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Abstract: Among all the NAD+ precursors, nicotinamide riboside (NR) has gained the most attention
as a potent NAD+-enhancement agent. This recently discovered vitamin, B3, has demonstrated
excellent safety and efficacy profiles and is orally bioavailable in humans. Boosting intracellular NAD+

concentrations using NR has been shown to provide protective effects against a broad spectrum of
pathological conditions, such as neurodegenerative diseases, diabetes, and hearing loss. In this review,
an integrated overview of NR research will be presented. The role NR plays in the NAD+ biosynthetic
pathway will be introduced, followed by a discussion on the synthesis of NR using chemical and
enzymatic approaches. NR’s effects on regulating normal physiology and pathophysiology will also
be presented, focusing on the studies published in the last five years.
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1. Introduction

Vitamins are a group of structurally diversified, small organic molecules that are
essential for almost all forms of life. Although often required in small amounts and
designated as “micronutrients”, vitamins have proven critical for maintaining normal
physiology. Their absence or deficiency is known to cause disorders or diseases such as
anemia [1], beriberi [2], pellagra [3], scurvy [4], night blindness [5], and blood coagulation
disorders [6]. The study of vitamins has advanced significantly during the last century,
being recognized by the Nobel Prize Committee in the form of numerous awards for
vitamin-related research since 1928 [7]. All the research efforts have also resulted in
the development of dietary recommendations and vitamin supplementation for disease
prevention and treatment [8–10]. The human nutrition market was worth 252.38 billion
USD in 2020 and is expected to expand during the next decade [11]. This growth can
be attributed to increased health awareness, as well as surging demand for additional
protection from the devastating COVID-19 pandemic [12,13].

This review focuses on a newly discovered form of vitamin B3, nicotinamide riboside
(NR). Initially, NR was shown to increase intracellular NAD+ concentrations and to extend
the life span without calorie restriction (CR) in yeast [14]. Subsequent studies established
that NR is a potent NAD+ booster [15–17]. Together with two other NAD+ precursors,
nicotinamide (NAM) and nicotinic acid (NA), NR belongs to the vitamin B3 family [14].
The literature is replete with the beneficial effects of NR-mediated NAD+ elevation in
a broad spectrum of diseases, including neurodegenerative diseases [18,19], metabolic
disorders [20,21], and cardiac fibrosis [22]. Notably, SARS-CoV-2 infection disrupts NAD+

homeostasis by depleting cellular NAD+ contents and upregulating poly(ADP-ribose)
polymerases (PARPs), the NAD+-utilizing enzymes [23,24]. Reduced NAD+ level has
been shown to promote inflammation and increase cellular injury [25,26]. Consequently,
NAD+-depletion may be held partially responsible for the higher mortality rate in patients
with pre-existing medical conditions, such as respiratory diseases, cardiovascular diseases,
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and diabetes. PARP inhibitors have been suggested as potential therapeutics for COVID-19
by blocking virus proliferation, preventing immune cell hyperactivation, and reducing
the levels of circulating cytokines [27]. Interestingly, restoring NAD+ concentration using
precursors such as NR is also under intense investigation to attenuate COVID-19-induced
complications [28].

In this review, our effort is directed at discussing the distinct NAD+ biosynthetic path-
ways; the synthesis of NR; the role NR plays in health promotion; and disease prevention.
The therapeutic potential of NR in treating COVID-19 is discussed separately towards the
end. Several databases, including SciFinder, PubMed, Google Scholar, and Researchgate,
were researched for peer-reviewed articles on the subject matter. Special attention is given
to the publications after 2018 for NR in health and diseases. Publications prior to that have
also been included to establish the foundation knowledge of NR.

