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Abstract— Reinforcement learning holds the promise of en-
abling autonomous robots to learn large repertoires of behav-
ioral skills with minimal human intervention. However, robotic
applications of reinforcement learning often compromise the
autonomy of the learning process in favor of achieving training
times that are practical for real physical systems. This typically
involves introducing hand-engineered policy representations
and human-supplied demonstrations. Deep reinforcement learn-
ing alleviates this limitation by training general-purpose neural
network policies, but applications of direct deep reinforcement
learning algorithms have so far been restricted to simulated
settings and relatively simple tasks, due to their apparent
high sample complexity. In this paper, we demonstrate that
a recent deep reinforcement learning algorithm based on off-
policy training of deep Q-functions can scale to complex
3D manipulation tasks and can learn deep neural network
policies efficiently enough to train on real physical robots. We
demonstrate that the training times can be further reduced
by parallelizing the algorithm across multiple robots which
pool their policy updates asynchronously. Our experimental
evaluation shows that our method can learn a variety of
3D manipulation skills in simulation and a complex door
opening skill on real robots without any prior demonstrations
or manually designed representations.

I. INTRODUCTION

Reinforcement learning methods have been applied to
range of robotic control tasks, from locomotion [1], [2] to
manipulation [3], [4], [5], [6] and autonomous vehicle control
[7]. However, practical real-world applications of reinforce-
ment learning have typically required significant additional
engineering beyond the learning algorithm itself: an appro-
priate representation for the policy or value function must
be chosen so as to achieve training times that are practical
for physical hardware [8], and example demonstrations must
often be provided to initialize the policy and mitigate safety
concerns during training [9]. In this work, we show that
a recently proposed deep reinforcement learning algorithms
based on off-policy training of deep Q-functions [10], [11]
can be extended to learn complex manipulation policies from
scratch, without user-provided demonstrations, and using
only general-purpose neural network representations that do
not require task-specific domain knowledge.

One of the central challenges with applying direct deep
reinforcement learning algorithms to real-world robotic plat-
forms has been their apparent high sample-complexity. We
demonstrate that, contrary to commonly held assumptions,
recently developed off-policy deep Q-function based al-
gorithms such as the Deep Deterministic Policy Gradient
algorithm (DDPG) [10] and Normalized Advantage Function
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Fig. 1: Two robots in the process of learning a door opening
task. We present a method that allows multiple robots to
cooperatively learn a single policy with deep reinforcement
learning.

algorithm (NAF) [11] can achieve training times that are
suitable for real robotic systems. We also demonstrate that
we can further reduce training times by parallelizing the
algorithm across multiple robotic platforms. To that end,
we present a novel asynchronous variant of NAF, evaluate
the speedup obtained with varying numbers of learners in
simulation, and demonstrate real-world results with paral-
lelism across multiple robots. An illustration of these robots
learning a door opening task is shown in Figure 1.

The main contribution of this paper is a demonstration of
asynchronous deep reinforcement learning using our parallel
NAF algorithm across a cluster of robots. Our technical
contribution consists of the asynchronous variant of the NAF
algorithm, as well as practical extensions of the method to
enable sample-efficient training on real robotic platforms.
We also introduce a simple and effective safety mechanism
for constraining exploration at training time, and present
simulated experiments that evaluate the speedup obtained
from parallelizing across a variable number of learners.
Our experiments also evaluate the benefits of deep neural
network representations for several complex manipulation
tasks, including door opening and pick-and-place, by com-
paring to more standard linear representations. Our real
world experiments show that our approach can be used to
learn a door opening skill from scratch using only general-
purpose neural network representations and without any
human demonstrations. To the best of our knowledge, this
is the first demonstration of autonomous door opening that
does not use human-provided examples for initialization.

II. RELATED WORK

Applications of reinforcement learning (RL) in robotics
have included locomotion [1], [2], manipulation [3], [4],
[5], [6], and autonomous vehicle control [7]. Many of
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the RL methods demonstrated on physical robotic systems
have used relatively low-dimensional policy representations,
typically with under one hundred parameters, due to the
difficulty of efficiently optimizing high-dimensional policy
parameter vectors [12]. Although there has been considerable
research on reinforcement learning with general-purpose
neural networks for some time [13], [14], [15], [16], [17],
such methods have only recently been developed to the point
where they could be applied to continuous control of high-
dimensional systems, such as 7 degree-of-freedom (DoF)
arms, and with large and deep neural networks [18], [10],
[11]. This has made it possible to learn complex skills with
minimal manual engineering, though it has remained unclear
whether such approaches could be adapted to real systems
given their sample complexity.

