerant of ex-
tremely long horizons, and does not need tempo-
ral discounting or value function approximation.

1. Introduction

Developing agents that can accomplish challenging tasks
in complex, uncertain environments is a key goal of artifi-
cial intelligence. Reinforcement learning (RL) is a highly
successful paradigm for achieving this goal. The successes
of reinforcement learning include a system that learns to
play Atari from pixels (Mnih et al., 2015), play expert-level
Go (Silver et al., 2016), and control a robot (Levine et al.,
2016). These recent successes of RL have generated a sig-
nificant amount of excitement in the community.

Evolution strategies (ES), the approach of derivative-free
hill-climbing on policy parameters to maximize a fitness
function, is an alternative to mainstream reinforcement
learning algorithms that can also, at least in principle, learn
agents that achieve a high reward in complex environments.
While evolution strategies is not a new approach, as we
elaborate in section 5, we demonstrate that it can reli-
ably train policies on many environments considered in the
modern deep RL literature.

'OpenAl. Correspondence to: Tim Salimans

<tim@openai.com>.

In this paper, we investigate the effectiveness of evolution
strategies in the context of controlling robots in the Mu-
JoCo physics simulator (Todorov et al., 2012) and playing
Atari games with pixel inputs (Mnih et al., 2015). Our key
findings are as follows:

1. We found specific network parameterizations that
cause evolution strategies to reliably succeed, which
we elaborate on in section 2.2.

2. We found the evolution strategies method to be highly
parallelizable: we observe linear speedups in run time
even when using over a thousand workers. In partic-
ular, using 1,440 workers, we have been able to solve
the MuJoCo 3D humanoid task in under 10 minutes.

3. The data efficiency of the evolution strategies method
was surprisingly good: we were able to match the final
performance of a good A3C implementation (Mnih
et al., 2016) on most Atari environments while us-
ing between 3x and 10x as much data. The slight de-
crease in data efficiency is partly offset by a reduction
in required computation of roughly 3x due to not per-
forming backpropagation and not having a value func-
tion. Our 1-hour ES results require about the same
amount of computation as the published 1-day results
for A3C, while performing better on 23 games tested,
and worse on 28. On MulJoCo tasks, we were able to
match the learned policy performance of Trust Region
Policy Optimization (TRPO; Schulman et al., 2015a),
using no more than 10x more data.

4. We found that evolution strategies exhibited better
exploration behaviour than policy gradient methods
like TRPO: on the MuJoCo humanoid task, evolution
strategies have been able to learn a very wide variety
of gaits (such as walking sideways or walking back-
wards), although these gaits have achieved a slightly
worse final performance, ranging between 70% and
100% of the best achievable result. Interestingly, un-
usual gaits are never observed with TRPO, which sug-
gests a qualitatively different exploration behavior.

5. We found the evolution strategies method to be robust:
we achieved the aforementioned results using fixed

Evolution Strategies as an Alternative for Reinforcement Learning

hyperparameters for all the Atari environments, and a
different set of fixed hyperparameters for all MuJoCo
environments (with the exception of one binary hyper-
parameter, which has not been held constant between
the different MuJoCo environments).

The evolution strategies method has several highly attrac-
tive properties: indifference to the distribution of rewards
(sparse or dense), and tolerance of potentially arbitrary
long time horizons. However, it was perceived to be less
effective at solving hard reinforcement learning problems
compared to techniques like Q-learning and policy gra-
dients, which caused it to recently be neglected by the
broader machine learning community. The contribution of
this work, which we hope will renew interest in the evolu-
tion strategies method and lead to new useful applications,
is a demonstration that evolution strategies can be compet-
itive with current RL algorithms on the hardest environ-
ments studied by the deep RL community today.

2. Evolution Strategies

Evolution Strategies (ES) is a class of black box opti-
mization algorithms first proposed by Rechenberg & Eigen
(1973) and further developed by Schwefel (1977). ES al-
gorithms are heuristic search procedures inspired by natu-
ral evolution: At every iteration (“generation”), a popula-
tion of parameter vectors (“genotypes”) is perturbed (‘“mu-
tated”) and their objective function value (“fitness”) is eval-
uated. The highest scoring parameter vectors are then re-
combined to form the population for the next generation,
and this procedure is iterated until the objective is fully op-
timized. Algorithms in this class differ in how they rep-
resent the population and how they perform mutation and
recombination. The most widely known member of the ES
class is the covariance matrix adaptation evolution strategy
(CMA-ES; Hansen & Ostermeier, 2001), which represents
the population by a full-covariance multivariate Gaussian.
CMA-ES has been extremely successful in solving opti-
mization problems in low to medium dimension.

The version of ES we use in this work belongs to the class
of natural evolution strategies (NES; Wierstra et al., 2008;
2014; Yi et al., 2009; Sun et al., 2009; Glasmachers et al.,
2010a;b; Schaul et al., 2011) and is closely related to the
work of Sehnke et al. (2010). Let F' denote the objective
function acting on parameters 6. NES algorithms represent
the population with a distribution over parameters p,; (6)—
itself parameterized by y)—and proceed to maximize the
average objective value 7(¢)) = Eg~,,, F'(#) over the pop-
ulation by searching for ¢ with stochastic gradient ascent.
Specifically, using the score function estimator for V7 in
a fashion similar to REINFORCE (Williams, 1992), NES
algorithms take gradient steps on ¢ with the following es-

timator:

Vyn() = Eonp, {F(0)Vy logpy(0)}

For the special case where py is factored Gaussian (as
in this work), the resulting gradient estimator is also
known as simultaneous perturbation stochastic approxima-
tion (Spall, 1992), parameter-exploring policy gradients
(Sehnke et al., 2010), or zero-order gradient estimation
(Nesterov & Spokoiny, 2011).