2. NR and NAD+ Biosynthesis

In mammals, an intricate NAD+ biosynthetic network has been established, including the
de novo, salvage, NR, and dihydronicotinamide riboside (NRH) pathways (Figure 1) [29,30].
L-Tryptophan is the starting point of the de novo pathway [31]. It is enzymatically trans-
formed through several steps to quinolinic acid, an immediate precursor of nicotinic acid
mononucleotide (NaMN). Nicotinamide mononucleotide adenylyltransferase (NMNAT)-
catalyzed adenylation converts NaMN to nicotinic acid adenine dinucleotide (NaAD),
which can be further amidated to NAD+ by NAD+ synthetase. Intracellular NAD+ can
be degraded to NAM by a class of enzymes called “NAD+-consuming enzymes”, such as
sirtuins, poly(ADP-ribose) polymerase (PARP), and CD38 [32,33]. The salvage pathway is
known to recycle NAM by nicotinamide phosphoribosyltransferase (NAMPT) to nicoti-
namide mononucleotide (NMN) [34]. NMN can be fully incorporated into NAD+ by the
action of NMNAT. Another branch of the salvage pathway starts with NA. It is recycled by
nicotinate phosphoribosyltransferase (NaPRTase) to NaMN through the Preiss–Handler
pathway [35]. NaMN thus serves as a common intermediate for NA salvage and de novo
NAD+ biosynthesis. NR is a naturally occurring metabolite initially found in milk [36].
It can be directly phosphorylated by NR kinases (NRK1/NRK2) to NMN [15,37,38], and
ultimately to NAD+. This pathway has been extensively studied because NR is consid-
ered a potent NAD+ precursor [38–40], and boosting intracellular NAD+ content has been
suggested as a potential anti-aging strategy [41–43]. Additionally, gut microbiota can also
convert the dietary NR into various NAD+ precursors such as NAM, NA, and nicotinic
acid riboside (NAR) in the colonic lumen and boost NAD+ biosynthesis [44]. NR is water-
soluble and cell-permeable with no apparent toxicity [16]. Unlike other NAD+ precursors,
such as NAM or NA, NR is not associated with any severe side effects [15,45]. All of these
features render NR an ideal candidate as a therapeutic agent for NAD+ restoration. NRH
is the “new kid on the block” as an NAD+ precursor. It has been suggested that NRH is
metabolically handled by adenosine kinase (AK) and NMNAT in a sequential order to
generate NADH, which can then be equilibrated to NAD+ through redox reactions [30,46].
NRH is also used by NRH:quinone oxidoreductase 2 (NQO2) as the electron donor to
detoxify quinones, leading to the formation of endogenous NR [47].
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Figure 1. NAD+ biosynthetic pathways in mammalian cells. NA: nicotinic acid; NAM: nicotinamide; 
NR: nicotinamide riboside; NMN: nicotinamide mononucleotide; NaMN: nicotinic acid mononu-
cleotide; NaAD: nicotinic acid adenine dinucleotide; NRH: reduced nicotinamide riboside; NMNH: 
reduced nicotinamide mononucleotide; QPRTase: quinolinate phosphoribosyltransferase; 
NMNAT: nicotinamide mononucelotide adenylyltransferase; NaPRTase: nicotinic acid phosphori-
bosyl transferase; NAMPT: nicotinamide phosphoribosyl transferase; NRK: nicotinamide riboside 
kinase; PNP: purine nucleoside phosphorylase; AK: adenosine kinase; NQO2: NRH: quinone oxi-
doreductase 2. 

3. Synthesis of NR 
3.1. Biosynthesis of NR 

The study of the biosynthesis of NR has been rather scarce. In yeast, NR can be pro-
duced via phosphatase-mediated NMN dephosphorylation [48]. The deletion of nrt1, an 
NR transporter, in a genetically altered yeast strain has resulted in increased secretion of 
NR [49], suggesting a possible biosynthetic approach for this vitamin. Endogenous NR 
biosynthesis has also been observed in mammalian cells [50]. It was further demonstrated 
that the dephosphorylation of NMN and NaMN by cytosolic 5′-nucleotidases (5′-NTs) led 
to the formation of NR and NAR in vitro. 