In real robot environments, particularly those with contact
events, environment dynamics are rarely available or cannot
be accurately modeled. In this work we thus focus on model-
free reinforcement learning, which includes policy search
methods [19], [3], [20] and value-iteration methods [21],
[22], [14]. Both approaches have recently been combined
with deep neural networks to achieve unprecedented suc-
cesses in learning complex tasks [23], [24], [18], [10], [11],
[25]. However, while policy search methods [23], [18], [25]
offer a simple and direct way to optimize the true objec-
tive, they often require significantly more data than value
iteration methods because of on-policy learning, making
them a less obvious choice for robotic applications. We
therefore build on two value iteration methods based on Q-
learning with function approximation [22], Deep Determinis-
tic Policy Gradient (DDPG) [10] and Normalized Advantage
Function (NAF) [11], as they successfully extend Deep Q-
Learning [24] to continuous action space and are significantly
more sample-efficient than competing policy search methods
due to off-policy learning. DDPG is closely related to the
NFQCA [26] algorithm, with principle differences being
that NFQCA uses full-batch updates and parameter resetting
between episodes.

Accelerating robotic learning by pooling experience from
multiple robots has long been recognized as a promising
direction in the domain of cloud robotics, where it is typically
referred to as collective robotic learning [27], [28], [29],
[30]. In deep reinforcement learning, parallelized learning
has also been proposed to speed up simulated experiments
[25]. The goals of this prior work are fundamentally different
from ours: while prior asynchronous deep reinforcement
learning work seeks to reduce overall training time, under
the assumption that simulation time is inexpensive and the
training is dominated by neural network computations, our
work instead seeks to minimize the training time when
training on real physical robots, where experience is ex-
pensive and computing neural network backward passes is
comparatively cheap. In this case, we retain the use of a
replay buffer, and focus on asynchronous execution and
neural network training. Our results demonstrate that we
achieve significant speedup in overall training time from
simultaneously collecting experience across multiple robotic

platforms.

III. BACKGROUND

In this section, we will formulate the robotic reinforcement
learning problem, introduce essential notation, and describe
the existing algorithmic foundations on which we build the
methods for this work. The goal in reinforcement learning
is to control an agent attempting to maximize a reward
function which, in the context of a robotic skill, denotes
a user-provided definition of what the robot should try to
accomplish. At state xxxt in time t, the agent chooses and
executes action uuut according to its policy π(uuut |xxxt), transitions
to a new state xxxt according to the dynamics p(xxxt |xxxt ,uuut)
and receives a reward r(xxxt ,uuut). Here, we consider infinite-
horizon discounted return problems, where the objective is
the γ−discounted future return from time t to ∞, given by
Rt =∑∞

i=t γ(i−t)r(xxxi,uuui). The goal is to find the optimal policy
π∗ which maximizes the expected sum of returns from the
initial state distribution, given by R = Eπ [R1].

Among reinforcement learning methods, off-policy meth-
ods such as Q-learning offer significant data efficiency com-
pared to on-policy variants, which is crucial for robotics
applications. Q-learning trains a greedy deterministic pol-
icy π(uuut |xxxt) = δ (uuut = µµµ(xxxt)) by iterating between learning
the Q-function, Qπn(xxxt ,uuut) = Eri≥t ,xxxi>t∼E,uuui>t∼πn [Rt |xxxt ,uuut ], of
a policy and updating the policy by greedily maximiz-
ing the Q-function, µµµn+1(xxxt) = argmaxuuu Qπn(xxxt ,uuut). Let θ Q

parametrize the action-value function, β be an arbitrary
exploration policy, and ρβ be the state visitation distribution
induced by β , the learning objective is to minimize the
Bellman error, where we fix the target yt :

