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Abstract

Combining and Evaluating Probabilistic Forecasts

Roopesh Ranjan

Chair of the Supervisory Committee:
Professor Tilmann Gneiting

Statistics

Over the past one to two decades, there has been a shift of paradigms from deterministic

(or point) forecasts to probabilistic (or distributional) forecasts. Probabilistic forecasts take

uncertainty in the prediction into account and forecast a probability distribution function

(pdf) for the unknown quantity of interest. In the case of binary events, the probabilistic

forecast is the probability that the event will occur. In the case of continuous variables,

the probabilistic forecast is the predictive density or distribution for the variable of interest.

Calibration and sharpness are two important components of a probabilistic forecast. Cali-

bration refers to statistical consistency between the forecasts and the realizations. Sharpness

refers to the spread of the forecast pdf. The narrower the pdf, the sharper the forecast.

Proper scoring rules combine calibration and sharpness together. They are a function of

the probability forecast and observation that materializes. Using proper scoring rules a

forecaster maximizes his expected gain by giving his true belief.

We propose a method for comparing density forecasts which is based on weighted versions

of the continuous ranked probability score (CRPS). The weighting emphasizes regions of

interest, such as the tails or the center of a variable’s range, while encouraging the forecaster

to give his true belief (propriety), as opposed to a recently developed weighted likelihood ra-

tio test which encourages forecasters to deviate from their true beliefs (hedging). Threshold

and quantile based decompositions of the CRPS can be illustrated graphically and prompt

insights into the strengths and deficiencies of a forecasting method. We illustrate the use





of the weighted CRPS and graphical tools in case studies on the Bank of England’s density

forecasts of quarterly inflation rates in the United Kingdom, and probabilistic predictions

of wind resources in the Pacific Northwest.

We also consider the problem of combining probabilistic forecasts. Linear pooling is by

far the most popular method for combining probabilistic forecasts. However, any nontriv-

ial weighted average of two or more distinct calibrated probability or density forecasts is

necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recal-

ibration, even in the ideal case in which the individual forecasts are calibrated. Toward

this end, we propose a beta transformed linear opinion pool (BLP) for the aggregation of

probability forecasts or densities from distinct, calibrated or uncalibrated sources. The BLP

method fits an optimal nonlinearly recalibrated forecast combination, by compositing a beta

transform and the traditional linear opinion pool. The technique is illustrated in simulation

examples and case studies on probability of precipitation forecasts in the Pacific Northwest

and density forecasts of temperature at the Sea-Tac Airport.
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tor ĝt+1 is deliberately misspecified as described in (2.10). . . . . . . . . . . 26

vi



2.6 Threshold and quantile weighted CRPS tests for density forecasts of inflation
rates, at a prediction horizon of one quarter, in percent. The Bank of England
forecast takes the role of f and the autoregressive benchmark the role of g. . 28

2.7 Threshold and quantile weighted CRPS tests for density forecasts of inflation
rates, at a prediction horizon of seven quarters. The Bank of England forecast
takes the role of f and the autoregressive benchmark the role of g. . . . . . . 29

2.8 Threshold and quantile weighted CRPS tests in the wind example. The
regime-switching space-time (RST) forecast takes the role of f and the au-
toregressive benchmark the role of g. . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Maximum likelihood estimates of OLP and BLP parameters in the simulation
example of Sections 3.2.2 and 3.3.2, with standard errors in brackets. . . . . 48

3.2 Out-of-sample mean Brier score (BS) and its reliability (REL), resolution
(RES) and uncertainty (UNC) components for the probability forecasts in
the simulation example of Sections 3.2.2 and 3.3.2. . . . . . . . . . . . . . . 51

3.3 Maximum likelihood estimates of OLP and BLP parameters in the simulation
example of Section 3.3.3, with standard errors in brackets. . . . . . . . . . . 53

3.4 Out-of-sample mean Brier score (BS) and its reliability (REL), resolution
(RES) and uncertainty (UNC) components for the probability forecasts in
the simulation example of Section 3.3.3. . . . . . . . . . . . . . . . . . . . . . 53

3.5 Combined probability forecasts in the precipitation example, using the sta-
tistical forecasts only. Maximum likelihood estimates for the OLP and BLP
parameters from the training period with standard errors in brackets. . . . . 58

3.6 Mean Brier score (BS) and its reliability (REL), resolution (RES) and uncer-
tainty (UNC) components for individual and combined probability of precip-
itation forecasts in the test period, using the statistical forecasts only. . . . . 59

3.7 Same as Table 3.5 but now using all four individual forecasts, including the
NWS forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Same as Table 3.6 but now using all four individual forecasts, including the
NWS forecast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Maximum likelihood estimates with approximate standard errors (in brack-
ets) for the parameters of the combined density forecasts in the simulation
example of Section 4.2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Mean logarithmic score for the individual and combined density forecasts in
the simulation example of Section 4.2.4, for the training set and an indepen-
dent test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Maximum likelihood estimates with approximate standard errors (in brack-
ets) for the parameters of the combined density forecasts in the simulation
example of Section 4.2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



4.4 Mean logarithmic score for the individual and combined density forecasts in
the simulation example of Section 4.2.5, for the training set and an indepen-
dent test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Composition of the eight-member University of Washington Mesoscale En-
semble (UWME; Eckel and Mass 2005), with member acronyms and orga-
nizational sources for initial and lateral boundary conditions. The United
States National Centers for Environmental Prediction supply two distinct
sets of initial and lateral boundary conditions, namely, from its Global Fore-
cast System (GFS) and Limited-Area Mesoscale Model (ETA). . . . . . . . . 83

4.6 Maximum likelihood estimates for the predictive standard deviation, σi, for
the individual, member specific density forecasts in the temperature example. 83

4.7 Maximum likelihood estimates for the parameters of the combined density
forecasts in the temperature example. . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Mean logarithmic score for the individual and combined density forecasts in
the temperature example, for the training period and the test period. . . . . 83

4.9 Maximum likelihood estimates of the parameters for the combined density
forecasts in the S&P 500 example. . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Mean logarithmic score for the individual and combined density forecasts in
the S&P 500 example, for the training period and the test period. . . . . . . 87

viii



ACKNOWLEDGMENTS

The author wishes to express sincere appreciation of the Students, Faculty and Staff of

the University of Washington, Department of Statistics.

ix





1

Chapter 1

INTRODUCTION

Probabilistic forecasts take forecast uncertainty into account by giving forecast distribu-

tion or predictive probability density function (pdf) of the future quantity of interest. The

simplest case is that of a future binary event, such as a recession versus no recession, or rain

versus no rain. In the binary case, a predictive pdf is simply the probability for the event

to occur. While the roots of probability forecasting can be traced back to 18th century,

the transition to probability of precipitation forecasts by the U.S. National Weather Service

in 1965 was perhaps the most influential and important event in its development (Murphy

1998; Winkler and Jose 2008). In the continuous case, the Bank of England’s Monetary Pol-

icy Committee (MPC) has issued probabilistic forecasts of inflation rates every quarter since

February 1996 using fan charts to visualize the deciles of the predictive distributions (Wallis

2003, 2004; Clements 2004; Mitchell and Hall 2005). The archived inflation forecasts can

be downloaded at http://www.bankofengland.co.uk/publications/inflationreport/

irprobab.htm. As another example, the University of Washington Mesoscale Ensemble sys-

tem routinely produces probabilistic forecasts of temperature and precipitation which are

postprocessed using Bayesian model averaging (Raftery et al. 2005; Sloughter et al. 2005).

This information is communicated to the user via the website http://www.probcast.com/.

It is widely acknowledged that these distributional forecasts are more useful than merely

giving point forecasts, which do not take into account the uncertainty in forecasting. Of

course, there are many other important applications of probabilistic forecasts including med-

ical diagnosis (Pepe 2005), educational testing, and political and socio-economic foresight

(Tetlock 2005). One can discern a transition from point forecasts to distributional forecasts

in a multidisciplinary strand of literature (Gneiting 2008).
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1.1 Evaluation of Probabilistic Forecasting

With the continued use of probabilistic forecasts evaluation methods have been developed.

These methods differ from the classical evaluation techniques like mean square error or

mean absolute error used for point forecasts. We present below some techniques used

for evaluating probability forecasts of binary events and density forecasts of continuous

quantities.

1.1.1 Evaluation of binary forecasts

A special set of tools have been developed for use in the case of binary forecasts: Calibration

diagram, sharpness diagram and proper scoring rules.

Calibration or Reliability diagram

Suppose a forecaster gives the probability forecast of rain on the coming day, a day in

advance. Assume that we have collected information on past forecasts and realized obser-

vation (rain or no rain) for the last couple of years. We can now look at all those days when

the probability forecast is close to 80%. For a good forecaster we would expect that the

proportion of rainy days in those days when the forecast was 80% is close to 0.8. If this

happens, we say that the forecaster is calibrated (reliable) at 0.8. If a forecaster is calibrated

at all probabilities which she forecasts, then we say that she is calibrated or reliable. The

drawing which plots against each probability the empirical frequency of the event is called

the reliability diagram or calibration plot. For a well calibrated forecaster his calibration

diagram is close to a diagonal line. Similarly, a forecaster is said to be under (or over)

confident if his forecasts are less (or more) extreme than empirical frequencies. For an

under-confident forecaster the reliability diagram is S-shaped. Figure 1.1 gives an example

of a well calibrated, an over-confident and an under-confident forecast.

The above definition of calibration is an empirical one and will be made mathematically

rigorous in Chapter 3.
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Sharpness

From the preceding paragraph we see that reliability is an important criteria for evaluating

forecast probabilities. However, we shall quickly see that it is not enough to have a reliable

forecast. Let’s assume a forecaster who forecasts every day the chance of rain to be the

empirical frequency of rain in the last 5 years (say, 30%). Now assuming that precipitation

pattern is relatively stationary over the last six years in the region of interest, he is going to

be calibrated. But, this forecaster is not very useful in making decisions. So, we need more

than calibration to evaluate a probabilistic forecast. We need the forecasts to be as extreme

as possible. A forecast which is close to 0 or 1 is more informative than a forecast which

falls in the middle of the interval. So, a sharp forecast is one whose forecast probabilities

are close to 0 or 1. Therefore, we can say that the goal of probabilistic forecasting is to

maximize sharpness subject to calibration (Murphy and Winkler 1987; Gneiting, Balab-

daoui and Raftery 2007; Pal 2009). To assess sharpness we plot the histogram of forecast

probabilities. For a sharp forecast the histogram is U-shaped. Figure 1.2 gives examples of

forecasts with high and low sharpness.

Proper scoring rules for binary forecasts

Scoring rules are a way to measure the quality of a probabilistic forecast. They are a function

of the forecast probability p and the binary outcome Y and are interpreted as the reward

obtained by the forecaster (Jolliffe and Stephenson 2003; Gneiting and Raftery 2007). Let

S(p, Y ) denote the score obtained when the forecast is p and the observation realized is Y .

We can define its expected score when the true probability is q by,

S(p, q) = Eqs(p, Y ) = qS(p, 1) + (1− q)S(p, 0).

A scoring rule is called proper, if it is maximized by forecasting the true probability i.e.

S(p, q) ≤ S(q, q) ∀ p, q.
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Figure 1.1: Reliability Diagram of a calibrated forecast, left, an under-confident forecast,
middle, and an over-confident forecast, right.
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Table 1.1: Strictly proper scoring rules for binary forecasts.

Name S(p,0) S(p,1)
Brier score (Brier 1950) −p2 −(1− p)2

Log score (Good 1952) log(1− p) log(p)
Spherical score 1−p√

p2+(1−p)2
p√

p2+(1−p)2

It is called strictly proper when strict inequality holds for all p 6= q. Strictly proper

scoring rules reward honesty and truthfulness in reporting in that, a forecaster maximizes

his expected score by reporting his true belief (Winkler and Murphy 1968). Proper scoring

rules combine calibration and sharpness together (Gneiting et al. 2008). Table 1.1 gives

examples of strictly proper scoring rules for binary forecasts.

1.1.2 Evaluation of density forecasts

Probability Integral Transform (PIT) histogram

Let F (·) be a continuous predictive distribution and Y the realized value. Then, we define

the probability integral transform (PIT) of Y by,

Z = F (Y ).

If Y has the distribution F , then Z ∼ U(0, 1). Now assume that we have a sequence

of observations in time Y1, Y2, . . . , YT . Under the assumption that Ft is the true condi-

tional distribution of Yt given the past Y1, Y2, . . . , Yt−1, Diebold et al. (1998) show that

Zt, t = 1, 2, . . . , T are independently distributed as U(0,1). Thus, checking for calibration

requires checking for the uniformity of the PIT histogram of Zt, t = 1, 2, . . . , T . Although

Diebold et al. (1998) derived their results in the context of time series, operationally the use

of PIT doesn’t require that the probabilistic forecasts be evaluated in a time series frame-

work, and is quite general. For a calibrated sequence of density forecasts the PIT histogram

resembles uniform histogram. If the density forecasts are under-dispersed or over-dispersed
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Table 1.2: Strictly proper scoring rules for density forecasts, where f is the density and F
is the corresponding cumulative distribution function.

Name S(f, Y )
Log score (Good 1952) log f(Y )
CRPS score (Matheson and Winkler 1976) − ∫∞

−∞(F (z)− I{Y ≤ z})2 dz

Quadratic score 2f(Y )− Eff(Y )
Spherical score f(Y )

‖f‖ , ‖f‖ = (
∫

f(z)2 dz)
1
2

the PIT histogram will be U-shaped and hump shaped respectively. Figure 1.3 gives an

example of each type of forecast.

Scoring rules for density forecasts

Scoring rule for a density forecast is the reward S(f, Y ) the forecaster obtains when he

forecasts a density f and the observation Y is realized. If the true density of Y is g then

the expected score of the forecaster who forecasts f is given by,

S(f, g) = EgS(f, Y ).

A scoring rule is called proper if

s(f, g) ≤ S(g, g) ∀ f, g.

It is called strictly proper if the inequality is strict for all f 6= g. Strictly proper scoring

rules encourage honesty in reporting the density forecast, in that, the expected score of the

forecaster is maximized for his true belief g (Winkler and Murphy 1968). Table 1.2 gives

examples of strictly proper scoring rules for density forecasts.

1.2 Weighted Proper Scoring Rules

As discussed above scoring rules are used to evaluate density forecasts. However, in cer-

tain situations different regions of the density are of higher importance. In such situations,
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it is necessary to use scoring rules which emphasize different regions of the density like

tails, center, right-tail and left-tail while retaining propriety. Recently, Amisano and Gi-

acomini (2007) have proposed the use of weighted version of log score for comparing the

performance of competing density forecasts. In Chapter 2, we will show that the score

proposed by them is not proper and can be hedged. Hence, we suggest the use of weighted

versions of continuous ranked probability score (CRPS), which are proper. Threshold and

quantile based decompositions of the CRPS can be illustrated graphically and give insights

into the strengths and deficiencies of a forecasting method in different regions of interest.

We illustrate the use of weighted scoring rules and graphical tools in case studies on the

Bank of England’s density forecasts of quarterly inflation rates in the United Kingdom, and

probabilistic predictions of wind resources in the Pacific Northwest.

1.3 Combination of Probabilistic Forecasts

In many situations, we can have multiple models or experts generating probabilistic fore-

casts. In such situations, it would be important to combine various forecasts for the same

quantity to generate a single probabilistic forecast. In the density case, Mitchell & Hall

(2005) and Hora (2004) have among others considered the problem of combining. In the

case of binary forecast, various ways of combining probability forecasts into a single ag-

gregated forecast have been proposed. For comprehensive reviews we refer the reader to

Genest and Zidek (1986), Wallsten et al. (1997), Clemen and Winkler (2007) and Primo et

al. (2009).