In this work, we focus on reinforcement learning problems,
so F'(-) will be the stochastic return provided by an en-
vironment, and 6 will be the parameters of a determinis-
tic or stochastic policy 7 describing an agent acting in
that environment, controlled by either discrete or contin-
uous actions. Much of the innovation in RL algorithms
is focused on coping with the lack of access to or exis-
tence of derivatives of the environment or policy. Such
non-smoothness can be addressed with ES as follows. We
instantiate the population distribution py, as an isotropic
multivariate Gaussian with mean v and fixed covariance
0?1, allowing us to write 7 in terms of a mean parame-
ter vector 6 directly: we set 17(0) = Ecn(o,1) F'(0 + oe).
With this setup, 7 can be viewed as a Gaussian-blurred ver-
sion of the original objective F, free of non-smoothness in-
troduced by the environment or potentially discrete actions
taken by the policy. Further discussion about the ES-based
approach to coping with non-smoothness, compared to the
approach taken by policy gradient methods, can be found
in section 3.

With 7 defined in terms of 6, we optimize over 6 using
stochastic gradient ascent with the score function estima-
tor:

1
Von(0) = p Ecwn(o,n {F (0 + 0e) e}

which can be approximated with samples. The resulting al-
gorithm (1) repeatedly executes two phases: 1) Stochasti-
cally perturbing the parameters of the policy and evaluating
the resulting parameters by running an episode in the envi-
ronment, and 2) Combining the results of these episodes,
calculating a stochastic gradient estimate, and updating the
parameters.

Algorithm 1 Evolution Strategies
1: Input: Learning rate o, noise standard deviation o,
initial policy parameters 6
2: fort =0,1,2,... do
3: Sample ey, ...e, ~ N(0,1)
4: Compute returns F; = F(0; + o¢;) fori=1,...,n
5 Set 9t+1 — 9,5 + ai Z?:l F»LFZ
6: end for

Evolution Strategies as an Alternative for Reinforcement Learning

2.1. Scaling and parallelizing ES

ES has three aspects that make it particularly well suited
to be scaled up to many parallel workers: 1) It operates on
complete episodes, thereby requiring only infrequent com-
munication between the workers. 2) The only information
obtained by each worker is the scalar return of an episode:
provided the workers know what random perturbations the
other workers used, each worker only needs to send and re-
ceive a single scalar to and from each other worker to agree
on a parameter update. ES thus requires extremely low
bandwidth, in sharp contrast to policy gradient methods,
which require workers to communicate entire gradients. 3)
It does not require value function approximations. Rein-
forcement learning with value function estimation is inher-
ently sequential: In order to improve upon a given policy,
multiple updates to the value function are typically needed
in order to get enough signal. Each time the policy is then
significantly changed, multiple iterations are necessary for
the value function estimate to catch up.

A simple parallel version of ES is given in Algorithm 2.

Algorithm 2 Parallelized Evolution Strategies
1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6
2: Initialize: n workers with known random seeds, and
initial parameters 6

3: fort=0,1,2,... do

4: for each workeri =1,...,n do

5: Sample €; ~ N(0,1)

6: Compute returns F; = F(0; + o¢;)

7: end for

8: Send all scalar returns F; from each worker to every

other worker

9: for each workeri=1,...,ndo
10: Reconstruct all perturbations €; for j = 1,...,n
11: Set 0t+1 (—0t+06$ Z?:l Fjej
12: end for
13: end for

In practice, we implement sampling by having each worker
instantiate a large block of Gaussian noise at the start of
training, and then perturbing its parameters by adding a
randomly indexed subset of these noise variables at each it-
eration. Although this means that the perturbations are not
strictly independent across iterations, we did not find this to
be a problem in practice. Using this strategy, we find that
the second part of Algorithm 2 (lines 9-12) only takes up a
small fraction of total time spend for all our experiments,
even when using up to 1,440 parallel workers. When using
many more workers still, or when using very large neu-
ral networks, we can reduce the computation required for
this part of the algorithm by having workers only perturb a
subset of the parameters 6 rather than all of them: In this

case the perturbation distribution py, corresponds to a mix-
ture of Gaussians, for which the update equations remain
unchanged. At the very extreme, every worker would per-
turb only a single coordinate of the parameter vector, which
means that we would be using pure finite differences.

To reduce variance, we use antithetic sampling (Geweke,
1988), also known as mirrored sampling (Brockhoff et al.,
2010) in the ES literature: that is, we always evaluate pairs
of perturbations €, —e¢, for Gaussian noise vector €. We also
find it useful to perform fitness shaping (Wierstra et al.,
2014) by applying a rank transformation to the returns be-
fore computing each parameter update. Doing so removes
the influence of outlier individuals in each population and
decreases the tendency for ES to fall into local optima early
in training. In addition, we apply weight decay to the pa-
rameters of our policy network: this prevents the parame-
ters from growing very large compared to the perturbations.

Evolution Strategies, as presented above, works with full-
length episodes. In some rare cases this can lead to low
CPU utilization, as some episodes run for many more steps
than others. For this reason, we cap episode length at a
constant m steps for all workers, which we dynamically
adjust as training progresses. For example, by setting m
to be equal to twice the average number of steps taken per
episode, we can guarantee that CPU utilization stays above
50% in the worst case.

We plan to release full source code for our implementation
of parallelized ES in the near future.

2.2. The impact of network parameterization

Whereas RL algorithms like Q-learning and policy gradi-
ents explore by sampling actions from a stochastic policy,
Evolution Strategies derives learning signal from sampling
instantiations of policy parameters. Exploration in ES is
thus driven by parameter perturbation. For ES to improve
upon parameters ¢, some members of the population must
achieve better return than others: i.e. it is crucial that Gaus-
sian perturbation vectors e occasionally lead to new indi-
viduals 6 + e with better return.