L(θ Q) = Exxxt∼ρβ ,uuut∼β ,xxxt+1,rt∼E [(Q(xxxt ,uuut |θ Q)− yt)
2]

yt = r(xxxt ,uuut)+ γQ(xxxt+1,µµµ(xxxt+1))

For continuous action problems, the policy update step is
intractable for a Q-function parametrized by a deep neural
network. Thus, we will investigate Deep Deterministic Policy
Gradient (DDPG) [10] and Normalized Advantage Functions
(NAF) [11]. DDPG circumvents the problem by adopting
an actor-critic method, while NAF restricts the class of
Q-function to the expression below to enable closed-form
updates, as in the discrete action case. During exploration, a
temporally-correlated noise is added to the policy network
output. For more details and comparisons on DDPG and
NAF, please refer to [10], [11] as well as experimental results
in Section V-B.

Q(xxx,uuu|θ Q) = A(xxx,uuu|θ A)+V (xxx|θV )

A(xxx,uuu|θ A) =−1
2
(uuu−µµµ(xxx|θ µ))T PPP(xxx|θ P)(uuu−µµµ(xxx|θ µ))

We evaluate both DDPG and NAF in our simulated ex-
periments, where they yield comparable performance, with
NAF producing slightly better results overall for the tasks
examined here. On real physical systems, we focus on
variants of the NAF method, which is simpler, requires
only a single optimization objective, and has fewer hyper-
parameters.



This RL formulation can be applied on robotic systems
to learn a variety of skills defined by reward functions.
However, the learning process is typically time consuming,
and requires a number of practical considerations. In the
next section, we will present our main technical contribution,
which consists of a parallelized variant of NAF, and also
discuss a variety of technical contributions necessary to apply
NAF to real-world robotic skill learning.

IV. ASYNCHRONOUS TRAINING OF NORMALIZED
ADVANTAGE FUNCTIONS

In this section, we present our primary contribution: an
extension of NAF that makes it practical for use with real-
world robotic platforms. To that end, we describe how
online training of the Q-function estimator can be performed
asynchronously, with a learner thread that trains the network
and one or more worker threads that collect data by executing
the current policy on one or more robots. Besides making
NAF suitable for real time applications, this approach also
makes it straightforward to collect experience from multiple
robots in parallel. This is crucial in real-world robot learning,
since the learning time is often constrained by the data
collection rate in real time, rather than network training
speed. When data collection is the limiting factor, then 2-
3 times quicker data collection may translate directly to 2-3
times faster skill acquisition on a real robot. We also describe
practical considerations, such as safety constraints, which are
necessary in order to allow the exploration required to train
complex policies from scratch on real systems. To the best
of our knowledge, this is the first direct deep RL method that
has been demonstrated on a real robotics platform with many
DoFs and contact dynamics, and without demonstrations or
simulated pretraining [18], [10], [11]. As we will show in
our experimental evaluation, this approach can be used to
learn complex tasks such as door opening from scratch,
which previously required additional details such as human
demonstrations to succeed [6].

A. Asynchronous Learning

In asynchronous NAF, the learner thread is separated from
the experience collecting worker threads. The asynchronous
learning algorithm is summarized in Algorithm 1. The
learner thread uses the replay buffer to perform asynchronous
updates to the deep neural network Q-function approximator.
This thread runs on a central server, and dispatches updated
policy parameters to each of the worker threads. The experi-
ence collecting worker threads run on the individual robots,
and send the observation, action, and reward for each time
step to the central server to append to the replay buffer. This
decoupling between the training and the collecting threads
allows the controllers on each of the robots to run in real
time, without experiencing delays due to the computational
cost of backpropagation through the network. Furthermore, it
makes it straightforward to parallelize experience collection
across multiple robots simply by adding additional worker
threads. We only use one thread for training the network;
however, the gradient computation can also be distributed in

Algorithm 1 Asynchronous NAF - N collector threads and
1 trainer thread

// trainer thread
Randomly initialize normalized Q network Q(xxx,uuu|θ Q), where
θ Q = {θ µ ,θ P,θV } as in Eq. 1
Initialize target network Q′ with weight θ Q′ ← θ Q