1.3.1 Combination of binary forecasts

In practice, the most commonly used approach of aggregating forecast probabilities is to take

a simple average or a weighted average of the individual probability forecasts, which is often

referred to as the linear opinion pool (Stone 1961; Genest and McConway 1990; DeGroot

and Mortera 1991). Empirical evidence shows the benefits of linear opinion pools over

individual forecasts, with successful applications in meteorology (Sanders 1963; Vislocky

and Fritsch 1995; Baars and Mass 2005), economics (Graham 1996), psychology (Ariely et

al. 2000), and medical diagnosis (Winkler and Poses 1993), among other fields.
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Gneiting, Balabdaoui and Raftery (2007) contend that the goal in probabilistic fore-

casting is to maximize sharpness of the forecast subject to calibration. In view of this it

is important to aggregate probability forecasts in a way such that the combined forecast is

both calibrated and sharp. In Chapter 3, we will point out some of the major deficiencies of

the linear opinion pool. In particular, we will show that the linear opinion pool lacks calibra-

tion even when the individual forecasts are calibrated. We will also show that linear opinion

pool lacks sharpness in the sense it tends to move away from the extreme probabilities 0 and

1. Hence, linear pooling requires recalibration, even in the ideal case in which the individual

forecasts are calibrated. To accomplish this we need a non-linear generalization of the linear

opinion pool to bring the linear average towards 0 or 1. We propose a beta transformed lin-

ear opinion pool (BLP) for the combination of probability forecasts from distinct, calibrated

or uncalibrated sources. The BLP method applies a non-linear beta cumulative distribution

function (cdf) transform to the linear average to aggregate probabilities. The weights and

the parameters of the beta cdf transform are obtained simultaneously by maximizing the

log-score of the combined forecast.

The method is illustrated in a simulation example and in a case study on statistical

and National Weather Service probability of precipitation forecasts at 29 major cities in the

continental US. In practice, we fit the combination parameters in a training set and use it to

generate combined forecasts on the test set. The BLP combined forecast is both calibrated

and sharp and outperforms the individual forecasts and linear opinion pools.

1.3.2 Combination of density forecasts

Here again, the most commonly used method appears to be a weighted linear combination of

the individual density forecasts. The weights are determined using some optimality criteria.

However, Hora (2004) proves a very interesting result. He shows that for combining two

experts the linear combination of two distinct calibrated density forecasts is necessarily

uncalibrated.

In Chapter 4 we will generalize Hora’s result to the case of more than two experts and

provide a more general proof. Unlike Hora’s proof which doesn’t show the direction of depar-
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ture from calibration, our proof also indicates that the deviation from calibration is towards

overdispersion. So, the linearly combined forecasts are overdispersed and give prediction

intervals that are too wide on average. This result undermines the use of linear combina-

tion for combining density forecasts. The overdispersion of the linear opinion pool can be

addressed empirically by spread adjustments to the density components, as implemented in

the deflated linear pool (DLP), or via nonlinear recalibration transforms, such as the beta

transformed linear pool (BLP). In the DLP method, we require the component densities

to be parameterized by a scale parameter. The scale parameter is adjusted for spread by

deflating it by a constant and then the spread adjusted densities are combined linearly. The

adjustment parameter and the weights are estimated simultaneously by maximizing the log

score. In the BLP method, a beta cdf is applied to the weighted average of the forecast

distributions to get the combined cumulative distribution function. Again the weights and

the recalibration parameters are estimated simultaneously.

Both methods can be used effectively to combine calibrated as well as uncalibrated

sources. The effects and techniques are demonstrated theoretically, in simulation examples

and in case studies on density forecasts for S&P 500 returns and daily maximum temperature

at Seattle-Tacoma Airport. They also have relevance in the fusion of expert opinions that

are expressed in terms of probability densities.
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Figure 1.3: PIT histograms of calibrated (left), under-dispersed (middle) and over-dispersed
(right) forecasts.
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Chapter 2

COMPARING DENSITY FORECASTS USING THRESHOLD AND
QUANTILE WEIGHTED SCORING RULES

2.1 Introduction

One of the major tasks of statistical analysis is to make forecasts for the future. To realize

their full potential, forecasts ought to be probabilistic in nature, taking the form of probabil-

ity distributions over future quantities or events (Dawid 1984). Here we are concerned with

density forecasts of a continuous variable, such as inflation rate, gross domestic product,

temperature or wind speed, to name but a few examples. With the continued proliferation of

probabilistic forecasts in economic, environmental and meteorological applications, among

others, there is a critical need for principled techniques for the comparison and ranking of

density forecasts (Timmermann 2000; Elliott and Timmermann 2008; Gneiting 2008a).

Following Amisano and Giacomini (2007), we consider density forecasts in a time series

context, in which a rolling window consisting of the past m observations is used to fit a

density forecast for a future observation that lies k time steps ahead. The reason for using

a rolling window of size m instead of using all past observations is that the rolling window

approach will be able to exploit the non-stationary in data more effectively. Specifically,

suppose that Z1, . . . ,ZT is a stochastic process which can be partitioned as Zt = (Yt,Xt)

where Yt is the variable of interest and Xt is a vector of predictors. Suppose that T = m+n.

At times t = m, . . . , m+n−k, density forecasts f̂t+k and ĝt+k for Yt+k are generated, each of

which depends only on Zt−m+1, . . . ,Zt. In this framework, the only requirement imposed

on how the forecasts are produced is that they are measurable functions of the data in

the rolling estimation window. We are interested in comparing and ranking the competing

density forecasting methods.

The comparison typically uses a proper scoring rule. A scoring rule is a loss function

S(f, y) whose arguments are the density forecast, f , and the realization, y, of the future
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observation, Y . The density forecast is ideal if the conditional sampling density of Y is

indeed f . Diebold et al. (1998) and Granger and Pesaran (2000) argue powerfully that the

ideal forecast is preferred by any rational user, irrespectively of the cost-loss structure at

hand. Hence, it is critically important that a scoring rule be proper, in the sense that

Ef S(f, Y ) =
∫

f(y) S(f, y) dy

≤
∫

f(y) S(g, y) dy = Ef S(g, Y ) (2.1)

for all density functions f and g. A scoring rule is strictly proper if (2.1) holds, with

equality if and only if f = g almost surely. Clearly, a strictly proper scoring rule prefers the

ideal forecaster over any other. Prominent examples of strictly proper scoring rules include

the logarithmic, quadratic, spherical, and continuous ranked probability scores (Matheson

and Winkler 1976; Good 1952; Diebold and Rudebusch 1989; Winkler 1996; Gneiting and

Raftery 2007). We take scoring rules to be negatively oriented penalties, so the lower the

score, the better.

Density forecast methods are then ranked by comparing their average scores. Specifically,

if

Sf
n =

1
n− k + 1

m+n−k∑
t=m

S(f̂t+k, yt+k) and Sg
n =

1
n− k + 1

m+n−k∑
t=m

S(ĝt+k, yt+k),

then we prefer f if Sf
n < Sg

n, and prefer g otherwise. Amisano and Giacomini (2007) consider

tests of equal forecast performance based on the test statistic

tn =
√

n
Sf

n − Sg
n

σ̂n
, (2.2)

where

σ̂2
n =

1
n− k + 1

k−1∑

j=−(k−1)

m+n−k−|j|∑
t=m

∆t,k∆t+|j|,k and ∆t,k = S(f̂t+k, yt+k)− S(ĝt+k, yt+k),

(2.3)

as proposed by Diebold and Mariano (1995). Assuming suitable regularity conditions, the
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Table 2.1: Weighted likelihood ratio tests for density forecasts for the conditionally het-
eroscedastic process (2.5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the
correct model assumption. Its competitor ĝt+1 = N (0, 1

2 σ̂2
t+1) uses a deliberately misspec-

ified predictive variance. The width of the sliding training window is m = 100, and we
consider n = 900 one-step-ahead density forecasts. Counterintuitive test statistic is shown
in bold. See text for details.

Weight Function Emphasis Sf
n Sg

n σ̂n tn P

w0(x) = 1 uniform 1.312 1.490 0.862 −6.20 < 0.001
w1(x) = φ(x) center 0.294 0.267 0.100 7.98 < 0.001
w2(x) = 1− φ(x)/φ(0) tails 0.575 0.820 0.759 −9.69 < 0.001
w3(x) = Φ(x) right tail 0.667 0.767 0.633 −4.73 < 0.001
w4(x) = 1− Φ(x) left tail 0.645 0.723 0.542 −4.34 < 0.001

statistic tn is asymptotically standard normal under the null hypothesis of vanishing ex-

pected score differentials (Amisano and Giacomini, 2007). In the case of rejection, f is

chosen if tn is negative and g is chosen if tn is positive.1

What scoring rule should be used? Amisano and Giacomini (2007) consider a weighted

logarithmic scoring rule,

S(f, y) = w

(
y − µ

σ

)
S0(f, y), (2.4)

where w is a fixed, nonnegative weight function, µ and σ are estimates of the unconditional

mean and standard deviation of the predictand, based on the past m observations, and S0 is

the logarithmic scoring rule, S0(f, y) = − log f(y). The weight function emphasizes regions

of interest, such as the tails or the center of a variable’s range. With φ and Φ denoting

the standard normal probability density and cumulative distribution function, the weight

functions w1(x) = φ(x), w2(x) = 1 − φ(x)/φ(0), w3(x) = Φ(x) and w4(x) = 1 − Φ(x)

emphasize the center, the tails, the right tail and the left tail, respectively. The approach of

Mitchell and Hall (2005) and Bao, Lee and Saltoğlu (2007) employs the unweighted, original

logarithmic score.

The weighting approach seems appealing; however, it corresponds to the use of an im-

1Amisano and Giacomini (2007) use the logarithmic score in positive orientation, so they choose f if tn

is positive and g if tn is negative.
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proper scoring rule and incurs misguided inferences. For instance, consider the Gaussian

GARCH(1,1) process Y1, Y2, . . ., where

Yt+1 = εt+1, εt+1 ∼ N (0, σ2
t+1), σ2

t+1 = αε2t + βσ2
t + γ. (2.5)

Following Christoffersen and Diebold (1996), we set the GARCH parameters at α = 0.2

and β = 0.75, which are typical of estimates reported in the literature, and we let γ = 0.05,

which normalizes the unconditional process variance to 1.2 The rolling estimation window is

of size m = 100, and we consider n = 900 density forecasts at the prediction horizon k = 1.

The density forecast f̂t+1 is Gaussian with mean zero and variance σ̂2, which is derived

from a GARCH fit for (2.5). Except for uncertainty in parameter estimation, this is the

ideal density forecast. In contrast, the density forecast ĝt+1 is Gaussian with mean zero and

variance one half time times σ̂2, deliberately misspecifying the conditional variance. Results

for the weighted likelihood ratio test are shown in Table 2.1. Using the weight functions

w0, w2, w3 and w4 the test prefers f , as expected. With the weight function w1, the test

prefers the misspecified density forecast g, which is a counterintuitive result.

The goal of this chapter is to propose a test that adopts the weighting approach of

Amisano and Giacomini (2007), avoids misguided inferences, and comes with associated

graphical tools that can be used to diagnose strengths and weaknesses of a forecasting

method. We retain the test statistic (2.2), but base our test on appropriately weighted,

proper versions of the continuous ranked probability score (CRPS; Matheson and Winkler

1976; Gneiting and Raftery 2007; Laio and Tamea 2007). Any density forecast f induces

a probability forecast for the binary event {Y ≤ z} via the value of the corresponding

cumulative distribution function (cdf) F (z) at the threshold z ∈ R. Similarly, it induces the

quantile forecast F−1(α) at the level α ∈ (0, 1). The continuous ranked probability score is

then defined as

CRPS(f, y) =
∫ ∞

−∞
PS(F (z), I{y ≤ z}) dz =

∫ 1

0
QSα(F−1(α), y) dα, (2.6)

2See Engle (1982) and Bollerslev (1986) for details on ARCH and GARCH processes. We set the initial
conditional variance equal to

√
609/7, that is, the unconditional variance plus one standard deviation of

the conditional variance, and discard the first 1,000 values.
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where

PS(F (z), I{y ≤ z}) = (F (z)− I{y ≤ z})2

is the Brier probability score (Selten 1998; Gneiting and Raftery 2007) for the probability

forecast F (z) of the binary event {Y ≤ z} at the threshold z ∈ R, and

QSα(F−1(α), y) = 2(I{y ≤ F−1(α)} − α)(F−1(α)− y)

is the quantile score (Gneiting and Raftery 2007) for the quantile forecast F−1(α) at the

level α ∈ (0, 1). Here and in the following, the symbol I stands for an indicator function.

The second equality in (2.6) is due to Laio and Tamea (2007) and will be reviewed below.

Following Matheson and Winkler (1976) and Gneiting and Raftery (2007), it is straight-

forward to construct weighted versions of the continuous ranked probability score (2.6) that

emphasize regions of interest and retain propriety. A threshold weighted version of the

continuous ranked probability score is obtained as

S(f, y) =
∫ ∞

−∞
PS(F (z), I{y ≤ z}) u(z) dz, (2.7)

where u is a nonnegative weight function on the real line. Similarly, a quantile weighted

version is obtained as

S(f, y) =
∫ 1

0
QSα(F−1(α), y) v(α) dα, (2.8)

where v is a nonnegative weight function on the unit interval. For a constant weight function,

both (2.7) and (2.8) reduce to the unweighted score (2.6).

Table 2.2 returns to the simulation study for the GARCH model (2.5) and reports results

based on the test statistic (2.2) and threshold or quantile weighted versions of the continuous

ranked probability score, which are proper (Matheson and Winkler 1976), as opposed to

the weighted logarithmic score. In contrast to the results for the weighted likelihood ratio

test, all tn values in Table 2.2 are negative, favoring the nearly ideal density forecast f over

its deliberately misspecified competitor g.

The remainder of the chapter is organized as follows. In Section 2.2 we show that the
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Table 2.2: Weighted CRPS tests for density forecasts for the conditionally heteroscedastic
process (2.5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the correct model
assumption. Its competitor ĝt+1 = N (0, 1

2 σ̂2
t+1) uses a deliberately misspecified predictive

variance. The width of the sliding training window is m = 100, and we consider n = 900
one-step-ahead density forecasts. In contrast to the weighted likelihood ratio test, all tests
prefer f over g.

Threshold Weight Emphasis Sf
n Sg

n σ̂n tn P

u0(z) = 1 uniform 0.511 0.521 0.070 −3.94 < 0.001
u1(z) = φ(z) center 0.153 0.155 0.018 −4.24 < 0.001
u2(z) = 1− φ(z)/φ(0) tails 0.129 0.132 0.030 −2.88 0.004
u3(z) = Φ(z) right tail 0.258 0.262 0.046 −2.83 0.005
u4(z) = 1− Φ(z) left tail 0.254 0.259 0.046 −3.24 0.001

Quantile Weight Emphasis Sf
n Sg

n σ̂n tn P

v0(α) = 1 uniform 0.511 0.521 0.070 −3.95 < 0.001
v1(α) = α(1− α) center 0.100 0.101 0.009 −2.79 0.005
v2(α) = (2α− 1)2 tails 0.113 0.118 0.036 −4.85 < 0.001
v3(α) = α2 right tail 0.157 0.161 0.041 −2.53 0.012
v4(α) = (1− α)2 left tail 0.155 0.159 0.041 −3.00 0.003

weighted likelihood ratio test incurs the use of an improper scoring rule, and we explore ways

in which the test can be hedged. In Section 2.3 we study threshold and quantile weighted

versions of the continuous ranked probability score in further detail, and discuss conditions

under which the test statistic tn is asymptotically standard normal. We also note graphi-

cal representations of the threshold and quantile decompositions of the continuous ranked

probability score, which can be used diagnostically to assess strengths and deficiencies of

forecasting techniques. Section 2.4 applies these methods to compare density forecasts for

quarterly inflation rates in the United Kingdom and wind resources in the North American

Pacific Northwest. The chapter closes with a discussion in Section 2.5.
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2.2 Hedging Strategies For the Weighted Likelihood Ratio Test

Recall that a scoring rule S(f, y) for a density forecast is proper if

Ef S(f, Y ) =
∫

f(y) S(f, y) dy

≤
∫

f(y) S(g, y) dy = Ef S(g, Y )

for all density functions f and g. It is strictly proper if the above holds, with equality if and

only if f = g almost surely. Examples of proper scoring rules for density forecasts include

the logarithmic score, S(f, y) = − log f(y), the quadratic score, S(f, y) = −2f(y) + ‖f‖2,

and the spherical score S(f, y) = −f(y)/‖f‖, where

‖f‖ =
(∫ ∞

−∞
f(y)2 dy

)1/2

.