For the Atari environments, we found that Gaussian per-
turbations on the parameters of DeepMind’s convolutional
architectures (Mnih et al., 2015) did not always lead to ad-
equate exploration: For some environments, randomly per-
turbed parameters tended to encode policies that always
took one specific action regardless of the state that was
given as input. However, we discovered that we could get
performance matching that of policy gradient methods for
most games by using virtual batch normalization (Salimans
et al., 2016) in the policy specification. Virtual batch nor-
malization is precisely equivalent to batch normalization
(Ioffe & Szegedy, 2015) where the minibatch used for cal-

Evolution Strategies as an Alternative for Reinforcement Learning

culating normalizing statistics is chosen at the start of train-
ing and is fixed. This change in parameterization makes
the policy more sensitive to very small changes in the in-
put image at the early stages of training when the weights
of the policy are random, ensuring that the policy takes
a wide-enough variety of actions to gather occasional re-
wards. For most applications, a downside of virtual batch
normalization is that it makes training more expensive. For
our application, however, the minibatch used to calculate
the normalizing statistics is much smaller than the number
of steps taken during a typical episode, meaning that the
overhead is negligible. For the MuJoCo tasks, we achieved
good performance on nearly all the environments with the
standard multilayer perceptrons mapping to continuous ac-
tions. However, we observed that for some environments,
we could encourage more exploration by discretizing the
actions. This forced the actions to be non-smooth with
respect to input observations and parameter perturbations,
and thereby encouraged a wide variety of behaviors to be
played out over the course of rollouts.

3. Smoothing in parameter space versus
smoothing in action space

As mentioned in section 2, a large source of difficulty in
RL stems from the lack of informative gradients of pol-
icy performance: such gradients may not exist due to non-
smoothness of the environment or policy, or may only be
available as high-variance estimates because the environ-
ment usually can only be accessed via sampling. Explic-
itly, suppose we wish to solve general decision problems
that give a return R(a) after we take a sequence of ac-
tions a = {ay,...,ar}, where the actions are determined
by a either a deterministic or a stochastic policy function
a; = 7(s;0). The objective we would like to optimize is
thus
F(0) = R(a(#)).

Since the actions are allowed to be discrete and the pol-
icy is allowed to be deterministic, F'(f) can be non-smooth
in §. More importantly, because we do not have explicit
access to the underlying state transition function of our de-
cision problems, the gradients cannot be computed with a
backpropagation-like algorithm. This means we cannot di-
rectly use standard gradient-based optimization methods to
find a good solution for 6.

In order to both make the problem smooth and to have a
means of to estimate its gradients, we need to add noise.
Policy gradient methods add the noise in action space,
which is done by sampling the actions from an appropri-
ate distribution. For example, if the actions are discrete
and 7(s; 0) calculates a score for each action before select-
ing the best one, then we would sample an action a(e, 6)
(here € is the noise source) from a categorical distribution

over actions at each time period, applying a softmax to the
scores of each action. Doing so yields the objective

Fpg(0) = Ec R(a(e,0)),
with gradients

VoFpa(0) = E.{R(a(e,8)) Vo logp(ale, 6);0)} .

Evolution strategies, on the other hand, add the noise in
parameter space. That is, they perturb the parameters as
0 = 6 + &, with £ from a multivariate Gaussian distribu-
tion, and then pick actions as a; = a(&,0) = w(s;0). It
can be interpreted as adding a Gaussian blur to the original
objective, which results in a smooth, differentiable cost:

Fps(0) = E¢ R(a(¢,0)),

this time with gradients

VoFps(0) = Ee {R(a(f, 0))Vg log p((¢, 0); 0)} .

The two methods for smoothing the decision problem are
thus quite similar, and can be made even more so by adding
noise to both the parameters and the actions.

3.1. When is ES better than PG?

Given these two methods of smoothing the decision prob-
lem, which one should we use? The answer depends
strongly on the structure of the decision problem and on
which type of Monte Carlo estimator is used to estimate the
gradients Vg Fpi(0) and Vg Frs(6). Suppose the correla-
tion between the return and the actions is low. Assuming
we approximate these gradients using simple Monte Carlo
(REINFORCE) with a good baseline on the return, we have

Var[VgFpg(0)] = Var[R(a)] Var[Vy log p(a; 0)],
and
Var[VyFgs(0)] ~ Var[R(a)] Var[V, log p(6; 6)].

If both methods perform a similar amount of exploration,
Var[R(a)] will be similar for both expressions. The differ-
ence will thus be in the second term. Here we have that
Vologp(a;6) = Zthl Vo log p(as;0) is a sum of T un-
correlated terms, so that the variance of the policy gradi-
ent estimator will grow nearly linearly with 7". The cor-
responding term for evolution strategies, Vy log p(0~; 0), is
independent of 7T'. Evolution strategies will thus have an
advantage compared to policy gradients for long episodes
with very many time steps. In practice, the effective num-
ber of steps 1" is often reduced in policy gradient methods
by discounting rewards. If the effects of actions are short-
lasting, this allows us to dramatically reduce the variance

Evolution Strategies as an Alternative for Reinforcement Learning

in our gradient estimate, and this has been critical to the
success of applications such as Atari games. However, this
discounting will bias our gradient estimate if actions have
long lasting effects. Another strategy for reducing the ef-
fective value of 7' is to use value function approximation.
This has also been effective, but once again runs the risk of
biasing our gradient estimates.

Evolution strategies is thus an attractive choice if the ef-
fective number of time steps T is long, actions have long-
lasting effects, and if no good value function estimates are
available.