Initialize shared replay buffer R← /0
for iteration=1, I do

Sample a random minibatch of m transitions from R

Set yi =

{
ri + γV ′(xxx′i|θ Q′) if ti < T
ri if ti = T

Update the weight θ Q by minimizing the loss:
L = 1

m ∑i(yi−Q(xxxi,uuui|θ Q))2

Update the target network: θ Q′ ← τθ Q +(1− τ)θ Q′

end for
// collector thread n, n = 1...N
Randomly initialize policy network µµµ(xxx|θ µ

n )
for episode=1,M do

Sync policy network weight θ µ
n ← θ µ

Initialize a random process N for action exploration
Receive initial observation state xxx1 ∼ p(xxx1)
for t=1,T do

Select action uuut = µµµ(xxxt |θ µ
n )+Nt

Execute uuut and observe rt and xxxt+1
Send transition (xxxt ,uuut ,rt ,xxxt+1, t) to R

end for
end for

same way as [25] within our framework. While the trainer
thread keeps training from the centralized replay buffer, the
collector threads sync their policy parameters with the trainer
thread at the beginning of each episode, execute commands
on the robots, and push experience into the buffer.

B. Safety Constraints

Ensuring safe exploration poses a significant challenge for
real-world training with reinforcement learning. Q-learning
requires a significant amount of noisy exploration for gath-
ering the experience necessary for action-value function
approximation. For all experiments, we set a maximum com-
manded velocity allowed per joint, as well as strict position
limits for each joint. In addition to joint position limits, we
used a bounding sphere for the end-effector position. If the
commanded joint velocities would send the end-effector out-
side of the sphere, we used the forward kinematics to project
the commanded velocity onto the surface of the sphere, plus
some correction velocity to force toward the center. For
experiments with no contacts, these safety constraints were
sufficient to prevent unsafe exploration; for experiments with
contacts, additional heuristics were required for safety.

C. Network Architectures

To minimize manual engineering, we use a simple and
readily available state representation consisting of joint
angles and end-effector positions, as well as their time
derivatives. In addition, we append a target position to the
state, which depends on the task: for the reaching task,
this is the goal position for the end-effector; for the door
opening, this is the handle position when the door is closed



and the quaternion measurement of the sensor attached to
the door frame. Since the state representation is compact,
we use standard feed-forward networks to parametrize the
action-value functions and policies. We use two-hidden-layer
network with size 100 units each to parametrize each of µµµ(x),
LLL(x) (Cholesky decomposition of PPP(xxx)), and V (xxx) in NAF
and µµµ(x) and Q(xxx,uuu) in DDPG. For Q(xxx,uuu) in DDPG, the
action vector uuu added as another input to second hidden layer
followed by a linear projection. ReLU is used as hidden
activations and hyperbolic tangent (Tanh) is used for the
final layer activation function in the policy networks µµµ(xxx)
to bound the action scale.

To illustrate the importance of deep neural networks
for representing policies or action-value functions, we
study these neural network models against another sim-
pler parametrization. Specifically we study a variant of
NAF (Linear-NAF) as below, where µµµ(xxx) = f (kkk + KKKxxx),
PPP,kkk,KKK,BBB,bbb,c are learnable matricies, vectors, or scalars of
appropriate dimension, and f is Tanh to enforce bounded
actions.

Q(xxx,uuu) =
1
2
(uuu−µµµ(xxx))T PPP(uuu−µµµ(xxx))+ xxxT BBBxxx+ xxxT bbb+ c

If f is identity, then the expression corresponds to a globally
quadratic Q-function and a linear feedback policy, though
due to the Tanh non-linearity, the Q-function is not linear
with respect to state-action features.

V. SIMULATED EXPERIMENTS

We first performed a detailed investigation of the learning
algorithms using simulated tasks modeled using the MuJoCo
physics simulator [31]. Simulated environments enable fast
comparisons of design choices, including update frequen-
cies, parallelism, network architectures, and other hyper-
parameters. We modeled a 7-DoF lightweight arm that was
also used in our physical robot experiments, as well as a 6-
DoF Kinova JACO arm with 3 additional degrees of freedom
in the fingers, for a total of 9 degrees of freedom. Both arms
were controlled at the level of joint velocities, except the
three JACO finger joints which are controlled with torque
actuators. The 7-DoF arm is controlled at 20Hz to match the
real-world robot experiments, and the JACO arm is controlled
at 100Hz. Gravity is turned off for the 7-DoF arm, which is
a valid assumption given that the actual robot uses built-
in gravity compensation. Gravity is enabled for the JACO
arm. Different arm geometries, control frequencies, and
gravity settings illustrate the learning algorithm’s robustness
to different learning environments.