The continuous ranked probability score and its weighted versions are also proper (Matheson

and Winkler 1976; Gneiting and Raftery 2007).

The following result shows that if S0(f, y) is a strictly proper scoring rule, then its

product with a non-negative weight function w(y) is improper, unless the weight function

is constant.

Theorem 2.2.1. Suppose that f is the sampling density of the random variable Y . Let S0

be any proper scoring rule and let w be a weight function such that 0 <
∫

w(y)f(y) dy < ∞.

Then the expected value of the weighted score

S(g, Y ) = w(Y ) S0(g, Y ) (2.9)

is minimized if we issue the density forecast

g(y) =
w(y)f(y)∫
w(y)f(y) dy

.
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Table 2.3: Weighted likelihood ratio tests for density forecasts for the conditionally het-
eroscedastic process (2.5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the
correct model assumption. Its competitor ĝt+1 is deliberately misspecified as described in
(2.10). Counterintuitive test statistic is shown in bold. See text for details.

Weight Function Emphasis Sf
n Sg

n σ̂n tn P

w0(x) = 1 uniform 1.312 1.611 0.727 −12.31 < 0.001
w1(x) = φ(x) center 0.294 0.436 0.215 −19.84 < 0.001
w2(x) = 1− φ(x)/φ(0) tails 0.575 0.518 0.331 5.23 < 0.001
w3(x) = Φ(x) right tail 0.667 0.744 0.515 −4.48 < 0.001
w4(x) = 1− Φ(x) left tail 0.645 0.867 0.310 −21.51 < 0.001

Proof. Let h be any density forecast. Then

Ef S(g, Y ) =
∫

w(y)f(y) S0(g, y) dy =
∫

w(y)f(y) dy

∫
g(y) S0(g, y) dy

≤
∫

w(y)f(y) dy

∫
g(y) S0(h, y) dy =

∫
w(y)f(y) S0(h, y) dy = Ef S(h, Y ),

where the inequality reflects the propriety of S0.

In particular, we are now in a position to explain the failure of the weighted likelihood

ratio test in the simulation example in table 2.1 of the introduction. The weighted loga-

rithmic score (2.4) is similar to the composite scoring rule (2.9) where S0 is the logarithmic

score, and the composite score is improper, unless the weight function is constant. More-

over, Theorem 2.2.1 suggests a hedging strategy if forecasters are compared by the weighted

likelihood ratio test, namely to issue the density function g that is proportional to the prod-

uct of the forecaster’s true belief, f , and the weight function, w. For example, if both f = φ

and w = φ are standard normal, the suggested hedge uses a normal density function g with

mean zero and variance one half. Essentially, this is the situation in the simulation study

in the introduction. The misspecified density forecast ĝt+1 halves the estimated Gaussian

variance; hence, to a good degree of approximation, it is proportional to the product of the

true belief, f̂t+1, and the weight function, w1 = φ. Not surprisingly, the weighted likelihood

ratio test with weight function w1 fails.
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Before closing this section, we present another simulation study in which the weighted

likelihood ratio test yields counterintuitive results. Once again, we study density forecasts

for the conditionally heteroscedastic process (2.5) with parameter values α = 0.2, β = 0.75

and γ = 0.05. The rolling estimation window is of size m = 100, and we issue n = 900

density forecasts at the prediction horizon k = 1. As previously, the density forecast f̂t+1 is

Gaussian with mean zero and variance σ̂2
t+1, derived from a GARCH fit under the correct

model specification. Except for estimation uncertainty, this is the ideal density forecast. Its

competitor is the density forecast ĝt+1, which is deliberately misspecified as

ĝt+1(y) = f̂t+1(y)
(
I{y < −σ̂t+1}+

1
2
I{|y| ≤ σ̂t+1}+

1
2(1− Φ(1))

I{y > σ̂t+1}
)

. (2.10)

Note that ĝt+1 is identical to f̂t+1 in the left tail, underspecifies the center of the distribution,

and makes this up in the right tail. Table 2.3 shows results for the weighted likelihood ratio

test, which are misguided and inconsistent. Specifically, the test suggests that both in the

left tail and in the right tail f is preferable. Looking at both tails simultaneously, the test

stipulates that g is better.

2.3 Weighting and Testing With the Continuous Ranked Probability Score

2.3.1 Threshold and quantile weighting for the continuous ranked probability score

Suppose that the density forecast is f and y realizes. Let F denote the CDF corresponding

to the density f , and write F−1(α) for the quantile at level α ∈ (0, 1). The continuous

ranked probability score then can be defined in three equivalent ways, as

CRPS(f, y) =
∫ ∞

−∞
(F (z)− I{y ≤ z})2 dz (2.11)

= 2
∫ 1

0
(I{y ≤ F−1(α)} − α)(F−1(α)− y) dα (2.12)

= Ef |Y − y| − 1
2
Ef |Y − Y ′|, (2.13)

where Y and Y ′ are independent random variables with common sampling density f . Laio

and Tamea (2007) showed the equivalence of the traditional form (2.11), to which we refer to
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Table 2.4: Proposed weight functions for threshold and quantile weighted versions of the
continuous ranked probability score. The threshold weight functions are specified in terms
of the probability density function φa,b and the cumulative distribution function Φa,b of the
normal distribution with mean a and standard deviation b.

Emphasis Threshold Weight Function Quantile Weight Function
center u1(z) = φa,b(z) v1(α) = α(1− α)
tails u2(z) = 1− φa,b(z)/φa,b(a) v2(α) = (2α− 1)2

right tail u3(z) = Φa,b(z) v3(α) = α2

left tail u4(z) = 1− Φa,b(z) v4(α) = (1− α)2

as the threshold decomposition of the continuous ranked probability score, and the quantile

score representation (2.12). The equivalence to the kernel score representation (2.13) was

noted and proved by Gneiting and Raftery (2007). Both (2.12) and (2.13) show that the

continuous ranked probability score is reported in the same unit as the observations. The

score is strictly proper within the class of the forecast densities that have finite first moment,

and attains an infinite value otherwise. It applies to predictive distributions with discrete

components, and reduces to the absolute error in the case of a point forecast.

The integrand in the traditional representation (2.11) equals the quadratic or Brier

probability score (Selten 1998; Gneiting and Raftery 2007)

PS(F (z), I{y ≤ z}) = (F (z)− I{y ≤ z})2

for the probability forecast F (z) of the binary event {Y ≤ z} at the threshold z ∈ R. The

integrand in (2.12) equals the quantile score

QSα(F−1(α), y) = 2(I{y ≤ F−1(α)} − α)(F−1(α)− y)

for the quantile forecast F−1(α) (Cervera and Muñoz 1996; Gneiting and Raftery 2007). It

has also been referred to as the tick loss function (Giacomini and Komunjer 2005) or, more

traditionally, as the asymmetric linear or lin-lin loss function (Koenker and Basset 1978;

Christoffersen and Diebold 1996).
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Using the Brier probability score, we define threshold weighted versions of the continuous

ranked probability score as

S(f, y) =
∫ ∞

−∞
PS(F (z), I{y ≤ z})u(z) dz, (2.14)

where u is a nonnegative weight function on the real line; if u ≡ 1, this reduces to the

unweighted score (2.11). Table 2.4 lists some potential weight functions that emphasize the

center or tails of a variable’s range. The threshold weight functions resemble the suggestions

of Amisano and Giacomini (2007); however, in our implementation, the parameters are

fixed and user specified, depending on the application at hand. For instance, in the case

of inflation rates we fix a at the policy target. If the weight function is integrable, such

as in the case of the center weight function φa,b, the threshold-weighted continuous ranked

probability score (2.14) is finite and bounded by the integral of the weight function. Other

options for integrable weight functions with center emphasis include t and Laplace densities.

Similarly, we define quantile weighted versions of the continuous ranked probability score

as

S(f, y) =
∫ 1

0
QSα(F−1(α), y) v(α) dα, (2.15)

where v is a nonnegative weight function on the unit interval. Table 2.4 suggests weight

functions with center or tail emphasis.

From a decision-theoretic perspective, the quantile score QSα(F−1(α), y) can be inter-

preted as follows. Suppose that a point forecast, x, for the future quantity y is sought, and

that the ex post loss is L(x, y) = 2(1 − α)|y − x| in the case of an overprediction (y ≤ x),

and L(x, y) = 2α|y − x| in the case of an underprediction (y > x). In this setting, the opti-

mal point forecast or Bayes rule is the α-quantile, F−1(α), of the predictive distribution, F

(Granger 1969; Matheson and Winkler 1976), and the quantile score, QSα(F−1(α), y), equals

the corresponding loss. The unweighted continuous ranked probability score (2.12) assigns

uniform weight, v(α) ≡ 1, to the potential values of the asymmetry parameter α ∈ (0, 1). In

many applications, such as those described by Pinson, Chevallier and Kariniotakis (2007)

and Laio and Tamea (2008), this may not represent realistic assumptions on actual cost-



22

loss ratios. However, the application at hand may suggest alternative, non-uniform quantile

weight functions, of which we give an example in Section 2.4.2.

The threshold and quantile weighting approaches can be traced back at least to Matheson

and Winkler (1976), who showed that the scoring rules in (2.14) and (2.15) are proper. The

threshold weighting idea is also employed by Corradi and Swanson (2006a, pp. 194–195),

though their emphases and terminology differ from ours.

Closed form expressions for the evaluation of (2.14) or (2.15) may or may not be available,

but the computation of a suitably discretized approximate version is always feasible, to any

degree of accuracy. In the case of threshold weighting, we approximate (2.14) by

S(f, y) =
yu − yl

I − 1

I∑

i=1

w(yi) PS(F (yi), I{y ≤ yi}) where yi = yl + i
yu − yl

I
(2.16)

and (yl, yu) is the range of interest. In the case of the quantile weighted score, we approxi-

mate the integral in (2.15) by a discrete version,

S(f, y) =
1

J − 1

J−1∑

j=1

v(αj)QSαj
(F−1(αj), y) where αj =

j

J
. (2.17)

Note that the discrete versions themselves are proper scoring rules, that arise as special

cases in (2.14) and (2.15) if the integral is taken with respect to a discrete Stieltjes measure

rather than a weight function.

2.3.2 Asymptotic normality of the test statistic

Following Amisano and Giacomini (2007), we consider tests of equal forecast performance

based on the test statistic

tn =
√

n
Sf

n − Sg
n

σ̂n
,

where

Sf
n =

1
n− k + 1

m+n−k∑
t=m

S(f̂t+k, yt+k) and Sg
n =

1
n− k + 1

m+n−k∑
t=m

S(ĝt+k, yt+k) (2.18)
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and σ̂2
n is defined in (2.3). Under general conditions, tn is asymptotically standard normal

under the null hypothesis of vanishing expected score differentials, and the test will reject

with probability tending to 1 under a fixed alternative. When S is a weighted logarith-

mic rule, Amisano and Giacomini (2007) prove these claims under regularity assumptions,3

which include a mixing condition on the process {Zt} defined in the introduction, bound-

edness of the weight function, consistency of σ̂2
n as an estimate of

σ2
n = var(

√
n (Sf

n − Sg
n)) > 0,

and moment conditions. In our case, in which S is a weighted version of the continuous

ranked probability score, the same result holds, except for the moment condition, which

now requires that

Ef̂t+k
|X|, E ĝt+k

|X| and E|Yt+k|2r are finite for all t, (2.19)

where the power r ≥ 2 depends on the mixing condition. In the case of threshold weighting

with an integrable (rather than just bounded) weight function, the moment condition can be

dropped. In analogy to the arguments of Amisano and Giacomini (2007), these results can

be proved by verifying the assumptions of Theorem 4 of Giacomini and White (2006). The

only novel argument is in the derivation of the moment condition (2.19), which is presented

in an appendix.

In real-world applications, the full set of assumptions cannot be verified; yet, the as-

sumptions are plausible as approximations. Recall that the continuous ranked probability

score attains an infinite value if the forecast density has infinite first moment. In this light,

the first two conditions in (2.19) assure that each individual score is finite. The third condi-

tion stipulates that the true data generating density has a finite moment of order 2r, where

typically one can take r = 2. Hence, as a rule of thumb, the normal approximation for tn is

3Amisano and Giacomini consider the case k = 1 only. The extension to a general prediction horizon
k ≥ 1 is straightforward. We wish to emphasize that our aforementioned concerns are not with the
asymptotic arguments in Amisano and Giacomini (2007) nor with the weighting idea, which is appealing
indeed. However, we disagree with the particular choice of a weighted logarithmic scoring rule for the test,
which can lead to rejection in favor of an inferior forecast.
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appropriate, unless the forecast densities have infinite moments of low order. In the case of

threshold weighting with an integrable weight function, the moment condition can just be

ignored.

Table 2.5 summarizes results for weighted CRPS tests in the simulation example of

Section 2.2. The density forecasts f̂t+1 and ĝt+1 and the true data generating density have

Gaussian tails, so the normal approximation for tn is justified. In contrast to the respective

results for weighted likelihood ratio tests, all tn values are strongly negative, favoring f over

its deliberately misspecified competitor, g.

2.3.3 Forecast diagnostics via threshold and quantile decomposition

The threshold and quantile decompositions of the CRPS carry over to mean scores, and

in this latter form they can be used diagnostically, to assess strengths and deficiencies of

density forecasting techniques.

Consider a mean score of the form (2.18). The threshold decomposition (2.11) applies

to the mean score, in that

CRPSf
n =

∫ ∞

−∞
PSf

n(z) dz (2.20)

where

PSf
n(z) =

1
n− k + 1

m+n−k∑
t=m

PS(F̂t+k(z), yt+k) (2.21)

denotes the mean Brier probability score for the probability forecast of the binary event

{Yt+k ≤ z} at the threshold z ∈ R. Schumacher, Graf and Gerds (2003) and Gneiting,

Balabdaoui and Raftery (2007) proposed a plot of the mean Brier score (2.21) versus z as

a diagnostic tool, and coined the terms prediction error curve and Brier score plot, respec-

tively. The representation (2.20) shows that the plot illustrates the threshold decomposition

of the continuous ranked probability score.

Similarly, the quantile decomposition (2.12) suggests the representation

CRPSf
n =

∫ 1

0
QSf

n(α) dz, (2.22)
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where

QSf
n(α) =

1
n− k + 1

m+n−k∑
t=m

QSα(F̂−1
t+k(α), yt+k). (2.23)

Laio and Tamea (2007) proposed a plot of the mean quantile score (2.23) versus α as a

diagnostic tool in the assessment of density forecasts. We adopt their suggestion, which

illustrates the quantile decomposition (2.22) of the mean continuous ranked probability

score.

Figure 2.1 applies the threshold decomposition (2.20) and the quantile decomposition

(2.22) to the density forecasting techniques f and g in the simulation study described in

Sections 2.2 and 2.3.2. It is apparent that f and g are on comparable footing in the lower

tail, while f is superior in the center, which is in accordance with (2.10). As shown in Table

2.5, the mean continuous ranked probability score is 0.511 for f and 0.625 for g; this equals

the integral under the respective curves. The weighted scores in the table correspond to

weighted integrals.

2.4 Case Studies

2.4.1 Bank of England projections of quarterly inflation rates

The Bank of England’s Monetary Policy Committee (MPC) has issued probabilistic fore-

casts of inflation rates and gross domestic product every quarter since February 1996 and

November 1997, respectively, using fan charts to visualize the deciles of the predictive dis-

tributions (Wallis 2003, 2004; Clements 2004; Elder, Kapetanios, Taylor and Yates 2005;

Mitchell and Hall 2005).4

We compare the Bank of England’s density forecasts of inflation rates (RPIX) to those

derived from a simplistic autoregressive time series model. The Bank of England employs

potentially asymmetric two-piece normal distributions with parameters µ ∈ R and σ1, σ2 > 0

4The quarterly Bank of England inflation report is available online at http://www.bankofengland.

co.uk/publications/inflationreport/. Archived forecasts can be downloaded at http://www.bankof

england.co.uk/publications/inflationreport/irprobab.htm. Observed RPIX inflation rates are avail-
able at http://www.statistics.gov.uk/StatBase/tsdataset.asp?vlnk=7173&More=Y under Office of
National Statistics code CDKQ. The rates are percentage changes over 12 months. The first quarter
ranges from March to May, the second from June to August, and so on. Prior to the inception of the
MPC, the Bank of England issued inflation forecasts from February 1993 to May 1997, which were retro-
spectively converted into density forecasts and added to the forecast archive.
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Table 2.5: Threshold and quantile weighted CRPS tests for density forecasts for the condi-
tionally heteroscedastic process (2.5). The density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated
under the correct model assumption. Its competitor ĝt+1 is deliberately misspecified as
described in (2.10).