3.2. Chemical Synthesis of NR  
The N-glycosidic bond in NR is considered the “weakest link” of the molecule. The 

presence of this labile chemical moiety poses a significant challenge in the chemical syn-
thesis and modification of NR. The initial synthetic effort was focused on the coupling of 
NAM with peracylated-D-ribose, leading to the formation of a mixture of both α- and β-
isomers with variable ratios [51,52]. A TMSOTf-mediated coupling reaction between 
NAM and commercially available tetra-O-acetyl-β-D-ribofuranose was later reported 
(Figure 2A) [53]. The glycosylation reaction was conducted in acetonitrile at room tem-
perature, resulting in the formation of triacetylated NR. The subsequent methanolysis led 
to a mixture of both anomers in a 13:87 ratio (α:β), which was further purified by chroma-
tography on activated charcoal and crystallization to afford the desired βNR triflate in 
58% overall yield [53]. The stereoselectivity of the glycosylation can be explained by 
“neighboring group participation”, as illustrated in Figure 2B [54].  

Figure 1. NAD+ biosynthetic pathways in mammalian cells. NA: nicotinic acid; NAM: nicotinamide;
NR: nicotinamide riboside; NMN: nicotinamide mononucleotide; NaMN: nicotinic acid mononu-
cleotide; NaAD: nicotinic acid adenine dinucleotide; NRH: reduced nicotinamide riboside; NMNH:
reduced nicotinamide mononucleotide; QPRTase: quinolinate phosphoribosyltransferase; NMNAT:
nicotinamide mononucelotide adenylyltransferase; NaPRTase: nicotinic acid phosphoribosyl trans-
ferase; NAMPT: nicotinamide phosphoribosyl transferase; NRK: nicotinamide riboside kinase; PNP:
purine nucleoside phosphorylase; AK: adenosine kinase; NQO2: NRH: quinone oxidoreductase 2.

3. Synthesis of NR
3.1. Biosynthesis of NR

The study of the biosynthesis of NR has been rather scarce. In yeast, NR can be
produced via phosphatase-mediated NMN dephosphorylation [48]. The deletion of nrt1,
an NR transporter, in a genetically altered yeast strain has resulted in increased secretion
of NR [49], suggesting a possible biosynthetic approach for this vitamin. Endogenous NR
biosynthesis has also been observed in mammalian cells [50]. It was further demonstrated
that the dephosphorylation of NMN and NaMN by cytosolic 5′-nucleotidases (5′-NTs) led
to the formation of NR and NAR in vitro.

3.2. Chemical Synthesis of NR

The N-glycosidic bond in NR is considered the “weakest link” of the molecule. The
presence of this labile chemical moiety poses a significant challenge in the chemical synthe-
sis and modification of NR. The initial synthetic effort was focused on the coupling of NAM
with peracylated-D-ribose, leading to the formation of a mixture of both α- and β-isomers
with variable ratios [51,52]. A TMSOTf-mediated coupling reaction between NAM and
commercially available tetra-O-acetyl-β-D-ribofuranose was later reported (Figure 2A) [53].
The glycosylation reaction was conducted in acetonitrile at room temperature, resulting
in the formation of triacetylated NR. The subsequent methanolysis led to a mixture of
both anomers in a 13:87 ratio (α:β), which was further purified by chromatography on
activated charcoal and crystallization to afford the desired β-NR triflate in 58% overall
yield [53]. The stereoselectivity of the glycosylation can be explained by “neighboring
group participation”, as illustrated in Figure 2B [54].
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Figure 2. NR synthesis: glycosylation of NAM and acetylated-D-ribofuranose. (A) Synthetic scheme 
of β-NR triflate developed by Kirihata et al. [53]; (B) Neighboring group participation leads to the 
formation of β-NR as the major anomer. 

A simple two-step procedure was also developed to synthesize NR in a stereoselec-
tive manner [39,55]. Tetra-O-acetyl-β-D-ribofuranose and ethyl nicotinate in the presence 
of a stoichiometric amount of TMSOTf were refluxed in CH2Cl2 for 8 h (Figure 3). NMR 
results indicated the formation of only the β-anomer, suggesting that the coupling reac-
tion went through an acyloxonium ion intermediate similar to the one shown in Figure 
2B. The resulting ethyl nicotinate 2′,3′,5′-tri-O-acetylriboside triflate was then treated with 
ammonia in methanol for the simultaneous deprotection of acetyl groups and the conver-
sion of ester to amide. The crude product was purified by C18 column chromatography 
to affordβNR triflate in 85% overall yield. It is important to note that NR triflate is not 
a pharmaceutically acceptable form. Ion exchange with saturated sodium chloride solu-
tion provided NR chloride salt [56], which is commonly used as a dietary supplement. 
Other chemical syntheses of NR and its analogs have also been reported. Please refer to a 
wonderful review article on this topic if interested [57]. 