A. Simulation Tasks

Tasks include random-target reaching, door pushing, door
pulling, and pick & place in a 3D environment, as detailed
below. The 7-DoF arm is set up for the random target
reaching and door tasks, while the JACO arm is used for
the pick & place task (see Figure 2). Details of each task
are below, where d is Huber loss and ci’s are non-negative
constants. Discount factor of γ = 0.98 is chosen and the
Adam optimizer [32] with base learning rate of either 0.0001

Fig. 2: The 7-DoF arm and JACO arm in simulation.

or 0.001 is used for all the experiments. Importantly, almost
no hyperparameter search was required to ensure that the
employed algorithms were successful across robot and task.

1) Reaching (7-DoF arm): The 7-DoF arm tries to reach
a random target in space from a fixed initial configuration.
A random target is generated per episode by sampling points
uniformly from a cube of size 0.2m centered around a
point. State features include the 7 joint angles and their time
derivatives, the end-effector position and the target position,
totalling 20 dimensions. Each episode duration is 150 time
steps (7.5 seconds). Success rate is computed from 5 random
test episodes where an episode is successful if the arm can
reach within 5 cm of the target. Given the end-effector
position eee and the target position yyy, the reward function is
below,

r(xxx,uuu) =−c1d(yyy,eee(xxx))− c2uuuT uuu

2) Door Pushing and Pulling (7-DoF arm): The 7-DoF
arm tries to open the door by pushing or pulling the handle
(see Figure 2). For each episode, the door position is sampled
randomly within a rectangle of 0.2m by 0.1m. The handle
can be turned downward for up to 90 degrees, while the
door can be opened up to 90 degrees in both directions.
The door has a spring such that it closes gradually when no
force is applied. The door has a latch such that it could
only open the door only when the handle is turned past
approximately 60 degrees. To make the setting similar to the
real robot experiment where the quaternion readings from the
VectorNav IMU are used for door angle measurements, the
quaternion of the door handle is used to compute the loss.
The reward function is composed of two parts: the closeness
of the end-effector to the handle, and the measure of how
much the door is opened in the right direction. The first
part depends on the distance between end-effector position eee
and the handle position hhh in its neutral state. The second part
depends on the distance between the quaternion of the handle
qqq and its value when the handle is turned and door is opened
qqqo. We also added the distance when the door is at neutral
position as offset di = d(qqqo,qqqi) such that, when the door
is opened the correct way, it receives positive reward. State
features include the 7 joint angles and their time derivatives,
the end-effector position, the resting handle position, the door
frame position, the door angle, and the handle angle, totally
25 dimensions. Each episode duration is 300 time steps (15



seconds). Success rate is computed from 20 random test
episodes where an episode is successful if the arm can open
the door in the correct direction by a minimum of 10 degrees.

r(xxx,uuu) =−c1d(hhh,eee(xxx))+ c2(−d(qqqo,qqq(xxx))+di)− c3uuuT uuu

3) pick & place (JACO): The JACO arm tries to pick
up a stick suspending in the air by a string and place it
near the target upward in the space (see Figure 2). The hand
begins near to, but not in contact with the stick, so the grasp
must be learned. The task is similar to a task previously
explored with on-policy methods [25], except that here the
task requires moving the stick to multiple targets. For each
episode a new target is sampled from a square of size 0.24
m a t a fixed height, while the initial stick position and
the arm configuration are fixed. Given the grip site position
ggg (where the three fingers meet when closed), the three
finger tip positions fff 1, fff 2, fff 3, the stick position sss and the
target position yyy, the reward function is below. State features
include the position and rotation matrices of all geometries
in the environment, the target position and the vector from
the stick to the target, totally 180 dimensions. The large
observation dimensionality creates an interesting comparison
with the above two tasks. Each episode duration is 300 time
steps (3 seconds). Success rate is computed from 20 random
test episodes where an episode is judged successful if the
arm can bring the stick within 5 cm of the target.