Threshold Weight Emphasis Sf
n Sg

n σ̂n tn P

u0(z) = 1 uniform 0.511 0.625 0.317 −10.72 < 0.001
u1(z) = φ(z) center 0.153 0.184 0.095 −10.01 < 0.001
u2(z) = 1− φ(z)/φ(0) tails 0.129 0.163 0.097 −10.37 < 0.001
u3(z) = Φ(z) right tail 0.258 0.343 0.227 −11.32 < 0.001
u4(z) = 1− Φ(z) left tail 0.254 0.281 0.098 −8.39 < 0.001

Quantile Weight Emphasis Sf
n Sg

n σ̂n tn P

v0(α) = 1 uniform 0.511 0.625 0.317 −10.72 < 0.001
v1(α) = α(1− α) center 0.100 0.125 0.069 −10.99 < 0.001
v2(α) = (2α− 1)2 tails 0.113 0.125 0.045 −7.98 < 0.001
v3(α) = α2 right tail 0.157 0.198 0.116 −10.44 < 0.001
v4(α) = (1− α)2 left tail 0.155 0.177 0.069 −9.60 < 0.001

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

Threshold Decomposition 

Threshold

Br
ier

 S
co

re

f
g

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile Decomposition

Quantile

 Q
ua

nt
ile

 S
co

re

f
g

Figure 2.1: Threshold and quantile decomposition of the mean continuous ranked proba-
bility score for density forecasts for the conditionally heteroscedastic process (2.5). The
density forecast f̂t+1 = N (0, σ̂2

t+1) is estimated under the correct model assumption. Its
competitor ĝt+1 is deliberately misspecified as described in (2.10).
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and forecast density

f(y) =





(π

2

)−1/2
(σ1 + σ2)

−1 exp
(
−(y − µ)2

2σ2
1

)
if y ≤ µ,

(π

2

)−1/2
(σ1 + σ2)

−1 exp
(
−(y − µ)2

2σ2
2

)
if y ≥ µ.

The simplistic competitor is a Gaussian autoregression of order one that uses a rolling

estimation window of length m = 6 quarters. This method results in Gaussian density

forecasts.

Figure 2.2 and Table 2.6 compare the two methods at a prediction horizon of k = 1

quarters ahead, for a test period ranging from the first quarter of 1993 to the first quarter

of 2004, for a total of n = 45 density forecast cases. Figure 2.2 shows the threshold and

quantile decompositions (2.20) and (2.22) of the continuous ranked probability score for the

two techniques. The Bank of England forecast has a clear edge at almost all thresholds and

quantiles, with a mean continuous ranked probability score of 0.112%, as opposed to 0.246%

for the autoregressive forecast. The integrals under the corresponding curves in Figure 2.2

equal these values. The superiority of the Bank of England forecast is corroborated by Table

2.6, which reports the results of weighted CRPS tests, using the weight functions of Table

2.4, where a = 2.5% equals the MPC’s 1997–2003 policy target and b = 1.0% reflects the

relative constancy of the inflation rate during the evaluation period.

Figure 2.3 and Table 2.7 show results at a prediction horizon of k = 7 quarters ahead, for

the third quarter of 1994 to the third quarter of 2005. Perhaps surprisingly, the dominance

of the Bank of England forecast is much less pronounced. In Figure 2.3, the simplistic

autoregressive forecast seems competitive at moderately large thresholds and quantiles.

The mean continuous ranked probability score is 0.304% for the Bank of England forecast,

as opposed to 0.382% for the autoregressive forecast. None of the tests in Table 2.7 rejects

the null hypothesis of vanishing expected score differentials.

To explain this we consider Figure 2.4, which shows quantiles of the two density fore-

casts at a prediction horizon of seven quarters along with the realized inflation rates. The

90th percentile of the Bank of England forecast was much too conservative, resulting in
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Figure 2.2: Threshold and quantile decomposition of the mean continuous ranked probabil-
ity score for Bank of England (BoE) and autoregressive (AR) density forecasts of inflation
rates, at a prediction horizon of one quarter.

Table 2.6: Threshold and quantile weighted CRPS tests for density forecasts of inflation
rates, at a prediction horizon of one quarter, in percent. The Bank of England forecast
takes the role of f and the autoregressive benchmark the role of g.

Threshold Weight Emphasis SBoE
n SAR

n σ̂n tn P

u0(z) = 1 uniform 0.112 0.246 0.248 −3.62 < 0.001
u1(z) = φ2.5,1(z) center 0.041 0.081 0.064 −4.16 < 0.001
u2(z) = 1− φ2.5,1(z)/φ2.5,1(2.5) tails 0.010 0.044 0.137 −1.69 0.090
u3(z) = Φ2.5,1(z) right tail 0.061 0.152 0.200 −3.07 0.002
u4(z) = 1− Φ2.5,1(z) left tail 0.051 0.094 0.076 −3.75 < 0.001

Quantile Weight Emphasis SBoE
n SAR

n σ̂n tn P

v0(α) = 1 uniform 0.112 0.246 0.248 −3.62 < 0.001
v1(α) = α(1− α) center 0.022 0.049 0.050 −3.67 < 0.001
v2(α) = (2α− 1)2 tails 0.026 0.050 0.049 −3.35 < 0.001
v3(α) = α2 right tail 0.033 0.077 0.078 −3.78 < 0.001
v4(α) = (1− α)2 left tail 0.036 0.071 0.076 −3.12 0.002
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Figure 2.3: Threshold and quantile decomposition of the mean continuous ranked probabil-
ity score for Bank of England (BoE) and autoregressive (AR) density forecasts of inflation
rates, at a prediction horizon of seven quarters.

Table 2.7: Threshold and quantile weighted CRPS tests for density forecasts of inflation
rates, at a prediction horizon of seven quarters. The Bank of England forecast takes the
role of f and the autoregressive benchmark the role of g.

Threshold Weight Emphasis SBoE
n SAR

n σ̂n tn P

u0(z) = 1 uniform 0.304 0.381 0.437 −1.19 0.235
u1(z) = φ2.5,1(z) center 0.102 0.129 0.131 −1.43 0.152
u2(z) = 1− φ2.5,1(z)/φ2.5,1(2.5) tails 0.049 0.057 0.166 −0.30 0.761
u3(z) = Φ2.5,1(z) right tail 0.170 0.226 0.324 −1.15 0.251
u4(z) = 1− Φ2.5,1(z) left tail 0.134 0.155 0.148 −0.99 0.321

Quantile Weight Emphasis SBoE
n SAR

n σ̂n tn P

v0(α) = 1 uniform 0.304 0.381 0.437 −1.19 0.235
v1(α) = α(1− α) center 0.057 0.072 0.081 −1.23 0.217
v2(α) = (2α− 1)2 tails 0.077 0.095 0.124 −0.96 0.338
v3(α) = α2 right tail 0.108 0.111 0.080 −0.24 0.813
v4(α) = (1− α)2 left tail 0.083 0.127 0.263 −1.14 0.255
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Figure 2.4: Bank of England (BoE) and autoregressive (AR) forecasts of inflation rates, at
a prediction horizon of seven quarters ahead, for the third quarter of 1994 through the third
quarter of 2005. The plot shows the 50th and 90th percentiles of the density forecasts for
the two methods along with the observed rates.

unnecessarily wide prediction intervals that are penalized by the scores.

2.4.2 Probabilistic forecasts of wind resources at the Stateline wind energy center

With the proliferation of wind power, probabilistic short-term forecasts of wind resources at

wind energy sites are becoming a critical requirement. Gneiting, Larson, Westrick, Genton

and Aldrich (2006) introduced the regime-switching space-time (RST) technique that merges

meteorological and statistical expertise to obtain accurate and calibrated, fully probabilistic

forecasts of wind speed and wind power. Briefly, the RST method identifies forecast regimes

at the wind energy site and fits a conditionally heteroscedastic predictive model for each

regime. Geographically dispersed meteorological observations in the vicinity of the wind

farm are used as predictor variables. The forecast densities are truncated normal.

Gneiting et al. (2006) applied the RST technique to obtain probabilistic forecasts of

hourly average wind speed near the Stateline wind energy center in the US states of Oregon
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Figure 2.5: Threshold and quantile decomposition of the mean continuous ranked proba-
bility score for regime-switching space-time (RST) and autoregressive (AR) probabilistic
forecasts of hourly average wind speed at the Stateline wind energy center, at a prediction
horizon of two hours.

Table 2.8: Threshold and quantile weighted CRPS tests in the wind example. The regime-
switching space-time (RST) forecast takes the role of f and the autoregressive benchmark
the role of g.

Threshold Weight Emphasis SRST
n SAR

n σ̂n tn P

u0(z) = 1 uniform 0.961 1.115 0.838 −13.16 < 0.001
u1(z) = φ10,5(z) center 0.051 0.060 0.050 −12.29 < 0.001
u2(z) = 1− φ10,5(z)/φ10,5(10) tails 0.318 0.364 0.293 −11.26 < 0.001
u3(z) = Φ10,5(z) right tail 0.342 0.398 0.386 −10.37 < 0.001
u4(z) = 1− Φ10,5(z) left tail 0.619 0.718 0.552 −12.73 < 0.001

Quantile Weight Emphasis SRST
n SAR

n σ̂n tn P

v0(α) = 1 uniform 0.961 1.115 0.838 −13.17 < 0.001
v1(α) = α(1− α) center 0.187 0.216 0.162 −12.93 < 0.001
v2(α) = (2α− 1)2 tails 0.213 0.250 0.201 −13.07 < 0.001
v3(α) = α2 right tail 0.299 0.351 0.302 −12.35 < 0.001
v4(α) = (1− α)2 left tail 0.288 0.331 0.252 −12.31 < 0.001
v5(α) = ∆0.73(α) peak at 0.73 0.564 0.654 0.504 −12.85 < 0.001
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and Washington, at a prediction horizon of k = 2 hours. In what follows, we compare

the RST density forecasts to probabilistic forecasts derived from autoregressive time series

models, as proposed by Brown, Katz and Murphy (1984) and widely implemented since.

Both methods employ a rolling estimation window of 45 days or 1, 080 hours. The evaluation

period ranges from 1 May through 30 November 2003, for a total of n = 5, 136 density

forecast cases. See Gneiting et al. (2006) for details.5

Figure 2.5 shows the threshold and quantile decompositions of the continuous ranked

probability score for the two probabilistic forecasting methods. The RST technique is

superior at all thresholds and quantiles, with a mean continuous ranked probability score

of 0.961 meters per second, as opposed to 1.115 meters per second for the autoregressive

benchmark. Table 2.8 shows the results of weighted CRPS tests with the weight functions

in Table 2.4, where a = 10 meters per second and b = 5 meters per second, a choice that is

motivated by the marginal climatological distribution of wind speed at Stateline (Gneiting

et al. 2006). All tests are overwhelmingly in favor of the RST technique.

In deregulated electricity markets power producers propose quantity-price bids in ad-

vance, and are charged for any imbalances. In this context, the optimal point forecast of a

future wind speed is often the α-quantile of the predictive distribution (Pinson et al. 2007;

Gneiting 2008b). The relevant value of α depends on the current market conditions, with

the above references arguing that a typical value is α = 0.73.6 This suggests the use of a

triangular quantile weight function, v5(α) = ∆0.73(α), which has a peak of height one at

α = 0.73 and decays to zero at α = 0 and 1. The corresponding results are also shown in

5Gneiting et al. (2006) refer to the methods considered here as the RST-D-CH and AR-D-CH techniques.
The autoregressive method assumes Gaussian forecast densities that assign small but positive probability
mass to the negative halfaxis, which we reassign to wind speed zero. The continuous ranked probability
score handles this point mass naturally.

6More specifically, the quantity of economic interest is the power output, which is commonly modeled as a
nondecreasing nonlinear function, g, of the wind speed. If x denotes the point forecast and y the realizing
wind speed, the predicted (and contracted) power output equals g(x), while g(y) units are generated. In the
case of an underforecast, the producer’s loss is proportional to the uncontracted surplus, g(y)−g(x). In the
case of an overprediction, it is proportional to the unrealized contracted power, g(x)− g(y). The optimal
point forecast then is the α-quantile of the predictive distribution (Gneiting 2008b). The proportionality
constants are called regulation unit costs and typically are distinct. In a detailed analysis, Pinson et
al. (2007) argue that regulation unit costs relative to negative imbalances (y > x) tend to be higher than
those associated with positive imbalances, with the ratio, r = α/(1 − α), of their yearly averages being
equal to 2.7, which corresponds to α = 0.73.
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Table 2.8.

2.5 Discussion

We have proposed a method for comparing density forecasts that is based on threshold and

quantile weighted versions of the continuous ranked probability score. R code is available

from the author upon request.

Our approach is similar in spirit to the weighted likelihood ratio test of Amisano and Gi-

acomini (2007); however, it is based on proper scoring rules, and therefore avoids misguided

inferences. In the case of threshold weighting, it is formally equivalent to the approach of

Corradi and Swanson (2006a), who provide a wealth of relevant theoretical results under

rolling and recursive estimation schemes. The threshold and quantile decompositions of

the continuous ranked probability score can be illustrated graphically, to provide diagnostic

tools that prompt insights into the strengths and deficiencies of forecasting methods, as we

have illustrated in the case studies.

Diks, Panchenko and van Dijk (2008) discuss the use of scoring rules for evaluating

density forecasts in tails. Their paper also notes the impropriety of the weighted logarithmic

score, and instead proposes test statistics of the form (2.2) that are based on conditional

likelihood (CL; their eq. (10)) or censored likelihood (CSL; their eq. (11)) scoring rules.

These scoring rules equal the standard logarithmic score on collapsed sample spaces and

thus they are proper, but not strictly proper. The CL scoring rule is tailored to situations

in which one wishes to assess predictive performance under conditions that depend on

the outcome of the predictand. For example, it can be used to assess inflation forecasts

conditional on the verifying rate exceeding the policy target. The CSL scoring rule allows

for evaluations that emphasize regions of interest, similarly to the setting in our case studies.

Gneiting et al. (2007) contend that the goal of probabilistic forecasting is to maximize the

sharpness of the forecast densities subject to calibration. Calibration refers to the statistical

consistency between the forecast densities and the observations, and is a joint property of

the forecasts and the values that materialize. Sharpness refers to the concentration of the

forecast densities: The sharper the densities, the less the uncertainty, and the sharper, the

better, subject to calibration.
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The probability integral transform (PIT) histogram is the primary diagnostic tool for

calibration checks (Diebold et al. 1998; Corradi and Swanson 2006b; Gneiting et al. 2007;

Laio and Tamea 2007). The PIT is simply the value that the predictive CDF attains at the

observation (Dawid 1984). If the observation is drawn from the forecast density, the PIT

has a uniform distribution. Hence, to assess the calibration of a density forecasting method,

one finds the PIT, repeats over a sizable number of forecast cases, and checks the PIT

histogram for uniformity. However, this does not take the sharpness of the density forecasts

into account, as opposed to proper scoring rules, which provide a combined assessment of

calibration and sharpness (Gneiting et al. 2007).

A possible limitation of our method is that the unweighted continuous ranked probability

score is infinite if the forecast density has infinite first moment, such as in the case of a

Cauchy density. Even then, the mean scores (2.21) and (2.23) can be plotted versus the

threshold z and the quantile α, and the resulting plots can be interpreted diagnostically.

Furthermore, the threshold-weighted continuous ranked probability score (2.14) is finite if

the weight function is integrable, and in this latter form the weighted CRPS test continues

to apply.