3.2. Problem dimensionality

The gradient estimate of ES can be interpreted as a method
for randomized finite differences in high-dimensional

space. Indeed, using the fact that E..n o, 1) {@e} =0,
we get

F(0+o¢
Veon(0) = IE5~N(0,I) {(a) 6}
F(0+o0e)— F(0
o { LEEO=FO))

It is now apparent that ES can be seen as computing a finite
difference derivative estimate in a randomly chosen direc-
tion, especially as o becomes small.

The resemblance of ES to finite differences suggests the
method will scale poorly with the dimension of the param-
eters 6. Theoretical analysis indeed shows that for general
non-smooth optimization problems, the required number of
optimization steps scales linearly with the dimension (Nes-
terov & Spokoiny, 2011). However, it is important to note
that this does not mean that larger neural networks will per-
form worse than smaller networks when optimized using
ES: what matters is the difficulty, or intrinsic dimension, of
the optimization problem. To see that the dimensionality
of our model can be completely separate from the effective
dimension of the optimization problem, consider a regres-
sion problem where we approximate a univariate variable
y with a linear model §j = x - w: if we double the number
of features and parameters in this model by concatenating
x with itself (i.e. using features X' = (x,x)), the problem
does not become more difficult. In fact, the ES algorithm
will do exactly the same thing when applied to this higher
dimensional problem, as long as we divide the standard de-
viation of the noise by two, as well as the learning rate.

In practice, we observe slightly better results when using
larger networks with ES. For example, we tried both the
larger network and smaller network used in A3C (Mnih
et al., 2016) for learning Atari 2600 games, and on aver-
age obtained better results using the larger network. We
hypothesize that this is due to the same effect that makes

standard gradient-based optimization of large neural net-
works easier than for small ones: large networks have fewer
local minima (Kawaguchi, 2016).

3.3. Advantages of not calculating gradients

In addition to being easy to parallelize, and to having an
advantage in cases with long action sequences and delayed
rewards, black box optimization algorithms like ES have
other advantages over reinforcement learning techniques
that calculate gradients.

The communication overhead of implementing ES in a dis-
tributed setting is lower than for reinforcement learning
methods such as policy gradients and Q-learning, as the
only information that needs to be communicated across
processes are the scalar return and the random seed that
was used to generate the perturbations e, rather than a full
gradient. Also, it can deal with maximally sparse and de-
layed rewards; there is no need for the assumption that time
information is part of the reward

By not requiring backpropagation, black box optimizers re-
duce the amount of computation per episode by about two
thirds, and memory by potentially much more. In addi-
tion, not explicitly calculating an analytical gradient pro-
tects against problems with exploding gradients that are
common when working with recurrent neural networks.
By smoothing the cost function in parameter space, we re-
duce the pathological curvature that causes these problems:
bounded cost functions that are smooth enough can’t have
exploding gradients. At the extreme, ES allows us to in-
corporate non-differentiable elements into our architecture,
such as modules that use hard attention (Xu et al., 2015).

Black box optimization methods are uniquely suited to cap-
italize on advances in low precision hardware for deep
learning. Low precision arithmetic, such as in binary neural
networks, can be performed much cheaper than at high pre-
cision. When optimizing such low precision architectures,
biased low precision gradient estimates can be a problem
when using gradient-based methods. Similarly, specialized
hardware for neural network inference, such as TPUs, can
be used directly when performing optimization using ES,
while their limited memory usually makes backpropagation
impossible.

By perturbing in parameter space instead of action space,
black box optimizers are naturally invariant to the fre-
quency at which our agent acts in the environment. For
reinforcement learning, on the other hand, it is well known
that frameskip is a crucial parameter to get right for the
optimization to succeed (Braylan et al., 2000). While this
is usually a solvable problem for games that only require
short-term planning and action, it is a problem for learn-
ing longer term strategic behavior. For these problems, RL

Evolution Strategies as an Alternative for Reinforcement Learning

needs hierarchy to succeed (Parr & Russell, 1998), which
is not as necessary when using black box optimization.

4. Experiments
4.1. MuJoCo

We evaluated ES on a benchmark of standard continuous
robotic control problems in the OpenAl Gym (Brockman
et al., 2016) against a highly tuned implementation of Trust
Region Policy Optimization (Schulman et al., 2015a), a
policy gradient algorithm designed to be stable and efficient
for optimizing neural network policies. The problems we
tested the algorithms on ranged from simple classic con-
trol problems—Ilike the balancing an inverted pendulum—
to more difficult problems found in the recent RL and
robotics literature—like learning 2D hopping and walking
gaits. The environments were simulated by the MuJoCo
physics engine (Todorov et al., 2012).

We used both ES and TRPO to train policies with identical
architectures: multilayer perceptrons with two 64-unit hid-
den layers separated by tanh nonlinearities. We found that
ES occasionally benefited from different action parameter-
izations for different environments. For the hopping and
swimming tasks, we discretized the actions for ES by bin-
ning each action dimension into 10 bins spaced uniformly
across its bounds. In these environments, the policies sim-
ply did not explore enough otherwise because the actions
were too smooth with respect to parameter perturbation, as
discussed in section 2.2.

We found that ES was able to solve these tasks up to
TRPO’s final performance after 5 million timesteps of envi-
ronment interaction. To obtain this result, we ran ES over
6 random seeds and compared the mean learning curves
to similarly computed learning curves for TRPO. The ex-
act sample complexity tradeoffs over the course of learning
are listed in Table 1, and detailed results are listed in Ta-
ble 4 of the supplementary material. Generally, we were
able to solve the environments in less than 10x penalty in
sample complexity on the hard environments (Hopper and
Walker2d) compared to TRPO. On simple environments,
we achieved up to 3x better sample complexity than TRPO.