 
Figure 3. Synthetic scheme of β-NR triflate developed by Sauve et al. [39,55]. 

3.3. Chemo-Enzymatic Synthesis of NR 
Accessing NR and its derivatives has also been explored using a chemo-enzymatic 

approach [58]. It started with a one-pot ten-enzyme coupled reaction to convert 13C-la-
beled glucose to 13C-labeled NaAD, which can then be transformed to NAD+ via NAD+ 
synthetase-catalyzed amidation reaction (Figure 4). The 13C-labeled NAD+ was then 
treated with chemically synthesized 18O-NAM in the presence of ADP-ribosylcyclase. This 
enzyme-mediated “base exchange” reaction allowed the formation of NAD+ with 13C la-
bels in the ribose moiety and 18O label in NAM. The subsequent degradations of this NAD+ 
isotopomer by phosphodiesterase and alkaline phosphatase generated 13C, 18O-labeled NR 
in good yield. A similar method was applied to the formation of 14C-labeled NR [58]. These 

Figure 2. NR synthesis: glycosylation of NAM and acetylated-D-ribofuranose. (A) Synthetic scheme
of β-NR triflate developed by Kirihata et al. [53]; (B) Neighboring group participation leads to the
formation of β-NR as the major anomer.

A simple two-step procedure was also developed to synthesize NR in a stereoselective
manner [39,55]. Tetra-O-acetyl-β-D-ribofuranose and ethyl nicotinate in the presence of
a stoichiometric amount of TMSOTf were refluxed in CH2Cl2 for 8 h (Figure 3). NMR
results indicated the formation of only the β-anomer, suggesting that the coupling reaction
went through an acyloxonium ion intermediate similar to the one shown in Figure 2B. The
resulting ethyl nicotinate 2′,3′,5′-tri-O-acetylriboside triflate was then treated with ammonia
in methanol for the simultaneous deprotection of acetyl groups and the conversion of ester
to amide. The crude product was purified by C18 column chromatography to afford β-NR
triflate in 85% overall yield. It is important to note that NR triflate is not a pharmaceutically
acceptable form. Ion exchange with saturated sodium chloride solution provided NR
chloride salt [56], which is commonly used as a dietary supplement. Other chemical
syntheses of NR and its analogs have also been reported. Please refer to a wonderful review
article on this topic if interested [57].
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3.3. Chemo-Enzymatic Synthesis of NR

Accessing NR and its derivatives has also been explored using a chemo-enzymatic
approach [58]. It started with a one-pot ten-enzyme coupled reaction to convert 13C-
labeled glucose to 13C-labeled NaAD, which can then be transformed to NAD+ via NAD+

synthetase-catalyzed amidation reaction (Figure 4). The 13C-labeled NAD+ was then
treated with chemically synthesized 18O-NAM in the presence of ADP-ribosylcyclase. This
enzyme-mediated “base exchange” reaction allowed the formation of NAD+ with 13C labels
in the ribose moiety and 18O label in NAM. The subsequent degradations of this NAD+

isotopomer by phosphodiesterase and alkaline phosphatase generated 13C, 18O-labeled
NR in good yield. A similar method was applied to the formation of 14C-labeled NR [58].
These NR isotopomers have been used for the investigation of NR metabolism in the
cellular setting.
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4. NR in Health and Diseases

As a potent NAD+ precursor, NR has profound implications for human health and
diseases [59,60]. Many inflammation-related conditions—such as Alzheimer’s disease (AD),
sclerosis, and fibrosis—are known to deplete NAD+ contents, aggravate cellular injury, and
upregulate proinflammatory cytokines [19,61]. NR-mediated restoration of intracellular
NAD+ pool has been shown to stimulate sirtuin activity; improve mitochondrial biogenesis
and function; and provide benefits in health span and life span extension [17,62–64]. The
role NR plays in neuroinflammation, fibrosis, and aging is discussed below and summa-
rized in Table 1. It should be noted that despite the promising results in animal models,
the therapeutic benefits of NR in human trials have been modest. This is partially due to
the poor metabolic stability of this molecule. NR can be degraded to NAM in circulation,
presumably by purine nucleoside phosphorylase (PNP) [14,65]. This degradation may
compromise the clinical efficacy of NR.
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Table 1. Role of NR in health and different disease conditions.