Appendix: Moment Conditions

We supply the remaining nontrivial arguments in Section 2.3.2. To verify the assumptions

of Theorem 4 of Giacomini and White (2006), we need to show that the moment condition

(2.19) implies

E |S(f̂t+k, Yt+k)− S(ĝt+k, Yt+k)|2r (2.24)

to be finite, where S is the threshold-weighted continuous ranked probability score (2.14) or

the quantile-weighted score (2.15), and the weight function is bounded. For ease of notation,

we substitute f , g and Y for f̂t+k, ĝt+k and Yt+k, respectively. If the weight function is

bounded above by the constant M > 0, then

E |S(f, Y )− S(g, Y )|2r ≤ (2M)2r (ECRPS(f, Y )2r + ECRPS(g, Y )2r).
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We proceed to show that under (2.19) both ECRPS(f, Y )2r and ECRPS(g, Y )2r are finite.

If X and X ′ are independent random variables with density f that are independent of Y ,

then

CRPS(f, Y ) = E |X − Y | − 1
2
Ef |X −X ′| ≤ 2Ef |X|+ |Y |

by (2.13) and the triangle inequality, and therefore

ECRPS(f, Y )2r ≤ 22r ((2Ef |X|)2r + E |Y |2r ).

A similar result holds for ECRPS(g, Y )2r; hence, (2.19) is a sufficient condition for the

expectation (2.24) to be finite.

Finally, if the threshold weight function u in (2.14) is integrable, the score differential

in (2.24) is bounded and its moments of order r ≥ 2 are finite.
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Chapter 3

COMBINING PROBABILITY FORECASTS

3.1 Introduction

Probabilistic forecasts take account of the uncertainty in a prediction, by taking the form

of a predictive probability distribution for a future quantity or event. The simplest case is

that of a future binary or dichotomous event, such as a recession versus no recession, or rain

versus no rain. In the binary case, a predictive probability distribution is simply an ex ante

probability for the event to happen. While the roots of probability forecasting can be traced

back to the 18th century, the transition to probability of precipitation forecasts by the US

National Weather Service in 1965 was perhaps the most influential and important event

in their development (Murphy 1998; Winkler and Jose 2008). In economics, the Survey

of Professional Forecasters has included probability variables since 1968 (Croushore 1993).

Of course, there are many other important applications of probability forecasts, including

but not limited to medical diagnosis (Spiegelhalter 1986), educational testing, and political

and socio-economic foresight (Tetlock 2005). Arguably, a far-reaching transdisciplinary

transition to distributional forecasting is well under way (Gneiting 2008).

In many instances, multiple probability forecasts for the same event are available. In sur-

veys, economic experts might provide diverse probability assessments of a future recession.

Distinct numerical and/or statistical models might provide a collection of probability of

precipitation forecasts, and a group of physicians might assign individual survival probabil-

ities. In this type of situation, there is strong empirical evidence that combined probability

forecasts that draw an all the experts’ or models’ strengths result in improved predictive

performance. This is very much in the spirit of model averaging, which has primarily been

developed for the purpose of statistical inference (Hoeting et al. 1999).

Various ways of combining probability forecasts into a single aggregated forecast have

been proposed. Genest and Zidek (1986), Wallsten et al. (1997), Clemen and Winkler (2007)
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and Primo et al. (2009) provide excellent reviews. In practice, most aggregation techniques

rely on a weighted linear combination of the individual probability forecasts, which is often

referred to as a linear opinion pool (Stone 1961; Genest and McConway 1990; DeGroot and

Mortera 1991). Substantial empirical evidence attests to the benefits of linear opinion pools,

with successful applications ranging from meteorology (Sanders 1963; Vislocky and Fritsch

1995; Baars and Mass 2005) to economics (Graham 1996), psychology (Ariely et al. 2000),

and medical diagnosis (Winkler and Poses 1993), among other fields.

The goal in probability forecasting is to maximize the sharpness of the forecast distribu-

tions subject to calibration (Murphy and Winkler 1987; Gneiting, Balabdaoui and Raftery

2007; Pal 2009). Calibration or reliability measures how close conditional event frequencies

are to the forecast probabilities. Sharpness describes how far away the forecasts are from

the naive, climatological baseline forecast, that is, the marginal event frequency (Gneiting

et al. 2008; Winkler and Jose 2008). The more extreme the forecast probabilities are, that

is, the closer to the most confident values of zero or one, the sharper the forecast. Strictly

proper scoring rules such as the Brier or quadratic score (Brier 1950; Selten 1998) and the

logarithmic score (Good 1952) provide summary measures of predictive performance that

address calibration and sharpness simultaneously (Gneiting and Raftery 2007).

It is therefore critical that probability assessments are aggregated in ways that promote

calibrated and sharp combined forecasts. In Section 3.2 we demonstrate a striking result,

in that any weighted linear combination of distinct, individually calibrated probability fore-

casts is necessarily uncalibrated and lacks sharpness. In this light, linear opinion pools are

suboptimal, so in Section 3.3 we propose a nonlinear generalization, the beta-transformed

linear opinion pool (BLP). The BLP method fits an optimally recalibrated forecast combi-

nation, by compositing a beta transform and the traditional linear opinion pool. Section

3.4 illustrates the BLP method in a case study on statistical and National Weather Service

probability of precipitation forecasts at 29 major cities in the continental US. The BLP com-

bined forecast is calibrated and sharp and outperforms the individual and linearly combined

forecasts. The chapter closes with a discussion in Section 3.5.
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3.2 Some Shortcomings of Linearly Combined Probability Forecasts

The overarching message in this section is that linear opinion pools are generally uncal-

ibrated, even in the ideal case in which each individual source is calibrated. We give a

rigorous probabilistic version of this result in Theorem 3.2.1, which is then illustrated in a

simulation study.

3.2.1 Theoretical results

We work within a probabilistic framework which considers the joint distribution of the

random vector

(Y, p1, . . . , pk),

where Y ∈ {0, 1} is a binary or dichotomous event, and 0 ≤ p1, . . . , pk ≤ 1 are probability

forecasts that take values in the closed unit interval. This is akin to the setting in DeGroot

and Fienberg (1982, 1983) and Murphy and Winkler (1987), but considers an arbitrary

number, k, of individual probability forecasts, each of which is a random variable, with

full generality in the joint dependence structure. In this framework a probability forecast

is any random variable, p, that is measurable with respect to the σ-algebra generated by

p1, . . . , pk, with the linear opinion pool,

p = w1p1 + · · ·+ wkpk where w1, . . . , wk ≥ 0 and w1 + · · ·+ wk = 1, (3.1)

being one such example. The probability forecast p is calibrated for Y if

P (Y = 1|p) = E (Y |p) = p almost surely.

This definition is in accordance with the economic, meteorological, psychological and statis-

tical forecasting literature and can be traced to Murphy and Winkler (1987) and Schervish

(1989). It differs from the game-theoretic approach to calibration that has been developed

in a far-reaching, related strand of literature (Dawid 1982; Foster and Vohra 1998; Lehrer

2001; Sandroni, Smorodinsky and Vohra 2003; Vovk and Shafer 2005). From the basic
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properties of conditional expectations, it is immediate that if p is a calibrated probability

forecast then

Ep = EE (Y |p) = EY.

This latter property can be thought of as a weak form of calibration, and we refer to it

as marginal consistency. It resembles the notion of marginal calibration for probabilistic

forecasts of continuous variables (Gneiting, Balabdaoui and Raftery 2007).

A scoring rule assigns a numerical score, S(x, y), to the probability forecast x ∈ [0, 1]

and the binary event y, where y = 1 if the event occurs and y = 0 otherwise. We consider

scoring rules to be negatively oriented penalties, that is, the smaller the better. A scoring

rule is strictly proper if it encourages honest assessments, that is, if

xS(x, 1) + (1− x)S(x, 0) < xS(x′, 1) + (1− x)S(x′, 0) for all 0 ≤ x 6= x′ ≤ 1.

See Dawid (1986), Winkler (1996) and Gneiting and Raftery (2007) for reviews and discus-

sion.

We are now in a position to state our key result. The proof is deferred to the Appendix.

Theorem 3.2.1. Suppose that p1, . . . , pk are calibrated for the binary event Y and such

that pi 6= pj with strictly positive probability for at least one pair i 6= j. Consider the linear

opinion pool,

p = w1p1 + · · ·+ wkpk,

where w1, . . . , wk > 0 and w1 + · · ·+ wk = 1. Let

q = P(Y = 1|p) = E(Y |p)

denote the recalibrated version of p, that is, the conditional probability of Y given p. Then

the following holds.

(a) The linear opinion pool p lacks calibration, in that q 6= p with strictly positive proba-

bility.
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(b) The linear opinion pool p lacks sharpness, in that

E(p− p0)2 < E(q − p0)2 where p0 = Ep = Eq = EY.

In words, both p and q are marginally consistent, but on average p is closer to its

expectation, the naive climatological forecast p0, than its recalibrated version, q.

(c) The recalibrated forecast q is calibrated, that is, P(Y = 1|q) = q almost surely, and it

outperforms p, in that

ES(q, Y ) < ES(p, Y )

for every strictly proper scoring rule S.

The statement about the lack of calibration of the linear opinion pool in part (a) is our

key result. It is counter to a natural belief that linear pools of calibrated probability forecasts

are calibrated, as recently expressed by Iversen, Parmigiani and Chen (2008, p. 899). A

similar result which applies to the case of multiple density forecasts for a continuous quantity

was proved by Hora (2004). This uses a very different mode of calibration, and there is no

apparent way of deducing our result from Hora’s, or vice versa.

The result in part (a) is an immediate consequence of the stronger statement in part

(b), since the latter implies that p cannot equal q with probability 1. Part (b) hints at the

nature of the departure from the recalibrated forecast, q, and is expressed in terms of the

expected squared deviation from the climatological baseline probability, p0. For a sharp

forecast, the forecast probabilities are close to zero or one, so the larger this deviation the

sharper the forecast (Murphy and Winkler 1992; Gneiting et al. 2008; Winkler and Jose

2008). As a result, the linear opinion pool is underconfident. Part (c) demonstrates the

superiority of the recalibrated forecast in terms of strictly proper scoring rules (Gneiting

and Raftery 2007) and is akin to Theorem 6.3 of Schervish (1989). Proper scoring rules

address calibration and sharpness simultaneously, so in view of parts (a) and (b) this is an

unsurprising result.

We proceed to discuss related results in the literature. Dawid, DeGroot and Mortera

(1995) studied the problem of the coherent combination of probability forecasts. Briefly, a
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coherent combination formula is a function f : [0, 1]k → [0, 1] such that

f(p1, . . . , pk) = P(Y = 1|p1, . . . , pk) (3.2)

under some joint distribution of the random vector (Y, p1, . . . , pk). The conditional prob-

ability property (3.2) implies calibration. Thus, part (a) of Theorem 3.2.1 shows, for any

k ≥ 2, that any nontrivial linear combination formula with nonnegative coefficients is in-

coherent. This generalizes a result of Dawid, DeGroot and Mortera (1995, p. 275) which

applies in the case of k = 2 sources.

Theorem 2 of Wallsten and Diederich (2001) considers the combination of expert prob-

ability judgements, assuming that the assessments are conditionally independent and that

each expert’s expressed (overt) opinion is a monotone stochastic transform of a hidden

(covert) opinion, which is calibrated. Then the arithmetic mean of the expert opinions

becomes increasingly diagnostic of the future event as the number of experts grows to infin-

ity, roughly in the sense that if the mean exceeds 1
2 the true conditional event probability

converges to 1, and otherwise converges to 0. Consequently, the calibration curve for the

arithmetic mean of the expert opinions becomes sigmoidal with a fixed point at 1
2 . In

contrast to our Theorem 3.2.1, which is a finite sample result and does not make any as-

sumptions on the dependence structure, Wallsten and Diederich (2001) rely critically on the

asymptotic scenario and conditional independence.

Another related result is Theorem 4.1 of Genest and Schervish (1985), which adopts a

Bayesian point of view and derives a formula for the posterior opinion of a decision maker.

Similar to Wallsten and Diederich’s (2001) findings, the true posterior opinion converges to

1, or 0, if the individual judgements lie above, or below, 1
2 . This result also depends on the

conditional independence of the individual probability assessments.

Despite Theorem 3.2.1 being critical of the linear opinion tool, there is overwhelming

empirical evidence that linearly combined probability forecasts outperform individual fore-

casts. This is not a contradiction and can readily be explained, by noting that linear opinion

pools outperform individual forecasts, but are suboptimal themselves, and can potentially

be improved upon by using nonlinear recalibration methods.
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3.2.2 Simulation study

We now illustrate our theoretical findings in a simulation study. First we describe a sta-

tistical model that gives rise to a joint distribution for the binary event Y and probability

forecasts p1 and p2, which represent forecasters with access to independent sources of infor-

mation. Then we define linearly combined forecasts and assess calibration.

Specifically, let

p = Φ(a1 + a2),

where a1 ∼ N (0, 1) and a2 ∼ N (0, 2) are independent random variables and Φ denotes the

standard normal cumulative distribution function. Suppose that Y is a Bernoulli random

variable with conditional success probability

P(Y = 1| p) = E(Y | p) = p.

Forecaster 1 has access to a1 only. This assessor’s probability forecast p1 is the condi-

tional event probability

p1 = P(Y = 1|a1) = E(Y |a1) = E(p|a1) = E [Φ(a1 + a2)|a1] = Φ
(

a1√
3

)
. (3.3)

The second forecaster has knowledge of source a2 only, whence probability forecast p2

becomes

p2 = P(Y = 1|a2) = Φ
(

a2√
2

)
. (3.4)

The final equality stems from the fact that if X ∼ N (µ, σ2) then EΦ(X) = Φ(µ/
√

σ2 + 1),

which is proved in the Appendix. Evidently, p, p1 and p2 are calibrated.

We take p1 and p2 as the individual forecasts from which we form combinations, namely

the equally weighted linear opinion pool (ELP), that is, the equally weighted average

of p1 and p2, and an optimally weighted linear opinion pool (OLP). The OLP weights

for p1 and p2 are estimated on a training sample of size 10,000, using the maximum likelihood

method and the special case of the log likelihood function (3.10) below, in which α = β =

1. Table 3.1 shows the OLP estimates and their standard errors. The second individual
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forecast, p2, which resolves events and non-events more successfully, obtains a substantially

higher OLP weight, w2, of about 3
4 .

In the simulation experiment, we consider an independent test sample of size 10,000

from the joint distribution of Y , p1 and p2 and generate the combined ELP and OLP

forecasts. Figure 3.1 shows empirical calibration curves or reliability diagrams (Sanders

1963; Pocernich 2009) for the four types of forecasts, which plot the conditional empirical

event frequency versus the forecast probability. The circles show the conditional empirical

frequency; the broken lines give pointwise 95% lower and upper critical values under the

null hypothesis of calibration, obtained with the bootstrap technique of Bröcker and Smith

(2007). Significant deviations from the diagonal suggest that a forecast is uncalibrated. The

inset histograms show the frequency distribution of the forecast probabilities and can be

used diagnostically to assess sharpness.

The calibration curves for the individual forecasts, p1 and p2, show that they are em-

pirically well calibrated, and the inset histograms confirm that p2 is the sharper forecast,

with forecast probabilities that are further away from the climatological event frequency,

p0 = 1
2 . The linearly pooled ELP and OLP forecasts are empirically uncalibrated. The

direction of departure is as anticipated, towards underconfidence, and the extent of the lack

of calibration is startling, even for the optimally weighted OLP forecast.

3.3 Recalibration

We have seen that the linear opinion pool yields a suboptimal combined probability forecast,

in that it is uncalibrated even in the ideal case in which the individual sources are calibrated.

If the individual forecasts are uncalibrated, the need for recalibration typically is even

more pronounced. Before proposing a method that addresses these issues by applying a

recalibration transform to the linear opinion pool, we digress to discuss a theoretically

optimal approach to forecast aggregation.