r(xxx,uuu) =− c1d(sss(xxx),ggg(xxx))− c2

3

∑
i=1

d(sss(xxx), fff i(xxx))

− c3d(yyy,sss(xxx))− c4uuuT uuu

B. Neural Network Policy Representations

Neural networks are powerful function approximators, but
they have significantly more parameters than the simpler
linear models that are often used in robotic learning [20],
[8]. In this section, we compare empirical performance of
DDPG, NAF, and Linear-NAF as described in Section IV-C.
In particular, we want to verify if deep representations for
policy and value functions are necessary for solving complex
tasks from scratch, and evaluate how they compare with
linear models in terms of convergence rate. For the 7-DoF
arm tasks, DDPG and NAF models have significantly more
parameters than Linear-NAF, while the pick & place task
has a high-dimensional observation, and thus the parameter
sizes are more comparable. Of course, many other linear
representations are possible, including DMPs [33], splines
[3], and task-specific representations [34]. This comparison
only serves to illustrate that our tasks are complex enough
that simple, fully generic linear representations are not by
themselves sufficient for success. For the experiments in this
section, batch normalization [35] is applied. These exper-
iments were conducted synchronously, where 1 parameter
update is applied per 1 time step in simulation.

Figure 3 shows the experimental results on the 7-DoF door
pulling and JACO pick & place tasks and Table 4 summarizes
the overall results. For reaching and pick & place, Linear-
NAF learns good policies competitive with those of NAF

(a) Door Pulling

(b) JACO pick & place

Fig. 3: The figure shows the learning curves for two tasks,
comparing DDPG, Linear-NAF, and NAF. Note that the
linear model struggles to learn the tasks, indicating the
importance of expressive nonlinear policy representations.

and DDPG, but converges significantly slower than both
NAF and DDPG. This is contrary to common belief that
neural networks take significantly more data and update steps
to converge to good solutions. One possible explanation is
that in RL the data collection and the model learning are
coupled, and if the model is more expressive, it can explore a
greater variety of complex policies efficiently and thus collect
diverse and good data quickly. This is not a problem for well-
pre-trained policy learning but could be an important issue
when learning from scratch. In the case of door tasks, the
linear model completely fails to learn perfect policies. More
thorough investigations into how expressivity of the policy
interact with reinforcement learning is a promising direction
for future work.

Additionally, the experimental results on the door tasks
show that Linear-NAF does not succeed in learning such
tasks. The difference from above tasks likely comes from
the complexity of policies. For reaching and pick & place,
the tasks mainly requires learning single-motion policies,
e.g. close fingers to grasp the stick and move it to
the target. For the door tasks, the robot is required to
learn how to hook onto the door handle in different lo-
cations, turn it, and push or pull. See the supplemen-
tary video at https://sites.google.com/site/
deeproboticmanipulation/ for learned resulting be-
haviors for each tasks.



Max. success rate (%) Episodes to 100% success (1000s)

DDPG Lin-NAF NAF DDPG Lin-NAF NAF
Reach 100±0 100±0 100±0 3.2±0.7 8±3 3.6±1.0
Door Pull 100± 0 5 ± 6 100± 0 10±8 N/A 6±3
Door Push 100±0 40± 10 100± 0 3.1± 1.0 N/A 4.2± 1.0
Pick & Place 100±0 100±0 100±0 4.4± 0.6 12± 3 2.9±0.9

Fig. 4: The table summarizes the performances of DDPG, Linear-NAF, and NAF across four tasks. Note that the linear
model learns the perfect reaching and pick & place policies given enough time, but fails to learn either of the door tasks.

(a) Reaching

(b) Door Pushing

Fig. 5: Asynchronous training of NAF in simulation. Note
that both learning speed and final policy success rates de-
pending significantly on the number of workers.

C. Asynchronous Training

In asynchronous training, the training thread continu-
ously trains the network at a fixed frequency determined
by network size and computational hardware, while each
collector thread runs at a specified control frequency. The
main question to answer is: given these constraints, how
much speedup can we gain from increasing the number of
workers, i.e. the data collection speed? To analyze this in a
realistic but controlled setting, we first set up the following
experiment in simulation. We locked each collector thread
to run at S times the speed of the training thread. Then, we
varied the number of collector threads N. Thus, the overall
data collection speed is approximately S×N times that of the
trainer thread. For our experiments, we varied N and fixed
S = 1/5 since our training thread runs at approximately 100
updates per second on CPU, while the collector thread in
real robot will be locked to 20Hz. Layer normalization is

applied [36].
Figure 5 shows the results on reaching and door pushing.