Condition Route of Administration Mechanism of Action Ref.

Neuroinflammation

Intracerebro ventricular
suppresses CD38-mediated neuroinflammation

by increasing NAD+ levels and suppressing
NF-κB in mice

[19]

Oral (supplemented with drinking
water) (12 mM) for 5 months

reduces NLRP3 inflammasome expression and
proinflammatory cytokines in AD mouse model [66]

Oral (supplemented with drinking
water) (12 mM) for 6 months

suppresses neuroinflammation in AD/Polβ mice
by reducing the levels of proinflammatory

cytokines IL-α, TNFα, MCP-1, IL-1β, MIP-1α
and increasing the levels of anti-inflammatory

cytokine IL-10

[67]

Oral (supplemented with diet;
100 µg/kg daily) for 2 months

reduces inflammation in Gulf War Illness mice
by increasing the deacetylation of NF-κB p65

subunit and PGC-1α
[68]

Oral (supplemented with diet at
400 mg/kg);

Oral (185 mg/kg)

decreases neuroinflammatory markers in
amyotrophic lateral sclerosis (ALS) mice models [69,70]

Oral, via stomach gavage
(400 mg/kg) for 6 weeks

reduces the level of amyloid-β precursor protein
and inflammatory markers NLRP3, ASC, and

caspase-1 in AD mice models
[71]

Oral (400 mg/kg) for 4 weeks; Oral
(supplemented with food 300 mg/kg)

for 28 days

reversed the increased levels of TNFα in the
hypothalamus of obese rats and cerebral small

vessel disease mice
[72,73]

100 µM for 24 h

suppressed endothelial inflammation by
reducing ICAM1 and von Willebrand factor
expression in IL-1β and TNFα-stimulated

human aortic endothelial cells

[74]

Liver Fibrosis

Oral, via stomach gavage
(400 mg/kg) for 8 weeks

reversed the development of CCl4-induced liver
fibrosis in C57BL/6 mice by reducing TGF-β and

serum ALT levels
[75]

100 µM to 10 mM for 24 h

reduced the levels of proinflammatory cytokines
TNFα and IL-6, and upregulated the levels of the

anti-inflammatory molecule, adiponectin, in
AML12 mouse hepatocytes

[76]

Oral (400 mg/kg daily) for 20 weeks
Inhibits activation of HSCs by reducing the

levels of fibrotic markers α-smooth muscle actin,
collagen 1α1, and collagen 6α1

[77]

Heart failure and
cardiac fibrosis

Oral (2 × 250–1500 mg daily) for
9 days

reduced the expression of proinflammatory IL-6
in PBMCs of individuals with Stage D

heart failure
[78]

Oral (400 mg/kg) for 6–8 weeks

improves the expression of prohibitin to
suppress the progression of TGF-1β-induced

endothelial-to-mesenchymal transition in
cardiac fibrosis

[79]

Oral (supplemented with diet at
400 mg/kg) for 4 weeks

improved mitochondrial function in heart failure
with preserved ejection fraction mice by

repleting NAD+ levels
[22]
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Table 1. Cont.

Condition Route of Administration Mechanism of Action Ref.