We have chosen to work in a probabilistic setting that considers the joint distribution

of the binary event and the individual probability forecasts. In this framework, the theo-

retically optimal combined forecast, p̂, is the conditional probability (CP), or conditional
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Figure 3.1: Calibration curves and 95% bootstrap intervals under the null hypothesis of
calibration for the individual and linearly combined forecasts in the simulation example of
Section 3.2.2. The histograms show the empirical distribution of the forecast values over
the unit interval.
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expectation of the binary event Y , given the individual forecasts p1, . . . , pk, that is,

p̂ = P(Y = 1|p1, . . . , pk) = E(Y |p1, . . . , pk). (3.5)

By definition, this is the best approximation of the binary random variable Y in terms of

the individual probability forecasts, p1, . . . , pk, in the sense that E(p̂− Y )2 ≤ E(p− Y )2 for

all functions p that are measurable with respect to the σ-algebra generated by p1, . . . , pk.

Hence, p̂ minimizes the expected Brier score and, indeed, the expectation of any strictly

proper scoring rule S, in that

ES(p̂, Y ) = EE [S(p̂, Y )|p1, . . . , pk]

= E [ p̂S(p̂, 1) + (1− p̂)S(p̂, 0)]

≤ E [ p̂S(p, 1) + (1− p̂)S(p, 0)]

= EE [S(p, Y )|p1, . . . , pk]

= ES(p, Y ),

with equality if and only if p = p̂ almost surely. Under the conditions of Theorem 3.2.1,

the conditional probability p̂ is a necessarily nonlinear function of the individual forecasts,

except for some special cases in which it is linear with at least one coefficient being negative

(Dawid, DeGroot and Mortera 1995). In the simulation study of Section 3.2.2 there are two

individual forecasts, p1 and p2, and the conditional probability (3.5) equals

p̂ = P(Y = 1|p1, p2)

= P(Y = 1|a1, a2)

= Φ(a1 + a2)

= Φ(
√

3Φ−1(p1) +
√

2Φ−1(p2)). (3.6)

This is of the generalized linear form (24) of Dawid, DeGroot and Mortera (1995) with a

normal quantile link function.
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3.3.1 The beta-transformed linear opinion pool (BLP)

In the practice of forecasting, the functional form of the conditional probability (3.5) is

unknown and needs to be estimated from training data. Nonparametric approaches can be

attempted; however, we have chosen parsimonious, yet flexible parametric approximations.

Nonparametric approaches are likely to suffer from the curse of dimensionality issue because,

as the number of forecasters grows the difficulty in estimating conditional probability ac-

curately will grow exponentially. For the parametric method we only need one additional

parameter corresponding to a new forecaster. So, the number of parameters grows linearly

and thus we will avoid the curse of dimensionality issue. Specifically, our preferred ap-

proach to aggregating individual probability forecasts, p1, . . . , pk, is to first form a linear

opinion pool, and then to apply a beta transform to achieve calibration. We call this the

beta-transformed linear opinion pool (BLP), which takes the form

p = Hα,β

(
k∑

i=1

wipi

)
, (3.7)

where w1, . . . , wk ≥ 0 and w1 + · · ·+ wk = 1, and

Hα,β(x) = B(α, β)−1

∫ x

0
tα−1(1− t)β−1 dt for x ∈ [0, 1],

is the cumulative distribution function of the beta density with shape parameters α > 0

and β > 0. Note that the BLP model nests the traditional linear opinion pool that arises in

the special case when α = β = 1. If furthermore w1 = · · · = wk = 1
k we recover the equally

weighted linear opinion pool (ELP). While the use of the beta transform for the purpose

of calibration dates back at least to Graham (1996), the statistical model (3.7) that merges

the linear opinion pool with a parametric recalibration transformation appears to be new.

It applies very generally and can be used to aggregate calibrated as well as uncalibrated

sources.

In many cases, full generality in (3.7) may not be needed or desirable. For instance, it
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is often useful to assume that the recalibration transform, Hα,β, satisfies

Hα,β(x) ≤ x for x ≤ x0 and Hα,β(x) ≥ x for x ≥ x0 (3.8)

for some x0 ∈ (0, 1). This can be enforced by putting conditions on α and β. For example, if

the individual forecasts are calibrated, Theorem 3.2.1 suggests that the linear opinion pool

is underconfident, in the sense that its calibration curve lies under the diagonal for small

forecast probabilities, and above the diagonal for high probabilities, with a fixed point at

some x0 ∈ (0, 1). The aforementioned results of Wallsten and Diederich (2001) support the

choice of x0 = 1
2 , under which (3.8) can be enforced by requiring that

α = β ≥ 1. (3.9)

If we aim to address the hard-easy effect that has been described in the psychological

literature (Lichtenstein, Fischhoff and Phillips 1982; Kynn 2008, p. 253), the fixed point in

(3.8) can be taken to be x0 = 3
4 .

We now describe how we go about parameter estimation for the BLP model in (3.7).

Suppose that y1, . . . , yn are binary observations in the training set. Let pi1, . . . , pin denote

the respective individual probability forecasts, for sources i = 1, . . . , k. The aggregated BLP

forecast then takes the form

pt = Hα,β

(
k∑

i=1

wipit

)
for t = 1, . . . , n,

where the index ranges over the instances in the training set. Assuming independence, the

log likelihood function for the BLP model (3.7) can be expressed as

`(w1, . . . , wk;α, β) =
n∑

t=1

(yt log pt + (1− yt) log(1− pt))

=
n∑

t=1

yt log Hα,β

(
k∑

i=1

wipit

)
+

n∑

t=1

(1− yt) log

(
1−Hα,β

(
k∑

i=1

wipit

))
. (3.10)

We obtain maximum likelihood estimates of the weights w1, . . . , wk and the recalibration
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Table 3.1: Maximum likelihood estimates of OLP and BLP parameters in the simulation
example of Sections 3.2.2 and 3.3.2, with standard errors in brackets.

Method w1 w2 α

OLP 0.246 (0.014) 0.754 (0.014)
BLP 0.519 (0.005) 0.481 (0.005) 9.55 (0.35)

parameters α and β by numerically optimizing the log likelihood function (3.10) under the

constraints that w1, . . . , wk ≥ 0, w1 + · · · + wk = 1, α > 0 and β > 0. As noted above,

it is often appropriate to enforce further constraints, with (3.9) being one such example.

The traditional, non-transformed linear opinion pool arises when α = β = 1. Estimated

standard errors can be obtained in the usual way, by inverting a numerical approximation to

the Hessian of the log likelihood function at the maximum likelihood estimates. We believe

this would be a correct estimate of standard error as long as the parameter estimates lie in

the open interior of the parameter space. The estimates can also be interpreted as optimum

score estimates based on the logarithmic scoring rule, in the sense described by Gneiting

and Raftery (2007, p. 375). This latter interpretation does not rely on any assumption of

independence, and our results in concert with those of Wilks (1991) suggest robustness to

non-independence.

3.3.2 Simulation study revisited

We return to the simulation study in Section 3.2.2 and fit the beta-transformed linear

opinion pool (BLP) to combine the individual probability forecasts, p1 and p2. Then we

compare to the theoretically optimal forecast, the conditional probability (CP) forecast

(3.5) which here has the closed form solution (3.6).

Recall that both p1 and p2 are calibrated, so, as we explain in the previous section, we

estimate the BLP model (4.7) under the constraint in (3.9), that is, we assume that α = β ≥
1. Table 3.1 shows maximum likelihood estimates for the BLP parameters and compares to

the respective OLP estimates. The individual forecasts, p1 and p2, get approximately equal
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Figure 3.2: Calibration curve and 95% bootstrap intervals under the null hypothesis of
calibration for the BLP forecast in the simulation example of Sections 3.2.2 and 3.3.2, for
the same independent test sample as that used before. The histogram shows the empirical
distribution of the forecast values over the unit interval.

BLP weights, much in contrast to the OLP model. The estimate for the BLP recalibration

parameter, α, is far from the identity transform that arises when α = 1, reflecting the

striking lack of calibration of the traditional linear opinion pool.

Have we succeeded in our goal of approximating the theoretically optimal CP forecast

(3.6) by the estimated, nonlinearly aggregated BLP model (3.7)? The empirical calibration

curve for the BLP forecast in Figure 3.2 does not show any systematic departure from the

diagonal, and the inset histogram shows that it is much sharper than any of the individual

or linearly combined forecasts. A more detailed analysis reveals that if 0 < p1 = p2 < 1 the

maximal difference between the CP forecast and the fitted BLP model is 0.0215.

Table 3.2 shows the mean Brier or quadratic score and its reliability, resolution and

uncertainty components for the various forecasts (Murphy 1973; Dawid 1986). Suppose

that the probability forecasts pt for the binary event yt, where t = 1, . . . , n, take discrete
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values fi ∈ [0, 1], where i = 1, . . . , I. Let ni be the number of times that the forecast value

fi occurs, so that n = n1 + · · ·+ nI , and let qi be the respective empirical conditional event

frequency, that is, the ex post recalibrated forecast. Let

q̄ =
1
n

I∑

i=1

niqi =
1
n

n∑

t=1

yt

denote the marginal event frequency. Then the mean Brier score,

BS =
1
n

n∑

t=1

(pt − yt)2,

decomposes as

BS =
1
n

I∑

i=1

ni(fi − qi)2

︸ ︷︷ ︸
REL

− 1
n

I∑

i=1

ni(qi − q̄)2

︸ ︷︷ ︸
RES

+ q̄ (1− q̄)︸ ︷︷ ︸
UNC

.

The reliability term (REL) quantifies calibration and is negatively oriented, that is, the

smaller the better. The resolution component (RES) equals the variance of the ex post recal-

ibrated forecast and is positively oriented. For a calibrated forecast, it quantifies sharpness;

for an uncalibrated forecast, it measures potential sharpness. As noted above, we generally

seek a forecast which is as sharp as possible subject to it being calibrated (Murphy and

Winkler 1987; Gneiting, Balabdaoui and Raftery 2007). The uncertainty term (UNC) is

computed from the observations alone and is independent of the forecast. If the probability

forecast is a continuous variable, the decomposition depends on a binning of the forecast

values and is approximate only. It can be made exact by considering two additional compo-

nents in the decomposition, as proposed by Stephenson, Coelho and Jolliffe (2008). In our

case, the extra terms make very little difference, and we consider the classical decomposition

only.

From Table 3.2 we see that the linearly combined ELP and OLP forecasts have lower

Brier score than any of the individual forecasts. In both cases, the improvement stems from

the resolution component, which is high, because the ex post recalibrated forecast is sharp,
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Table 3.2: Out-of-sample mean Brier score (BS) and its reliability (REL), resolution (RES)
and uncertainty (UNC) components for the probability forecasts in the simulation example
of Sections 3.2.2 and 3.3.2.

Forecast BS REL RES UNC

p1 0.2094 0.0002 0.0408 0.2500
p2 0.1657 0.0004 0.0847 0.2500

ELP 0.1563 0.0418 0.1354 0.2500
OLP 0.1531 0.0120 0.1088 0.2500
BLP 0.1137 0.0005 0.1368 0.2500

CP 0.1126 0.0003 0.1377 0.2500

even though the forecast itself is uncalibrated and lacks sharpness, as reflected in Figure 3.1.

The BLP forecast is much better calibrated, and simultaneously more successful in resolving

events and non-events, than the ELP and OLP forecasts, resulting in a hugely improved

Brier score. As anticipated, the theoretically optimal CP forecast shows the lowest Brier

score. However, the BLP forecast is a very close competitor; it is nearly as well calibrated

and nearly as sharp as the CP forecast.

3.3.3 Uncalibrated components

In the above simulation experiment, each individual source was calibrated, and we fitted

the BLP model (4.7) under the constraint that α = β. However, the BLP approach is more

general, and applies equally in situations in which one or more of the component forecasts

are uncalibrated. Furthermore, it can be beneficial to allow for the full BLP model with

general parameters α > 0 and β > 0.

In the remainder of the section, we give an example that covers these two types of situ-

ations. Specifically, we consider forecast combinations of p1 = Φ( a1√
3
), defined as previously,

and of the probability forecast p∗
2, which we take to be

p∗2 = Φ(1
5 + a2

2 ). (3.11)



52

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

Forecast p2*

Figure 3.3: Calibration curve and 95% bootstrap intervals under the null hypothesis of
calibration for the uncalibrated source p∗2 in the simulation example of Section 3.3.3. The
histogram shows the empirical distribution of the forecast values over the unit interval.

As illustrated in Figure 3.3, the source p∗2 is uncalibrated and its marginal distribution is

skewed. Table 3.3 shows maximum likelihood estimates for OLP and BLP models which

have been fit on the same training sample (that is, using the same random seed for a1 and

a2) as in Sections 3.2.2 and 3.3.2. Note that we refer to the constrained BLP model (with

α = β) as symmetric, and to the full model (with general parameters α > 0 and β > 0) as

asymmetric.

Figure 3.4 and Table 3.4 show performance results for the same independent test sample

of size 10,000 as that used before. The calibration curves in Figure 3.4 demonstrate that the

symmetric BLP forecast is uncalibrated, while the asymmetric BLP forecast is empirically

calibrated. The Brier scores in Table 3.4 confirm that the linearly combined ELP and OLP

forecasts outperform each of the individual sources, p1 and p∗2. However, the nonlinearly

combined BLP forecasts show much better predictive performance. The asymmetric, general

version of the BLP forecast outperforms the symmetric version, which is uncalibrated, and
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Table 3.3: Maximum likelihood estimates of OLP and BLP parameters in the simulation
example of Section 3.3.3, with standard errors in brackets.

Method w1 w2 α β

OLP 0.265 (0.017) 0.735 (0.017)
BLP (symmetric) 0.473 (0.005) 0.527 (0.005) 10.11 (0.36) 10.11 (0.36)
BLP (asymmetric) 0.454 (0.005) 0.546 (0.005) 13.72 (0.49) 11.66 (0.42)

Table 3.4: Out-of-sample mean Brier score (BS) and its reliability (REL), resolution (RES)
and uncertainty (UNC) components for the probability forecasts in the simulation example
of Section 3.3.3.

Forecast BS REL RES UNC

p1 0.2094 0.0002 0.0408 0.2500
p∗2 0.1740 0.0084 0.0844 0.2500

ELP 0.1671 0.0514 0.1343 0.2500
OLP 0.1641 0.0321 0.1179 0.2500

BLP (symmetric) 0.1215 0.0084 0.1369 0.2500
BLP (asymmetric) 0.1132 0.0005 0.1373 0.2500

CP 0.1126 0.0003 0.1377 0.2500

performs nearly as well as the theoretically optimal CP forecast.

3.4 Case Study: Probability of Precipitation Forecasts

We turn to a data example on statistical and National Weather Service probability of

precipitation forecasts in the continental US. With some one-third of the US economy being

weather sensitive, and severe weather causing billions of dollars in damage and hundreds

of deaths annually, there is a critical need for calibrated and sharp probabilistic weather

forecasts, to allow for optimal decision making under inherent uncertainty (Dutton 2002;

Regnier 2008).

Baars and Mass (2005) consider probability of precipitation forecasts for 29 meteoro-
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Figure 3.4: Calibration curves and 95% bootstrap intervals under the null hypothesis of
calibration for the BLP forecasts in the simulation example of Section 3.3.3. The histograms
show the empirical distribution of the forecast values over the unit interval.

logical stations at major urban centers spread across the continental US. They compare

the performance of individual and linearly combined model output statistics (MOS) and

National Weather Service (NWS) forecasts, and conclude that a linear opinion pool of the

machine generated MOS forecasts is competitive or superior to the NWS forecast at nearly

all locations. Here we consider the aggregate performance of individual and combined fore-

casts at all 29 stations, based on the automated GMOS, EMOS and NMOS forecasts,

and the human generated, operational NWS forecast. The MOS probability forecasts are

statistical forecasts that apply regression techniques to the output of a numerical weather

prediction model and recent weather observations (Glahn and Lowry 1972; Wilks 2006).

The MOS forecasts are recorded in multiples of a hundredth; the NWS forecasts come in

multiples of a tenth, except that a forecast probability of 0.05 is issued occasionally.