4.2. Atari

We ran our parallel implementation of Evolution Strategies,
described in Algorithm 2, on 51 Atari 2600 games avail-
able in OpenAl Gym (Brockman et al., 2016). We used
the same preprocessing and feedforward CNN architecture
used by (Mnih et al., 2016). All games were trained for
1 billion frames, which requires about the same amount of
neural network computation as the published 1-day results
for A3C (Mnih et al., 2016) which uses 320 million frames.
The difference is due to the fact that ES does not perform

Table 1. MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps
needed to reach various percentages of TRPO’s learning progress
at 5 million timesteps.

ENVIRONMENT 25% 50% 15% 100%
HALFCHEETAH 0.15 0.49 0.42 0.58
HOPPER 0.53 3.64 6.05 6.94
INVERTEDDOUBLEPENDULUM 0.46 0.48 0.49 1.23
INVERTEDPENDULUM 0.28 0.52 0.78 0.88
SWIMMER 0.56 0.47 0.53 0.30
WALKER2D 0.41 5.69 8.02 7.88

backpropagation and does not use a value function. By par-
allelizing the evaluation of perturbed parameters across 720
CPUs on Amazon EC2, we can bring down the time re-
quired for the training process to about one hour per game.
After training, we compared final performance against the
published A3C results and found that ES performed better
in 23 games tested, while it performed worse in 28. The
full results are summarized in Table 3 in the supplementary
material.

4.3. Parallelization

ES is particularly amenable to parallelization because of its
low communication bandwidth requirement (Section 2.1).
We implemented a distributed version of Algorithm 2 to in-
vestigate how ES scales with the number of workers. Our
distributed implementation did not rely on special network-
ing setup and was tested on public cloud computing service
Amazon EC2.

We picked the 3D Humanoid walking task from OpenAl
Gym (Brockman et al., 2016) as the test problem for our
scaling experiment, because it is one of the most challeng-
ing continuous control problems solvable by state-of-the-
art RL techniques, which require about a day to learn on
modern hardware (Schulman et al., 2015a; Duan et al.,
2016a). Solving 3D Humanoid with ES on one 18-core
machine takes about 11 hours, which is on par with RL.
However, when distributed across 80 machines and 1, 440
CPU cores, ES can solve 3D Humanoid in just 10 min-
utes, reducing experiment turnaround time by two orders
of magnitude. Figure 1 shows that, for this task, ES is able
to achieve linear speedup in the number of CPU cores.

4.4. Invariance to temporal resolution

It is common practice in RL to have the agent decide on
its actions in a lower frequency than is used in the simu-
lator that runs the environment. This action frequency, or
[frame-skip, is a crucial parameter in reinforcement learning
(Braylan et al., 2000). If the frame-skip is set too high, the
agent is not able to make its decisions at a fine enough time-

Evolution Strategies as an Alternative for Reinforcement Learning

«—— 18 cores, 657 minutes

Median time to solve (minutes)

102
10! 1440 cores, 10 minutes ————
Lo Lo
102 103
Number of CPU cores

Figure 1. Time to reach a score of 6000 on 3D Humanoid with
different number of CPU cores. Experiments are repeated 7 times
and median time is reported.

frame to perform well in the environment. If, on the other
hand, the frameskip is set too low, the effective time length
of the episode increases too much, which deteriorates RL
performance as analyzed in section 3.1. An advantage of
ES as a black box optimizer is that its gradient estimate is
invariant to the length of the episode, which makes it much
more robust to the action frequency. We demonstrate this
by running the Atari game Pong using a frame skip param-
eterin {1,2,3,4}. As can be seen in Figure 2, the learning
curves for each setting indeed look very similar.

4.5. The general effectiveness of randomized finite
differences

Overall, we found that of ES was surprisingly effective,
given the high dimensionality of the neural network poli-
cies we were optimizing. Because, as discussed in section
3, policy gradient algorithms essentially perform finite dif-
ferences in the space of action sequences, this success led
us to investigate the performance of TRPO without vari-
ance reduction techniques such as discounting, generalized
advantage estimation (Schulman et al., 2015b), and expres-
sive neural network baselines. We used a methodology
similar to that of section 4.1 to evaluate TRPO without vari-
ance reduction (y = 1, A = 1, a constant time-dependent
baseline, for 50 million steps) against TRPO with variance
reduction (y = 0.995, A = 0.97, with a neural network
baseline, for 5 million steps).

The results of this experiment are listed in table 2, and the
full details are listed in table 5 in the supplementary ma-
terial. We found that TRPO without variance reduction
yielded similar performance to ES (see table 1), although

30 T T T T T T

— FrameSkip 1
20| — FrameSkip 2 e
— FrameSkip 3
10 FrameSkip 4 -
[
s 0 1
]
710 -
—20 fucudd J
730 1 L L 1 1 1 1
0 20 40 60 80 100 120 140

weight updates

Figure 2. Learning curves for Pong using varying frame-skip pa-
rameters. Although performance is stochastic, each setting leads
to about equally fast learning, with each run converging in around
100 weight updates.

Table 2. Ratio of timesteps needed by TRPO without variance
reduction to reach various fractions of the learning progress of
TRPO with variance reduction at 5 million timesteps. (co means
TRPO performance with variance reduction was never reached.)

ENVIRONMENT 25% 50% 75% 100%
HALFCHEETAH 3.76 4.19 3.12 2.85
HOPPER 0.66 1.03 2.58 4.25
INVERTEDDOUBLEPENDULUM 1.18 1.26 1.97 00
INVERTEDPENDULUM 096 0.99 0.99 .
SWIMMER 0.20 0.20 0.22 0.14
WALKER2D 1.86 3.81 5.28 7.75

it is more difficult to parallelize than ES.