The x-axis shows the number of parameter updates, which
is proportional to the amount of wall-clock time required for
training, since the amount of data per step increases with the
number of workers. The results demonstrate three points: (1)
under some circumstances, increasing data collection makes
the learning converge significantly faster with respect to the
number of gradient steps, (2) final policy performances de-
pend a lot on the ratio between collecting and training speeds,
and (3) there is a limit where collecting more data does not
help speed up learning. However, we hypothesize that accel-
erating the speed of neural network training, which in these
cases was pegged to one update per time step, could allow
the model to ingest more data and benefit more from greater
parallelism. This is particularly relevant as parallel computa-
tional hardware, such as GPUs, are improved and deployed
more widely. Videos of the learned policies are available
in supplementary materials and online: https://sites.
google.com/site/deeproboticmanipulation/

VI. REAL-WORLD EXPERIMENTS

The real-world experiments are conducted with the 7-DoF
arm shown in Figure 6. The tasks are the same as the sim-
ulation tasks in Section V-A with some minor changes. For
reaching, the same state representation and reward functions
are used. The randomized target position is sampled from a
cube of 0.4 m, providing more diverse and extreme targets
for reaching. We noticed that these more aggressive targets,
combined with stricter safety measures (slower movements
and tight joint limits), reduced the performance compared
to the simulation, and thus we relax the definition of a
successful episode for reporting, marking episodes within 10
cm as successful. For the door task, the robot was required to
reach for and pull the door open by hooking the handle with
the end-effector. Due to the geometry of the workspace, we
could not test the door pushing task on the real hardware. The
orientation of the door was measured by a VectorNav IMU
attached to the back of the door. Unlike in the simulation, we
cannot automatically reposition the door for every episode,
so the pose of the door was kept fixed. State features for the
door task include the joint angles and their time derivatives,
the end effector position and the quaternion reading from the
IMU, totalling 21 dimensions.



Fig. 6: Two robots learning to open doors using asynchronous NAF. The final policy learned with two workers could achieve
a 100% success rate on the task across 20 consecutive trials.

Fig. 7: The 7-DoF arm random target reaching with asyn-
chronous NAF on real robots. Note that 1 worker suffers in
both learning speed and final policy performance.

A. Random Target Reaching

The simulation results in Section 5 provide approximate
performance gains that can be expected from parallelism.
However, the simulation setting does not consider several is-
sues that could arise in real-world experiments: delays due to
slow resetting procedures, non-constant execution speeds of
the training thread, and subtle physics discrepancies among
robots. Thus, it is important to demonstrate the benefits from
parallel training with real robots.

We set up the same reaching experiment in the real world
across up to four robots. Robots execute policies at 20
Hz, while the training thread simply updates the network
continuously at approximately 100 Hz. The same network
architecture and hyper-parameters from the simulation ex-
periment are used.

Figure 7 confirms that 2 or 4 workers significantly im-
proves learning speed over 1 worker, though the gains on this
simple task are not substantial past 2 workers. Importantly,
when the training thread is not synchronized with the data
collection thread and the data collection is too slow, it may
not just slow down learning but also hurt the final policy
performance, as observed in the 1-worker case. Further
discrepancies from the simulation may also be explained by
physical discrepancies among different robots. The learned
policies are presented in the supplementary video.

B. Door Opening

The previous section describes a real-world evaluation
of asynchronous NAF and demonstrates that learning can
be accelerated by using multiple workers. In this section,
we describe a more complex door opening task. Door
opening presents a practical application of robotic learning

Fig. 8: Learning curves for real-world door opening. Learn-
ing with two workers significantly outperforms the single
worker, and achieves a 100% success rate in under 500,000
update steps, corresponding to about 2.5 hours of real time.

that involves complex and discontinuous contact dynamics.
Previous work has demonstrated learning of door opening
policies using example demonstration provided by a human
expert [6]. In this work, we demonstrate that we can learn
policies for pulling open a door from scratch using asyn-
chronous NAF. The entire task required approximately 2.5
hours to learn with two workers learning simultaneously, and
the final policy achieves 100% success rate evaluated across
20 consecutive trials. An illustration of this task is shown in
Figure 6, and the supplementary video shows different stages
in the learning process, as well as the final learned policy.