Aging

Oral (1 g daily) for 21 days

reduces circulatory levels of inflammatory
cytokines IL-2, IL-5, IL-6, TNFα and augments

skeletal muscle NAD+ without altering its
mitochondrial bioenergetics in humans

[80]

Oral (400 mg/kg) for 8 weeks
reduces amyloid aggregation, improves

mitochondrial membrane potential and function
in mammalian cells

[81]

Oral (supplemented with drinking
water at 50 mg/kg) for 6 weeks

rejuvenates intestinal stem cells in aged mice by
activating SIRT1 and mTORC1 [82]

Oral (supplemented with drinking
water at 12 mM) for 2 months

restores mitochondrial function and homeostasis
in ataxia telangiectasia mice models [83]

Oral (500 mg) improved physical performance and decreased
oxidative stress in old individuals [84]

Oral (400 mg/kg) for 8 weeks

induces change in hematopoietic stem cells
composition of aged mice towards a more
youthful state by regulating the levels of

mitophagy-promoting genes’ transcription

[85]

4.1. Neuroinflammation

Neuroinflammation is considered one of the common pathophysiological mechanisms
of neurodegeneration [86]. Cytokine activation, pathogen-associated molecular patterns
(PAMPs), or damage-associated molecular patterns (DAMPs) can lead to the formation and
activation of NOD-like receptor protein 3 (NLRP3) inflammasome [87]. NLRP3 inflamma-
some activation subsequently upregulates caspase-1-mediated release of proinflammatory
cytokines and promotes pyroptosis [87,88]. A declined NAD+ level has been identified
as a distinct feature of neuroinflammation [66,67,89]. Therefore, the repletion of cellular
NAD+ contents using NR may ameliorate neuroinflammation through the downregula-
tion of inflammation-related pathways. Administration of NR in DNA repair-deficient
AD mice improved cognitive functions and reduced neuropathological hallmarks of AD,
presumably through the elevation of neuronal NAD+ levels and the subsequent stimulation
of SIRT3 and SIRT6 activity [67]. In another transgenic AD mouse model, the increase
in brain NAD+ via NR treatment downregulated NLRP3 inflammasome and proinflam-
matory cytokines and decreased the activation of neuronal immune cells, partially in a
cGAS-STING-dependent manner [66]. AD-like alterations—such as an accumulation of
Aβ aggregates and phosphorylated tau—can be triggered by high-fat-diet-induced brain
insulin resistance [90]. In a type 2 diabetic mouse model, NR supplementation decreased
neuroinflammation and amyloidogenesis with improved cognitive function [90].

Gulf War Illness (GWI), which occurs predominantly in veterans of the Gulf War [91],
is characterized by impaired cognitive function, difficulties with memory, chronic fatigue,
and pain. In a GWI mouse model, increased expression of proinflammatory cytokines
IL-1β, IL-6, and interferon-gamma (IFN-γ) have been detected in the brains [68], along
with decreased brain NAD+ and Sirt1. NR treatment not only restored NAD+ levels but
also stimulated Sirt1 and Sirt3 activity for improved mitochondrial biogenesis and reduced
neuroinflammation [68].

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease char-
acterized by progressive loss of motor neurons [92]. NAD+ has been shown to exhibit
remarkable neuroprotective properties in cultured neurons [93]. Indeed, the repletion
of NAD+ using NR was shown to delay neurodegeneration, reduce neuroinflammation
markers, and alter muscle metabolism in an ALS mouse model [69]. Furthermore, NAMPT,
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one of the NAD+ biosynthetic enzymes, was upregulated in ALS patients, suggesting an
inherent regulation mechanism for the neurons [69].

4.2. Fibrosis

Liver fibrosis is a condition defined by the activation of hepatic stellar cells (HSCs) in
response to DAMPs and the over-deposition of extracellular matrix proteins [94]. It leads
to chronic inflammation and hepatocellular dysfunction [95]. An elevated serum level of
alanine transaminase (ALT) is an indicator of hepatocellular injury [96]. In a CCl4-induced
liver fibrosis mouse model, the oral administration of NR at 400 mg/kg significantly
reduced serum ALT level and hepatocyte collagen deposition [75]. NR ameliorated liver
fibrosis by restoring NAD+ contents, activating NAD+-dependent SIRT1 activity, and
downregulating transcription coactivator p300. Subsequently, the TGF-β/Smads pathway-
mediated HSC activation was inhibited, leading to reduced severity of liver fibrosis [75].
In other studies, the administration of NR did not reduce serum ALT levels significantly
but decreased the levels of accumulated collagen and fibrotic markers [77,97]. In female
C57BL/6J mice fed a high-fat diet (HF), NR supplementation at 400 mg/kg daily for 20
weeks did not improve live fibrosis remarkably. Rather, it improved the fibrosis in white
adipose tissue in old (16 weeks) female mice [98].