5. Related work

There have been a very large number of attempts at apply-
ing methods related to ES to the problem of training neu-
ral networks. Sehnke et al. (2010) proposed essentially the
same method as the one investigated in our work. Koutnik
et al. (2013; 2010) and Srivastava et al. (2012) have sim-
ilarly applied an an ES method to reinforcement learning
problems with visual inputs, but where the policy was com-
pressed in a number of different ways. Natural evolution
strategies has been successfully applied to black box op-
timization (Wierstra et al., 2008; 2014), as well as for the
training of the recurrent weights in recurrent neural net-
works (the hidden-to-output weights have been trained with
supervised learning; Schmidhuber et al., 2007). Stulp &
Sigaud (2012) explored similar approaches to black box
optimization.

Derivative free optimization methods have also been ana-

Evolution Strategies as an Alternative for Reinforcement Learning

lyzed in the convex setting, e.g., by Duchi et al. (2015).
Nesterov (2012) has analyzed the randomized block coor-
dinate descent, which would take a gradient step on a ran-
domly chosen dimension of the parameter vector, which is
almost equivalent to evolution strategies with axis-aligned
noise. Nesterov has a surprising result: a setting in which
randomized block coordinate descent outperforms the de-
terministic, noiseless gradient estimate in terms of its rate
of convergence.

Hyper-Neat (Stanley et al., 2009) is an alternative approach
to evolving both the weights of the neural networks and
their parameters, an approach we believe to be worth revis-
iting given our promising results with scaling up ES.

The primary difference between prior work and ours is the
results: we have been able to show that when applied cor-
rectly, ES is competitive with current RL algorithms in
terms of performance on the hardest problems solvable to-
day, and is surprisingly close in terms of data efficiency,
while being extremely parallelizeable.

6. Conclusion

We have explored Evolution Strategies as an alternative to
popular RL techniques such as Q-learning and policy gra-
dients. Experiments on Atari and MuJoCo show that it is
a viable option with some attractive features: it is invariant
to action frequency and delayed rewards, and it does not
need temporal discounting or value function approxima-
tion. Most importantly, ES is highly parallelizable, which
allows us to make up for a decreased data efficiency by
scaling to more parallel workers.

In future work we plan to apply evolution strategies to those
problems for which reinforcement learning is less well-
suited: problems with long time horizons and complicated
reward structure. We are particularly interested in meta-
learning, or learning-to-learn. A proof of concept for meta-
learning in an RL setting was given by Duan et al. (2016b):
Using ES instead of RL we hope to be able to extend these
results. Another application which we plan to examine is
to combine ES with fast low precision neural network im-
plementations to fully make use of its gradient-free nature.

References

Braylan, Alex, Hollenbeck, Mark, Meyerson, Elliot, and
Miikkulainen, Risto. Frame skip is a powerful parameter
for learning to play atari. Space, 1600:1800, 2000.

Brockhoff, Dimo, Auger, Anne, Hansen, Nikolaus, Arnold,
Dirk V, and Hohm, Tim. Mirrored sampling and sequen-
tial selection for evolution strategies. In International
Conference on Parallel Problem Solving from Nature,
pp- 11-21. Springer, 2010.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig,
Schneider, Jonas, Schulman, John, Tang, Jie, and
Zaremba, Wojciech. OpenAl Gym. arXiv preprint
arXiv:1606.01540, 2016.

Duan, Yan, Chen, Xi, Houthooft, Rein, Schulman, John,
and Abbeel, Pieter. Benchmarking deep reinforcement
learning for continuous control. In Proceedings of the
33rd International Conference on Machine Learning

(ICML), 2016a.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L,
Sutskever, Ilya, and Abbeel, Pieter. RL2: Fast reinforce-
ment learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016b.

Duchi, John C, Jordan, Michael I, Wainwright, Martin J,
and Wibisono, Andre. Optimal rates for zero-order con-
vex optimization: The power of two function evalua-
tions. IEEE Transactions on Information Theory, 61(5):
2788-2806, 2015.

Geweke, John. Antithetic acceleration of monte carlo inte-
gration in bayesian inference. Journal of Econometrics,
38(1-2):73-89, 1988.

Glasmachers, Tobias, Schaul, Tom, and Schmidhuber,
Jiirgen. A natural evolution strategy for multi-objective
optimization. In International Conference on Parallel
Problem Solving from Nature, pp. 627-636. Springer,
2010a.

Glasmachers, Tobias, Schaul, Tom, Yi, Sun, Wierstra,
Daan, and Schmidhuber, Jiirgen. Exponential natural
evolution strategies. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation,
pp- 393-400. ACM, 2010b.

Hansen, Nikolaus and Ostermeier, Andreas. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159-195, 2001.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kawaguchi, Kenji. Deep learning without poor local min-
ima. In Advances In Neural Information Processing Sys-
tems, pp. 586-594, 2016.

Koutnik, Jan, Gomez, Faustino, and Schmidhuber, Jiirgen.
Evolving neural networks in compressed weight space.
In Proceedings of the 12th annual conference on Ge-
netic and evolutionary computation, pp. 619-626. ACM,
2010.

Koutnik, Jan, Cuccu, Giuseppe, Schmidhuber, Jiirgen, and
Gomez, Faustino. Evolving large-scale neural networks

Evolution Strategies as an Alternative for Reinforcement Learning

for vision-based reinforcement learning. In Proceedings
of the 15th annual conference on Genetic and evolution-
ary computation, pp. 1061-1068. ACM, 2013.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel,
Pieter. End-to-end training of deep visuomotor poli-
cies. Journal of Machine Learning Research, 17(39):
1-40, 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-
533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy P, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In Interna-
tional Conference on Machine Learning, 2016.

Nesterov, Yurii. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341-362, 2012.