We consider 2-days ahead probability of precipitation forecasts for the 12-hour term

called period 2 by Baars and Mass (2005), with our data ranging from July 1, 2003 to
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Figure 3.5: Calibration curves and 95% bootstrap intervals under the null hypothesis of
calibration for the four individual probability of precipitation forecasts in the test period.
The histograms show the empirical distribution of the forecast values over the unit interval.
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March 3, 2008. This includes but is not limited to the one year record studied by Baars and

Mass (2005). We use the first two years (July 1, 2003 to June 30, 2005) as training data, on

which we fit OLP and BLP models that apply at all stations simultaneously. The balance

of the record (July 1, 2005 to March 3, 2008) is used as test data on which we evaluate the

forecasts. All results are aggregated over the test period and the 29 stations.

Figure 3.5 shows calibration curves for the four individual forecasts over the test period.

We are in the desirable situation in which the calibration curves show only minor deviations

from the diagonal, and so we fit the BLP model (3.7) under the constraint (3.9). Hence,

the BLP model has a single additional recalibration parameter, α ≥ 1, when compared to

the traditional linear opinion pool.

3.4.1 Combining statistical forecasts

Following Baars and Mass (2005), we consider combined probability forecasts that use the

three statistical probability forecasts, namely the GMOS, EMOS and NMOS forecasts.

As previously, the equally weighted linear opinion pool (ELP) is obtained as the

simple average of the three forecasts. Table 3.5 shows maximum likelihood (ML) estimates

for the optimally weighted linear opinion pool (OLP) and the beta transformed

linear opinion pool (BLP), which we fit on the training data. For both methods, the

GMOS and EMOS weights are about equal and nearly reach 1
2 , with the NMOS weight

being much smaller. This is unsurprising, because NMOS is the oldest system and is well

known to be the least accurate of the forecasts considered. The ML estimate of the BLP

recalibration parameter, α, is 1.48.

Reliability diagrams for the combined forecasts are shown in Figure 3.6. The calibration

curve for the OLP forecast deviates significantly from the diagonal; the effect is stronger

than for any of the individual forecasts, and the direction of the departure agrees with our

theoretical results, in that the linearly combined forecast is underconfident. The calibration

curve for the ELP forecast is very similar and so it is not shown here. The nonlinearly

recalibrated BLP forecast is empirically well calibrated and sharper than the OLP forecast.

Table 3.6 shows the Brier score and its reliability, resolution and uncertainty components
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Figure 3.6: Calibration curves and 95% bootstrap intervals under the null hypothesis of
calibration for the OLP and BLP probability of precipitation forecasts in the test period,
using the statistical forecasts only. The histograms show the empirical distribution of the
forecast values over the unit interval.
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Table 3.5: Combined probability forecasts in the precipitation example, using the statistical
forecasts only. Maximum likelihood estimates for the OLP and BLP parameters from the
training period with standard errors in brackets.

Method GMOS EMOS NMOS α

OLP 0.485 (0.026) 0.465 (0.027) 0.050 (0.020)
BLP 0.462 (0.022) 0.447 (0.022) 0.091 (0.021) 1.48 (0.03)

for the individual and combined forecasts. The BLP forecast performs the best, both

in terms of the Brier score, the reliability or calibration component, and the resolution

component. The improvement of the nonlinear BLP method over the linear OLP forecast

is about the same as that of the OLP forecast over the best individual source, the GMOS

forecast.

3.4.2 Combining statistical and National Weather Service forecasts

We turn to combined probability forecasts that are based on all four individual sources,

now including the NWS forecast, in addition to the GMOS, EMOS and NMOS forecasts.

This possibility was not explored by Baars and Mass (2005), who aimed to compare the

automated MOS forecasts to the subjective, human generated NWS forecast.

Table 3.7 shows ML estimates for the OLP and BLP models, which we fit on the training

data. For both methods, the GMOS and EMOS forecasts receive weights that are nearly

equal, at about 0.37. The NWS forecast receives weights of 0.27 and 0.22, respectively; the

weights for the NMOS forecast are negligible. The ML estimate of the BLP recalibration

parameter, α, is 1.49.

Calibration curves for the OLP and BLP forecasts are shown in Figure 3.7. We see the

now familiar pattern, in that the linearly combined OLP forecast lacks calibration. The BLP

forecast is empirically well calibrated, and considerably sharper than the OLP forecast. The

Brier scores in Table 3.8 echo these results. The BLP forecast outperforms the OLP and

ELP forecasts, which perform better than any of the individual forecasts. If we compare to

Table 3.6, we see that the combined probability forecasts benefit from the inclusion of the
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Table 3.6: Mean Brier score (BS) and its reliability (REL), resolution (RES) and uncertainty
(UNC) components for individual and combined probability of precipitation forecasts in the
test period, using the statistical forecasts only.

Forecast BS REL RES UNC

GMOS 0.0815 0.0011 0.0739 0.1543
EMOS 0.0866 0.0011 0.0688 0.1543
NMOS 0.0934 0.0005 0.0614 0.1543

ELP 0.0814 0.0023 0.0751 0.1543
OLP 0.0800 0.0021 0.0764 0.1543
BLP 0.0783 0.0004 0.0764 0.1543
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Figure 3.7: Same as Figure 3.6 but now using all four individual forecasts, including the
NWS forecast.
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human generated NWS forecast, with the improvement due to an increase in resolution.

3.5 Discussion

Our aim in this chapter is to provide theoretical and applied guidance in combining prob-

ability forecasts from distinct, calibrated or uncalibrated sources. Historically, the linear

opinion pool has been the preferred method for doing this. Indeed, there is overwhelming

empirical evidence that linearly combined probability forecasts perform better than indi-

vidual forecasts, and our results make no exception. That said, the chapter demonstrates

theoretically and empirically that the linear opinion pool is suboptimal, lacking both cali-

bration and sharpness. To address these shortcomings, we propose the use of the nonlinearly

recalibrated, beta transformed linear opinion pool (BLP) that nests the traditional, linearly

combined probability forecast.

Theorem 3.2.1 is our analytic key result; it shows that the linear opinion pool is un-

calibrated, even in the desirable case in which the individual sources are calibrated. This

is a finite sample result that does not make any restrictive assumptions about the joint

dependence structure of the individual forecasts, and complements the asymptotic results

of Wallsten and Diederich (2001) that rely on an assumption of conditional independence.

It would be of great interest to bridge the finite sample and asymptotic scenarios, and to

establish a more general result, roughly to the extent that linearly combined probability

forecasts are uncalibrated and underconfident, resulting in probability statements that are

closer to the naive climatological forecast than necessary. A result of this type could perhaps

be formulated for a general class of averaging operators and under a minimal assumption

Table 3.7: Same as Table 3.5 but now using all four individual forecasts, including the NWS
forecast.

Method GMOS EMOS NMOS NWS α

OLP 0.362 (0.031) 0.368 (0.030) 0.000 (0.026) 0.270 (0.032)
BLP 0.371 (0.024) 0.377 (0.023) 0.032 (0.022) 0.220 (0.024) 1.49 (0.03)
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of marginal consistency, in lieu of calibration.

Empirically, the shortcomings of the linear opinion pool have been well documented

in an interdisciplinary strand of literature that includes the works of Clemen and Winkler

(1987), Winkler and Poses (1993), Vislocky and Fritsch (1995), Ariely et al. (2000), Wallsten

and Diederich (2001) and Johnson et al. (2001). Despite their ubiquity, these issues have

frequently been overlooked, with Sloughter et al. (2007) being one such example. Indeed,

Figure 7 of Sloughter et al. (2007) shows the typical S-shaped calibration curve for a linearly

combined, underconfident probability forecast, even though the effect is comparably small.

With a view toward applied forecasting problems, we recommend a transition from the

traditional linear opinion pool to the nonlinearly recalibrated, beta-transformed linear opin-

ion pool (BLP). The BLP model (3.7) has at most two, and typically only one, additional

parameters when compared to the linear opinion pool, and it is easy to fit, using the maxi-

mum likelihood method or related optimum score techniques. More general and more com-

plex parametric or nonparametric approaches to the aggregation of probability forecasts can

easily be envisioned, including but not limited to copula models (Jouini and Clemen 1996),

and might provide effective approximations to the hypothetical, ideally combined forecast,

namely the conditional probability (CP) forecast (3.5). However, more complex statistical

models bear the danger of overfitting, and the resulting gains in predictive performance, if

any, are likely to be incremental.
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Appendix: Mathematical Details

Proof of Theorem 3.2.1

From the basic properties of Bernoulli random variables and conditional expectations,

P(Y = 1) = EY 2 = EY = EE [Y |p] = Ep = Eq,

which will be used repeatedly in what follows. We first prove part (a). For a contradiction,

suppose that p is calibrated, that is, p = q almost surely. Then we can condition on p to

see that

E(Y − p)2 = E [p(1− p)]. (3.12)

We proceed to show that under the conditions of the theorem equality in (3.12) is violated.

Toward this end, note that

E (Y − p)2 = E

(
k∑

i=1

wi (Y − pi)

)2

=
k∑

i=1

k∑

j=1

wiwjE [(Y − pi)(Y − pj)]

=
k∑

i=1

k∑

j=1

wiwjE [Y − piY − pjY + pipj ]

=
k∑

i=1

k∑

j=1

wiwjE [E(Y |pi)− E(piY |pi)− E(pjY |pj) + pipj ]

=
k∑

i=1

k∑

j=1

wiwjE [pi − p2
i − p2

j + pipj ]

=
k∑

i=1

k∑

j=1

wiwjE [pi(1− pj)]−
k∑

i=1

k∑

j=1

wiwjE(pi − pj)2

and

E [p(1− p)] =
k∑

i=1

k∑

j=1

wiwjE [pi(1− pj)],
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so that

E(Y − p)2 = E [p(1− p)]−
k∑

i=1

k∑

j=1

wiwjE(pi − pj)2. (3.13)

The double sum on the right-hand side of (3.13) is strictly positive, whence (3.12) is violated,

for the desired contradiction.

We now prove part (b). From (3.13) we see that E(Y −p)2 < E [ p(1− p)]. A straightforward

conditioning argument shows that

E(Y − p)2 = E(Y − q)2 + E(q − p)2 > E [q(1− q)].

Hence,

E [q(1− q)] < E(Y − p)2 < E [p(1− p)],

which implies that Ep2 < Eq2. From this, part (b) follows.

As for part (c),

ES(q, Y ) = EE [S(q, Y )|p]

= E [qS(q, 1) + (1− q)S(q, 0)]

< E [qS(p, 1) + (1− q)S(p, 0)]

= EE [S(p, Y )|p]

= ES(p, Y )

with the inequality being strict, because S is a negatively oriented strictly proper scoring

rule and q = E[Y |p] 6= p with positive probability. ¤
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Details for (3.3) and (3.4)

The final equality in (3.3) stems from the fact that if X ∼ N (µ, σ2) then

EΦ(X) =
∫ ∞

−∞
Φ(x)

1
σ

φ

(
x− µ

σ

)
dx

=
∫ ∞

−∞

(∫ x

−∞
φ(y) dy

)
1
σ

φ

(
x− µ

σ

)
dx

=
∫

y≤x
φ(y)

1
σ

φ

(
x− µ

σ

)
dx dy

= P(Y ≤ X) = P(Y −X ≤ 0) = Φ
(

µ√
σ2 + 1

)
,

where φ denotes the standard normal density function and Y is standard normal and in-

dependent of X, so that Y −X ∼ N (−µ, σ2 + 1). The conditional distribution of a1 + a2

given a1 is normal with mean a1 and variance 2, whence

E [Φ(a1 + a2)|a1] = Φ
(

a1√
3

)
.

An almost identical calculation applies to (3.4).
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Table 3.8: Same as Table 3.6 but now using all four individual forecasts, including the NWS
forecast.

Forecast BS REL RES UNC

GMOS 0.0815 0.0011 0.0739 0.1543
EMOS 0.0866 0.0011 0.0688 0.1543
NMOS 0.0934 0.0005 0.0614 0.1543
NWS 0.0827 0.0009 0.0725 0.1543

ELP 0.0800 0.0026 0.0770 0.1543
OLP 0.0789 0.0024 0.0778 0.1543
BLP 0.0770 0.0004 0.0777 0.1543
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Chapter 4

DENSITY FORECAST COMBINATION, CALIBRATION, AND
RECALIBRATION

4.1 Introduction

Probabilistic forecasts aim to provide calibrated and sharp predictive distributions for future

quantities or events of interest. For a continuous outcome, probabilistic forecasts take

the form of a predictive density or density forecast. As they admit the assessment of

forecast uncertainty and allow for optimal decision making (Granger and Pesaran 2000;

Gneiting 2008b), density forecasts continue to gain prominence in a wealth of applications,

ranging from economics and finance to climatology and meteorology (Tay and Wallis 2000;

Timmermann 2000; Gneiting 2008a). The general goal is to maximize the sharpness of the

density forecasts subject to calibration (Murphy and Winkler 1987; Hora 2004; Gneiting et

al. 2007).

In many situations, complementary or competing density forecasts from dependent or

independent information sources are available. For example, the individual density forecasts

might stem from distinct experts, organizations or statistical models. The most prevalent

method for aggregating the individual forecasts into a single, combined density forecast

is the linear opinion pool, or simply linear pool (Stone 1961), that is, a weighted linear

combination of the individual density forecasts. While other methods for combining density

forecasts are available (Genest and Zidek 1986; Clemen and Winkler 1999; 2007), the linear

pool is typically the method of choice, with the pioneering work of Winkler (1968) and

Zarnowitz (1969) and recent papers by Mitchell and Hall (2005), Wallis (2005), Hall and

Mitchell (2007), Jore et al. (2008), Geweke and Amisano (2008), Kascha and Ravazzolo

(2008) and Österholm (2009) being examples.

In this context, Hora (2004) demonstrated an interesting and disconcerting result, by

proving that any nontrivial linear combination of two calibrated density forecasts is un-
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calibrated. Here we extend Hora’s findings in various directions. In Section 4.2 we prove

an analogous result under weaker conditions and for an arbitrary number of component

forecasts, and we expose the nature of the forecast deficiency, in that the linearly combined

density forecast is overdispersed. To address these shortcomings, we propose two recali-

bration techniques, namely the deflated linear pool (DLP), which adapts the spread of the

component densities, and the beta-transformed linear pool (BLP), which applies a nonlin-

ear recalibration transform to the traditional linear opinion pool. These methods can be

used effectively to aggregate calibrated as well as uncalibrated sources. Sections 4.3 and 4.4

turn to case studies on density forecasts for daily maximum temperature at Seattle-Tacoma

Airport and S&P 500 returns. The chapter ends in Section 4.5, where we summarize our

findings and hint at their relevance in the closely related problem of the fusion of expert

opinions that are expressed in terms of probability densities.

4.2 Theory and methods

4.2.1 Calibration and dispersion

In a seminal paper, Murphy and Winkler (1987) proposed a distribution oriented framework

for the evaluation of point forecasts. Here, we generalize to density forecasts and consider the

joint distribution of a random variable Y , which represents the future quantity of interest,

and a finite family {fi : i = 1, . . . , k} of density-valued random quantities, which stand

for the forecasts. We denote the cumulative distribution functions that correspond to the

density forecasts by {Fi : i = 1, . . . , k} and require them to be right-continuous. Two density

forecasts then are distinct if there is a positive probability of the corresponding cumulative

distribution functions being such.

In this setting, the probability integral transform (PIT) for the density forecast f is the

random variable

Z = F (Y ),

which takes values in the closed unit interval. Thus, the PIT is the value that the predictive

cumulative distribution function attains at the verifying observation. This notion includes

the traditional PIT (Rosenblatt 1952), in which the cumulative distribution function F is



68

deterministic, rather than a random quantity, as a special case.

With this, we are ready to define the notions of calibration and dispersion.

Definition 4.2.1. Suppose that the density-valued random quantity f is a density forecast

for the random variable Y . Let F denote the corresponding cumulative distribution function.

(a) The density forecast f is calibrated if its PIT, Z = F (Y ), is uniformly distributed on

the unit interval.

(b) The density forecast f is overdispersed if its PIT, Z = F (Y ), satisfies var(Z) < 1
12 ,

neutrally dispersed if var(Z) = 1
12 , and underdispersed if var(Z) > 1

12 .

(c) A density forecast f is regular if the distribution of its PIT, Z = F (Y ), is supported

on the unit interval.