In peripheral blood mononuclear cells (PBMCs), NAD+ augmentation by NR reduced
the secretion of IL-6, a cytokine that is upregulated in patients with heart failure (HF) [78].
Additionally, the expression levels of IL-1β, IL-18, and NLRP3 inflammasome were also
suppressed. Similar results were obtained in HF patients after oral NR administration [78].
Transforming growth factor-β1 (TGF-β1)-induced endothelial–mesenchymal transition
(EndMT) contributes to the progression of cardiac fibrosis [99]. It has been suggested that
TGF-β1-induced EndMT may regulate mitochondrial unfolded protein response (mtUPR)
in endothelial cells [79]. NR treatment increased the expression of mtUPR, which was
suppressed upon TGF-β1 exposure. Additionally, NR supplementation elevated the levels
of prohibitin proteins, PHB and PHB2, the overexpression of which upregulated endothe-
lial cell markers and the mtUPR marker and downregulated the fibroblast marker [79].
Moreover, transverse aortic constriction (TAC)-induced EndMT was also inhibited by NR
in vivo, suggesting NR as a potential therapeutic for the treatment of cardiac fibrosis [79].

4.3. Aging

Aging is characterized by chronic inflammation and increased cell senescence. To-
gether, these factors cause age-related disorders, such as cardiovascular diseases, osteo-
porosis, and diabetes mellitus [100,101]. Oral NR administration in aged participants has
been shown to increase the levels of NAD+ and related metabolites in skeletal muscle
and significantly reduce the levels of circulating inflammatory cytokines, such as IL-6,
IL-5, IL-2, and tumor necrosis factor alpha (TNF-α) [80]. Amyloidosis, together with the
loss of mitochondrial function, contributes to muscle aging in multiple species, such as
C. elegans, mouse skeletal muscle, and human primary myotubes [81]. More importantly,
NR-mediated NAD+ elevation restored muscle homeostasis and mitochondrial function
and decreased muscle amyloid-like deposition in the same species [81]. In aged mice,
elongation of villi and reduction in intestinal stem cell (ISC) number and function have
been observed [82]. NR administration led to the inhibition of villi elongation and an
increase in ISC population and function. Activation of the SIRT1/mTORC1 pathway upon
NAD+ boosting has been suggested as the molecular mechanism of NR-mediated ISC
rejuvenation [82].

Senescence is increasingly recognized as a key contributor to the aging process [102].
Ataxia telangiectasia (A-T), a rare premature aging disease, was characterized by senes-
cence phenotypes [83]. At the cellular level, mitochondrial dysfunction and compromised
mitophagy have been detected in A-T fibroblasts, and increased cytoplasmic dsDNA re-
sulting from impaired DNA damage repair was observed in ataxia-telangiectasia-mutated
(ATM)-deficient cells. NR treatment alleviated senescence phenotypes in cells via the
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inhibition of the stimulator of the interferon genes (STING) pathway, featuring enhanced
mitophagy, restored mitochondrial function, and reduced cytoplasmic dsDNA [83].

Most of the studies on NR focus on its NAD+-increasing capability. A recent study doc-
umented its effect on NADH and NADPH levels in humans [84]. Acute NR administration
increased erythrocytic NAD(P)H levels in young and old individuals. However, this treat-
ment improved redox homeostasis and physical performance only in old individuals [84],
highlighting the importance of further investigation on NR as an ergogenic supplement.

5. NR and COVID-19

The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, has caused
a global pandemic and had a significant socio-economic impact. Novel targets and thera-
peutic interventions are highly sought after to combat deadly viruses. Multiple independent
lines of evidence point to NAD+ metabolism as a potential target of intervention. Viral
infections are known to cause cellular NAD+ depletion [103,104]. Indeed, declined levels
of NMN, an NAD+ precursor, have been detected in the blood of COVID-19 patients [105].
Furthermore, the upregulations of PARP genes and NAD+ biosynthetic gene nampt were
observed in SARS-CoV-2 infected individuals [23,106]. PARPs play key roles in antiviral
immune response [107]. The induction of PARPs that are known to use NAD+ as the
co-substrate to catalyze mono-ADP-ribosylation (MARylation) further decreased the cel-
lular NAD+ contents. Moreover, the upregulation of NAMPT, the rate-limiting enzyme
of the salvage pathway, can be viewed as a compensative mechanism in response to the
increased demand for NAD+ [23]. Boosting intracellular NAD+ pool using precursors such
as NR has been shown to block the replication of murine hepatitis virus (MHV) sensitive
to MARylation PARP activity [23], lending support to the idea that restoration of NAD+