Nesterov, Yurii and Spokoiny, Vladimir. Random gradient-
free minimization of convex functions. Foundations of
Computational Mathematics, pp. 1-40, 2011.

Parr, Ronald and Russell, Stuart. Reinforcement learning
with hierarchies of machines. Advances in neural infor-
mation processing systems, pp. 1043—-1049, 1998.

Rechenberg, 1. and Eigen, M. Evolutionsstrategie: Op-
timierung Technischer Systeme nach Prinzipien der Bi-
ologischen Evolution. Frommann-Holzboog Stuttgart,
1973.

Salimans, Tim, Goodfellow, lan, Zaremba, Wojciech, Che-
ung, Vicki, Radford, Alec, and Chen, Xi. Improved tech-
niques for training gans. In Advances in Neural Informa-
tion Processing Systems, pp. 2226-2234, 2016.

Schaul, Tom, Glasmachers, Tobias, and Schmidhuber,
Jiirgen. High dimensions and heavy tails for natural evo-
lution strategies. In Proceedings of the 13th annual con-

ference on Genetic and evolutionary computation, pp.
845-852. ACM, 2011.

Schmidhuber, Jiirgen, Wierstra, Daan, Gagliolo, Matteo,
and Gomez, Faustino. Training recurrent networks by
evolino. Neural computation, 19(3):757-779, 2007.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael I, and Moritz, Philipp. Trust region policy opti-
mization. In ICML, pp. 1889-1897, 2015a.

Schulman, John, Moritz, Philipp, Levine, Sergey, Jordan,
Michael, and Abbeel, Pieter. High-dimensional con-
tinuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438, 2015b.

Schwefel, H.-P. Numerische optimierung von computer-
modellen mittels der evolutionsstrategie. 1977.

Sehnke, Frank, Osendorfer, Christian, Riickstie, Thomas,
Graves, Alex, Peters, Jan, and Schmidhuber, Jiirgen.

Parameter-exploring policy gradients. Neural Networks,
23(4):551-559, 2010.

Silver, David, Huang, Aja, Maddison, Chris J, Guez,
Arthur, Sifre, Laurent, Van Den Driessche, George,
Schrittwieser, Julian, Antonoglou, loannis, Panneershel-
vam, Veda, Lanctot, Marc, et al. Mastering the game of
go with deep neural networks and tree search. Nature,
529(7587):484-489, 2016.

Spall, James C. Multivariate stochastic approximation us-
ing a simultaneous perturbation gradient approximation.
IEEE transactions on automatic control, 37(3):332-341,
1992.

Srivastava, Rupesh Kumar, Schmidhuber, Jiirgen, and
Gomez, Faustino. Generalized compressed network
search. In International Conference on Parallel Prob-
lem Solving from Nature, pp. 337-346. Springer, 2012.

Stanley, Kenneth O, D’ Ambrosio, David B, and Gauci, Ja-
son. A hypercube-based encoding for evolving large-
scale neural networks. Artificial life, 15(2):185-212,
2009.

Stulp, Freek and Sigaud, Olivier. Policy improvement
methods: Between black-box optimization and episodic
reinforcement learning. 2012.

Sun, Yi, Wierstra, Daan, Schaul, Tom, and Schmidhuber,
Juergen. Efficient natural evolution strategies. In Pro-
ceedings of the 11th Annual conference on Genetic and
evolutionary computation, pp. 539-546. ACM, 2009.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco:
A physics engine for model-based control. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RS/J Inter-
national Conference on, pp. 5026-5033. IEEE, 2012.

Wierstra, Daan, Schaul, Tom, Peters, Jan, and Schmid-
huber, Juergen. Natural evolution strategies. In
Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE
Congress on, pp. 3381-3387. IEEE, 2008.

Wierstra, Daan, Schaul, Tom, Glasmachers, Tobias, Sun,
Yi, Peters, Jan, and Schmidhuber, Jiirgen. Natural evo-
lution strategies. Journal of Machine Learning Research,
15(1):949-980, 2014.

Evolution Strategies as an Alternative for Reinforcement Learning

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229-256, 1992.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun,
Courville, Aaron C, Salakhutdinov, Ruslan, Zemel,
Richard S, and Bengio, Yoshua. Show, attend and tell:
Neural image caption generation with visual attention.
In ICML, volume 14, pp. 77-81, 2015.

Yi, Sun, Wierstra, Daan, Schaul, Tom, and Schmidhuber,
Jiirgen. Stochastic search using the natural gradient. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pp. 1161-1168. ACM, 2009.