Figure 8 illustrates the difference in the learning process
between one and two workers, where the horizontal axis
shows the number of parameter updates. 100,000 updates
correspond to approximately half an hour, with some delays
incurred due to periodic policy evaluation, which is only used
for measuring the reward for the plot. One worker required
significantly more than 4 hours to achieve 100% success
rate, while two workers achieved the same success rate in
2.5 hours. Qualitatively, the learning process goes through
a set of stages as the robots learn the task, as illustrated by
learning curves in Figure 8, where the plateau near reward=0
corresponds to placing the hook near the handle, but not
pulling the door open. In the first stage, the robots are unable
to reach the handle, and explore the free space to determine
an effective policy for reaching. Once the robots begin to
contact the handle sporadically, they will occasionally pull
on the handle by accident, but require additional training to
be able to reach the handle consistently; this corresponds to
the plateau in the learning curves. At this point, it becomes
much easier for the robots to pull open the door, and a



successful policy emerges. The final policy learned by the
two workers was able to open the door every time, including
in the presence of exploration noise.

VII. DISCUSSION AND FUTURE WORK

We presented an asynchronous deep reinforcement learn-
ing approach that can be used to learn complex robotic
manipulation skills from scratch on real physical robotic
manipulators. We demonstrate that our approach can learn a
complex door opening task with only a few hours of training,
and our simulated results demonstrate that training times de-
crease with more learners. Our technical contribution consists
of a novel asynchronous version of the normalized advantage
functions (NAF) deep reinforcement learning algorithm, as
well as a number of practical extensions to enable safe and
efficient deep reinforcement learning on physical systems,
and our experiments confirm the benefits of nonlinear deep
neural network policies over simpler shallow representations
for complex robotic manipulation tasks.

While we’ve shown that deep off-policy reinforcement
learning algorithms are capable of learning complex ma-
nipulation skills from scratch and without purpose built
representations, our method has a number of limitations.
Although each of the tasks is learned from scratch, the
reward function provides some amount of guidance to the
learning algorithm. In the reacher task, the reward provides
the distance to the target, while in the door task, it provides
the distance from the gripper to the handle as well as the
difference between the current and desired door pose. If the
reward consists only of a binary success signal, both tasks
become substantially more difficult and require considerably
more exploration. However, such simple binary rewards may
be substantially easier to engineer in many practical robotic
learning applications. Improving exploration and learning
speed in future work to enable the use of such sparse rewards
would further improve the practical applicability of the class
of methods explored here.

Another promising direction of future work is to inves-
tigate how diverse experience of multiple robotic platforms
can be appropriately integrated into a single policy. While we
take the simplest approach of pooling all collected experi-
ence, multi-robot learning differs fundamentally from single-
robot learning in the diversity of experience that multiple
robots can collect. For example, in a real-world instantiation
of the door opening example, each robot might attempt to
open a different door, eventually allowing for generalization
across door types. Properly handling such diversity might
benefit from explicit exploration or even separate policies
trained on each robot, with subsequent pooling based on
policy distillation [37]. Exploring these extensions of our
method could enable the training of highly generalizable
deep neural network policies in future work.
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[5] J. Peters, K. Mülling, and Y. Altün, “Relative entropy policy search,”
in AAAI Conference on Artificial Intelligence, 2010.

[6] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal, “Learning
force control policies for compliant manipulation,” in International
Conference on Intelligent Robots and Systems (IROS), 2011.

[7] P. Abbeel, A. Coates, M. Quigley, and A. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems (NIPS), 2006.

[8] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotic Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[9] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA), 2009.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” International Conference on Learning Representations
(ICLR), 2016.

[11] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning (ICML), 2016.

[12] M. Deisenroth, G. Neumann, and J. Peters, “A survey on policy search
for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-2, pp.
1–142, 2013.
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