homeostasis may mitigate COVID-19 severity.
NR is studied clinically in COVID-19 patients (Table 2). In one trial, the metabolic

condition was investigated using a combination of NR and other metabolic cofactors, in-
cluding N-acetylcysteine, L-carnitine tartrate, and serine together with hydroxychloroquine
treatment (NCT04573153) [108]. The metabolic cofactors treated group demonstrated a
significantly shortened recovery time with improved metabolic profiles [108]. In another
trial, the dietary supplement of NR, Niagen, is evaluated for the improvement of recovery
in patients suffering from Long-COVID (NCT04809974).

Table 2. Clinical trials of NR in COVID-19.

Treatment Regimen Description Type Status Clinical Trial

1 g of NR or placebo orally
every morning for 14 days

to investigate whether NR
supplementation can

attenuate the severity of
SARS-CoV-2 infections in

elderly patients

randomized
double-blinded

case–control trial
Unknown NCT04407390

250 mg NR capsules
administered twice daily for

10 days

treatment with NR in
COVID-19 patients for

renal protection

prospective, double-blind,
placebo-controlled clinical

interventional trial

Active, not
recruiting NCT04818216

2000 mg NR in the form of
capsules daily

to examine recovery in
people with persistent
cognitive and physical

symptoms after
COVID-19 illness

Double-blinded,
randomized,

parallel-group,
placebo-controlled design

Recruiting NCT04809974
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Table 2. Cont.

Treatment Regimen Description Type Status Clinical Trial

hydroxychloroquine
(standard therapy) + dietary

supplement consisting of
serine, L-carnitine tartrate,
N-acetylcysteine, and NR

metabolic cofactor
supplementation and
hydroxychloroquine

combination in
COVID-19 patients

parallel-group,
randomized, and
open-label study

Recruiting NCT04573153

In addition to serving as an NAD+ booster, NR is also predicted to be a direct inhibitor
of viral enzymes. SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) regulates viral
genome replication and gene transcription [109–111] and has been suggested as a potential
therapeutic target for COVID-19. Nucleoside inhibitors (NIs)—such as Rivabirin [112] and
Favipiravir—exhibited clinical efficacy against COVID-19 [113,114], presumably through
the inhibition of RdRp activity [115]. NR, a structural mimic of the aforementioned NIs,
has been proposed to have antiviral activity [116]. Molecular docking analysis and dy-
namic simulation studies suggested that NR may serve as a competitive inhibitor of
SARS-CoV-2 RdRp, independent of its NAD+-elevating capability [116]. A recent docking
study—together with target prediction, toxicity prediction, and ADME prediction—also
hypothesized the clinical efficacy of NR in combating COVID-19 [117].

6. Conclusions

The initial discovery of NR-mediated lifespan extension in yeast without CR has
ignited an intense interest in vitamin B3 for age-related studies [14]. NR supplementation
has been increasingly recognized as an effective strategy to augment intracellular NAD+

concentrations to benefit human health. Chemical and enzymatic approaches have been
developed to produce this rather labile molecule with good stereoselectivity, yield, and
synthetic easiness. The biological function and therapeutic potential of NR have been
heavily pursued in the last few years. This NAD+ precursor has been shown to prevent
or alleviate multiple pathophysiological conditions in diverse model organisms. The
clinical significance of NR is also investigated in several trials for metabolic disorders,
aging, neurodegenerative diseases, and, most recently, COVID-19. Accumulating evidence
unequivocally establish NR far ahead of other NAD+ precursors in improving human
wellness. The future will reveal whether ample preclinical investigations can be translated
into clinical applications.
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