Evolution Strategies as an Alternative for Reinforcement Learning

Game DQN A3CFF 1day ESFF, 1 hour
Alien 570.2 182.1 994.0
Amidar 1334 283.9 112.0
Assault 33323 3746.1 1673.9
Asterix 124.5 6723.0 1440.0
Asteroids 697.1 3009.4 1562.0
Atlantis 76108.0 772392.0 1267410.0
Bank Heist 176.3 946.0 225.0
Battle Zone 17560.0 11340.0 16600.0
Beam Rider 8672.4 13235.9 744.0
Berzerk NaN 1433.4 686.0
Bowling 41.2 36.2 30.0
Boxing 25.8 33.7 49.8
Breakout 303.9 551.6 9.5
Centipede 3773.1 3306.5 7783.9
Chopper Command 3046.0 4669.0 3710.0
Crazy Climber 50992.0 101624.0 26430.0
Demon Attack 12835.2 84997.5 1166.5
Double Dunk -21.6 0.1 0.2
Enduro 475.6 -82.2 95.0
Fishing Derby -2.3 13.6 -49.0
Freeway 25.8 0.1 31.0
Frostbite 157.4 180.1 370.0
Gopher 2731.8 8442.8 582.0
Gravitar 216.5 269.5 805.0
Ice Hockey -3.8 -4.7 -4.1
Kangaroo 2696.0 106.0 11200.0
Krull 3864.0 8066.6 8647.2
Montezuma’s Revenge 50.0 53.0 0.0
Name This Game 5439.9 5614.0 4503.0
Phoenix NaN 28181.8 4041.0
Pit Fall NaN -123.0 0.0
Pong 16.2 11.4 21.0
Private Eye 298.2 194.4 100.0
Q*Bert 4589.8 13752.3 147.5
River Raid 4065.3 10001.2 5009.0
Road Runner 9264.0 31769.0 16590.0
Robotank 58.5 23 11.9
Seaquest 2793.9 2300.2 1390.0
Skiing NaN -13700.0 -15442.5
Solaris NaN 1884.8 2090.0
Space Invaders 1449.7 2214.7 678.5
Star Gunner 34081.0 64393.0 1470.0
Tennis -2.3 -10.2 -4.5
Time Pilot 5640.0 5825.0 4970.0
Tutankham 324 26.1 130.3
Up and Down 3311.3 54525.4 67974.0
Venture 54.0 19.0 760.0
Video Pinball 20228.1 185852.6 22834.8
Wizard of Wor 246.0 5278.0 3480.0
Yars Revenge NaN 7270.8 16401.7
Zaxxon 831.0 2659.0 6380.0

Table 3. Final results obtained using Evolution Strategies on Atari 2600 games (feedforward CNN policy, deterministic policy evaluation,
averaged over 10 re-runs with up to 30 random initial no-ops), and compared to results for DQN (Mnih et al., 2015) and A3C (Mnih
et al., 2016).

Evolution Strategies as an Alternative for Reinforcement Learning

Table 4. MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps needed to reach various percentages of TRPO’s learning progress at 5
million timesteps. These results were computed from ES learning curves averaged over 6 reruns.

ENVIRONMENT % TRPO FINAL SCORE TRPO SCORE TRPO TIMESTEPS ES TIMESTEPS ES TIMESTEPS / TRPO TIMESTEPS
HALFCHEETAH 25% -1.35 9.05E+05 1.36E+05 0.15
50% 793.55 1.70E+06 8.28E+05 0.49
75% 1589.83 3.34E+06 1.42E+06 0.42
100% 2385.79 5.00E+06 2.88E+06 0.58
HOPPER 25% 877.45 7.29E4+05 3.83E+05 0.53
50% 1718.16 1.03E+06 3.73E+06 3.64
75% 2561.11 1.59e+06 9.63E+06 6.05
100% 3403.46 4.56E+06 3.16E+07 6.94
INVERTEDDOUBLEPENDULUM 25% 2358.98 8.73E+05 3.98E+05 0.46
50% 4609.68 9.65E+05 4.66E+05 0.48
75% 6874.03 1.07E+06 5.30E+05 0.49
100% 9104.07 4.39+06 5.39E+06 1.23
INVERTEDPENDULUM 25% 276.59 2.21E+05 6.25E+04 0.28
50% 519.15 2.73E+05 1.43E+05 0.52
75% 753.17 3.25E+05 2.55e+05 0.78
100% 1000.00 5.178+05 4.55E+05 0.88
SWIMMER 25% 41.97 1.04E+06 5.88E+05 0.56
50% 70.73 1.82E+06 8.52E+05 0.47
75% 99.68 2.33E+06 1.23E+06 0.53
100% 128.25 4.59E+06 1.39E+06 0.30
WALKER2D 25% 957.68 1.55e+06 6.43E+05 0.41
50% 1916.48 2.27E+06 1.29e+07 5.69
75% 2872.81 2.89E+06 2.31E+07 8.02
100% 3830.03 4.81E+06 3.79e+07 7.88

Table 5. TRPO scores on MuJoCo tasks with and without variance reduction (discounting and value functions). These results were
computed from learning curves averaged over 3 reruns.

ENVIRONMENT % FINAL SCORE W/ V.R. SCORE W/ V.R. TIMESTEPS W/ V.R. TIMESTEPS W/O V.R. TIMESTEPS WITHOUT / WITH V.R.
HALFCHEETAH 25% -1.35 9.05E+05 3.40E+06 3.76
50% 793.55 1.70E+06 7.14E+06 4.19
75% 1589.83 3.34E+06 1.04E+07 3.12
100% 2385.79 5.00E+06 1.42E+07 2.85
HOPPER 25% 877.45 7.29E+05 4.81E+05 0.66
50% 1718.16 1.03E+06 1.06E+06 1.03
75% 2561.11 1.59E+06 4.11E+06 2.58
100% 3403.46 4.56E+06 1.93+07 4.25
INVERTEDDOUBLEPENDULUM 25% 2358.98 8.73E+05 1.03E+06 1.18
50% 4609.68 9.65E+05 1.22E+06 1.26
75% 6874.03 1.07e+06 2.12E+06 1.97
100% 9104.07 4.39e+06 [S) 00
INVERTEDPENDULUM 25% 276.59 2.21E+05 2.13E+05 0.96
50% 519.15 2.73E+05 2.69E+05 0.99
75% 753.17 3.25E+05 3.21E+05 0.99
100% 1000.00 5.17E+05 9.93E+05 1.92
SWIMMER 25% 41.97 1.04E+06 2.05e+05 0.20
50% 70.73 1.82E+06 3.57E+05 0.20
75% 99.68 2.33E+06 5.13e+05 0.22
100% 128.25 4.59E+06 6.65E+05 0.14
WALKER2D 25% 957.68 1.55E+06 2.89E+06 1.86
50% 1916.48 2.27E+06 8.65E+06 3.81
75% 2872.81 2.89E+06 1.52E+07 5.28

100% 3830.03 4.81E+06 3.73g+07 7.75