The following result then is immediate.

Proposition 4.2.2. A calibrated density forecast is neutrally dispersed and regular.

The converse is not necessarily true, in that a density forecast which is neutrally dispersed

and regular need not be calibrated.

Dawid (1984), Diebold et al. (1998) and Gneiting et al. (2007), among others, have

argued powerfully that calibration is a critical requirement for a density forecast. Conse-

quently, checks for the uniformity of the PIT have formed a cornerstone of density forecast

evaluation. In practice, one observes a sample {(f1j , . . . , fkj , yj) : j = 1, . . . , l} from the

joint distribution of the density forecasts and the observation, and the uniformity of the

PIT is assessed empirically. The prevalent way of doing this is by plotting PIT histograms

for the various density forecasting methods, which show the frequency distribution of the

corresponding PIT values over an evaluation or test period. U-shaped PIT histograms cor-

respond to underdispersed density forecasts that are too narrow on average, while hump

or inverse U-shaped histograms indicate overdispersed forecasts. Formal tests of uniformity

can also be employed; for a review, see Corradi and Swanson (2006).
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Figure 4.1: The variance (4.2) of the PIT, Zσ = fσ(Y ), for the density forecast fσ in
Example 4.2.3 as a function of the predictive standard deviation, σ. The horizontal line is
at 1

12 and indicates a neutrally dispersed forecast.
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Figure 4.2: PIT histograms for the density forecast fσ in Example 4.2.3 where σ = 3
4

(underdispersed), σ = 1 (neutrally dispersed and calibrated) and σ = 5
4 (overdispersed).

Details are given in the text.
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Example 4.2.3. Let

Y = X + ε

where X and ε are independent, standard normal random variables. Let φ denote the

standard normal density function. The Gaussian density forecast

fσ(y) =
1
σ

φ

(
y −X

σ

)

has mean X and standard deviation σ, and is a random quantity, because its mean depends

on the random variable X. For short, we write

fσ ∼ N (X,σ2) (4.1)

to indicate that fσ is a normal density with mean X and variance σ2. A stochastic domina-

tion argument, the details of which we give in Appendix A, shows that fσ is underdispersed

if σ < 1, neutrally dispersed if σ = 1 and overdispersed if σ > 1. If σ = 1 then fσ is

furthermore calibrated. A more detailed calculation, which is also given in Appendix A,

shows that the PIT Zσ = fσ(Y ) satisfies

var(Zσ) = 2
∫ 1

0
z

(
1− Φ(σ(Φ−1(z)))

)
dz −

(∫ 1

0

(
1− Φ(σ(Φ−1(z)))

)
dz

)2

, (4.2)

where Φ denotes the cumulative distribution function of the standard normal distribution.

In Figure 4.1, we plot the variance (4.2) as a function of the predictive standard deviation,

σ. Figure 4.2 shows PIT histograms for a sample of size 10, 000 from the joint distribution

of the observation Y and the density forecasts fσ, where σ = 3
4 , σ = 1 and σ = 5

4 . The

PIT histograms are U-shaped, uniform, and inverse U-shaped, reflecting underdispersion,

neutral dispersion and calibration, and overdispersion, respectively.

Similarly, the unconditional density forecast gσ ∼ N (0, σ2) is underdispersed if σ <
√

2,

neutrally dispersed and calibrated if σ =
√

2 and overdispersed if σ >
√

2. While both f1

and g√2 are calibrated, the conditional forecast f1 is much sharper.

The uniform density forecast uδ on the interval [−δ, δ ] is underdispersed if δ <
√

6,
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neutrally dispersed but not calibrated if δ =
√

6 and overdispersed if δ >
√

6. All density

forecasts in this example are regular. ¤

The current setting differs from but relates to the approach of Gneiting et al. (2007),

who studied notions of calibration for density forecasts. Specifically, if the density forecast

f is calibrated and {(fj , Yj) : j = 1, 2, . . .} is a sample from the joint distribution of the

density forecast and the observation, then this sequence is probabilistically calibrated in the

sense described by Gneiting et al. (2007).

4.2.2 Properties of linearly combined density forecasts

We proceed to state and prove our key result, in that linear combinations of neutrally

dispersed density forecasts are uncalibrated and overdispersed.

Theorem 4.2.4. Let f1, . . . , fk be neutrally dispersed density forecasts, at least two of which

are regular and distinct. We consider the linearly combined density forecast f =
∑k

i=1 wifi

with weights w1, . . . , wk that are strictly positive and add to 1. Then f is overdispersed.

In particular, if the density forecasts f1, . . . , fk are calibrated, the linearly combined density

forecast f is uncalibrated and overdispersed.

Proof. For i = 1, . . . , k, let Zi denote the PIT for the density forecast fi. By assumption,

var(Zi) = 1
12 and cov(Zi, Zj) ≤ 1

12 with strict inequality for at least one pair i 6= j, because

the density forecasts fi and fj are regular and distinct. The PIT for the linear pool f =
∑k

i=1 wifi is Z =
∑k

i=1 wiZi, whence

var(Z) =
k∑

i=1

k∑

j=1

wiwj cov(Zi, Zj)

<
1
12

k∑

i=1

wi

k∑

j=1

wj =
1
12

.

Thus, the linearly combined density forecast f is overdispersed. The final part of the

statement then is immediate from Proposition 4.2.2. ¤

Despite its elementary and potentially surprising proof, Theorem 4.2.4 generalizes the

key result of Hora (2004) in various ways. Hora (2004) applied Fourier analytic tools to
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show that if the density forecasts f1 and f2 are calibrated and distinct, then any linearly

combined density forecast is uncalibrated. Our result goes considerably further, by allowing

for any number k ≥ 2 of component densities, by substituting the weaker condition of

neutral dispersion for the assumption of calibration, and by exposing the nature of the

forecast deficiency, in that the linearly combined density forecast is overdispersed. A similar

result in the case of probability forecasts for a binary outcome was proved by Ranjan and

Gneiting (2009). This uses a very different mode of calibration, and there is no apparent

way of deducing their result from ours, or vice versa.

In practice, the weights w1, . . . , wk in the linear pool are fitted on training data, to satisfy

some sort of optimality criterion. Our preferred technique for doing this is the maximum

likelihood method (see, for example, Ferguson 1996). Let {(f1j , . . . , fkj , yj) : j = 1, . . . , l}
denote the training data. Under the assumption of independence between the training cases,

the log likelihood function for the linear opinion pool is

`(w1, . . . , wk) =
l∑

j=1

log

(
k∑

i=1

wifij(yj)

)
. (4.3)

An alternative interpretation of the optimality criterion (4.3), which does not depend on any

assumption of independence, is that of the mean logarithmic score (Matheson and Winkler

1976; Gneiting and Raftery 2007) for the training data. The logarithmic score is simply

the logarithm, log f(x), of the value that the density forecast, f , attains at the realizing

observation, x. It is positively oriented, that is, the higher the score, the better, and it is

proper, in the sense that truth telling is an expectation maximizing strategy. Like all proper

scoring rules, the logarithmic score rewards calibrated and sharp predictive distributions.

The optimization in (4.3) is carried out numerically using the method of scoring (see, for

example, Ferguson 1996), for which we give details in Appendix B. Approximate standard

errors for the estimates can be obtained in the usual way, by evaluating and inverting

the Hessian matrix for the log likelihood function. However, the weights w1, . . . , wk need

to be nonnegative. Thus, if unconstrained optimization results in negative weights, we

turn to the active barrier algorithm implemented in the constrained optimization routine

constrOptim in R (R Development Core Team 2009).
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4.2.3 Recalibration

In practice, we employ the linear pool,

f(y) =
k∑

i=1

wifi(y), (4.4)

with maximum likelihood estimates for the weights from the training period. Like all linearly

combined density forecasts, the resulting optimal linear pool (OLP) is subject to the

overdispersion described in Theorem 4.2.4 and thus generally is uncalibrated. To address

these shortcomings, we propose two recalibration approaches.

The first approach is the deflated linear pool (DLP), which introduces a deflation

parameter to reduce the spread of each individual density component. Consider the situation

in which each component forecast, fi(y) = fi(y; µi, σi), comes from a location-scale family

with location parameter µi and scale parameter σi, for i = 1, . . . , k. In this setting, the

deflated linear pool has density

f(y) =
k∑

i=1

wifi(y; µi, cσi), (4.5)

where w1, . . . , wk are nonnegative weights that add to 1, and c is a strictly positive deflation

parameter. If the components are normal we recover the setting in Berrocal et al. (2007)

and Glahn et al. (2008).

We use the maximum likelihood method to estimate the weights and the deflation pa-

rameter, c, from training data. For calibrated or overdispersed components, we expect

estimates for c below 1. If the individual density components are underdispersed, values

above 1 might be appropriate. When c = 1 the DLP reduces to the standard linear opinion

pool. While the DLP model (4.5) can be generalized to allow for distinct deflation parame-

ters for the individual density components, such an extension has not been beneficial in our

experience. The assumption of a common deflation parameter yields a more parsimonious

model and stabilizes the estimation.

As an alternative, we consider the beta-transformed linear pool (BLP), which
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composites the traditional linear pool with a beta transform. This method of nonlinearly

aggregating density forecasts is best described in terms of cumulative distribution functions.

Let F1, . . . , Fk denote the cumulative distribution functions for the component densities

f1, . . . , fk. The BLP cumulative distribution function then is

F (y) = Bα,β

(
k∑

i=1

wiFi(y)

)
, (4.6)

where w1, . . . , wk are nonnegative weights that sum to 1, and Bα,β denotes the cumulative

distribution function of the beta distribution with parameters α > 0 and β > 0. The BLP

density forecast then is

f(y) =

(
k∑

i=1

wi fi(y)

)
bα,β

(
k∑

i=1

wi Fi(y)

)
, (4.7)

where bα,β denotes the beta density with parameters α > 0 and β > 0. Like the DLP,

the BLP nests the traditional linear opinion pool, which arises as the special case in which

α = β = 1, so that the beta term in (4.7) becomes a constant. For every fixed threshold

y ∈ R the BLP transform (4.6) acts on a set of probability forecasts for the binary event

{Y ≤ y}, which is the setting in which the transform was introduced by Ranjan and

Gneiting (2009). Here we consider all threshold values simultaneously and thus transform a

cumulative distribution function, rather than just a probability forecast for a dichotomous

event.

The weights w1, . . . , wk and the transformation parameters α > 0 and β > 0 are esti-

mated from training data, using the maximum likelihood method. Generalizing (4.3), the
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log likelihood function for the BLP model (4.7) is

`(w1, . . . , wk; α, β) =
J∑

j=1

log(f(yj)) (4.8)

=
J∑

j=1

log

(
k∑

i=1

wifij(yj)

)
+

J∑

j=1

log

(
bα,β

(
k∑

i=1

wiFij(yj)

))

=
J∑

j=1

(
(α− 1) log

(
k∑

i=1

wiFij(yj)

)
+ (β − 1) log

(
1−

k∑

i=1

wiFij(yj)

))

+
J∑

j=1

log

(
k∑

i=1

wifij(yj)

)
− J log B(α, β),

where B denotes the classical beta function. As before, the optimization is carried out

numerically by the method of scoring, for which we give details in Appendix B, or by an

active barrier algorithm that honors the linear constraints on the parameters.

4.2.4 Simulation example: Calibrated components

We now present a simulation example, in which three calibrated density forecasts are to be

aggregated. The data generating process for the observation, Y , is the regression model

Y = X0 + a1X1 + a2X2 + a3X3 + ε, (4.9)

where a1, a2 and a3 are real constants, and X0, X1, X2, X3 and ε are independent, standard

normal random variables. The individual forecasts rest on partial knowledge of the data

generating process, in that density forecast f1 has access to covariate X0 and X1, but not

to X2 or X3, and similarly for f2 and f3. Thus, we seek to combine the density forecasts

f1 ∼ N (X0 + a1X1, 1 + a2
2 + a2

3),

f2 ∼ N (X0 + a2X2, 1 + a2
1 + a2

3) and f3 ∼ N (X0 + a3X3, 1 + a2
1 + a2

2),

where X0 stands for shared, public information, while X1, X2 and X3 represent proprietary

information sets. The density forecasts represent the true conditional distributions under
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the regression model (4.9), given the corresponding partial information, and thus they are

calibrated. We estimate OLP, DLP and BLP models for combining the component forecasts

on a training sample {(f1j , f2j , f3j , Yj) : j = 1, . . . , l} of size l = 500 from the joint distribu-

tion of the density forecasts and the observation, and assess the aggregation methods on an

independent test sample of the same size. The regression coefficients in the data generating

model (4.9) are taken to be a1 = a2 = 1 and a3 = 1.1.

Table 4.1 shows maximum likelihood estimates, along with approximate standard errors,

for the OLP, DLP and BLP parameters. For all three methods, the weight estimate is highest

for the component density f3, which is sharper than f1 or f2. The DLP deflation parameter

is estimated at 0.78, and the BLP transformation parameters at 1.49 and 1.44, respectively.

The PIT diagrams for the various types of forecasts in the test period are shown in

Figure 4.3. The component forecasts f1, f2 and f3 are calibrated and have uniform PIT

histograms, up to sample fluctuations. The OLP forecast is overdispersed, as expected.

The DLP and BLP forecasts show nearly uniform PIT histograms and thus are empirically

calibrated.

Table 4.2 shows the mean logarithmic score for the various forecasts. The best individual

forecast is f3, because it is sharper than f1 and f2, while all three forecasts are calibrated.

The linearly combined OLP forecast outperforms the individual density forecasts, even

though it is overdispersed. The nonlinearly aggregated DLP and BLP forecasts show higher

scores than any of the individual or linearly combined density forecasts.

The OLP, DLP and BLP techniques are methods for aggregating density forecasts into

a single, combined predictive distribution. Engle et al. (1984, p. 160) make the argument

that

“The best forecast is obtained by combining information sets, not forecasts from infor-

mation sets. [. . . ] one should combine the information that goes into the models, not

the forecasts that come out of the models.”

Of course, this is correct, even though it may not be feasible in practice, when individual

sources of expertise reveal density forecasts, rather than information sets. In the current

simulation setting, however, we can readily combine the forecasters’ information sets, re-
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Table 4.1: Maximum likelihood estimates with approximate standard errors (in brackets)
for the parameters of the combined density forecasts in the simulation example of Section
4.2.4.

w1 w2 w3 c α β

OLP 0.212 (0.083) 0.254 (0.084) 0.534 (0.080) — — —
DLP 0.257 (0.060) 0.283 (0.061) 0.460 (0.059) 0.783 (0.032) — —
BLP 0.256 (0.057) 0.293 (0.057) 0.451 (0.054) — 1.492 (0.062) 1.440 (0.059)

Table 4.2: Mean logarithmic score for the individual and combined density forecasts in the
simulation example of Section 4.2.4, for the training set and an independent test set.

Training Test

f1 −2.025 −2.018
f2 −2.017 −2.022
f3 −1.956 −1.992
OLP −1.907 −1.922
DLP −1.871 −1.892
BLP −1.865 −1.886

Table 4.3: Maximum likelihood estimates with approximate standard errors (in brackets)
for the parameters of the combined density forecasts in the simulation example of Section
4.2.5.

w1 w2 w3 c α β

OLP 0.276 (0.042) 0.294 (0.043) 0.430 (0.043) — — —
DLP 0.254 (0.060) 0.280 (0.060) 0.466 (0.059) 1.380 (0.054) — —
BLP 0.257 (0.065) 0.262 (0.067) 0.481 (0.065) — 0.670 (0.032) 0.643 (0.031)

Table 4.4: Mean logarithmic score for the individual and combined density forecasts in the
simulation example of Section 4.2.5, for the training set and an independent test set.

Training Test

g1 −2.598 −2.575
g2 −2.572 −2.587
g3 −2.383 −2.490
OLP −1.951 −1.990
DLP −1.871 −1.892
BLP −1.887 −1.914
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Figure 4.3: PIT histograms for the individual and combined density forecasts in the simu-
lation example of Section 4.2.4, for the test set.
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Figure 4.4: PIT histograms for the individual and combined density forecasts in the simu-
lation example of Section 4.2.5, for the test set.



80

sulting in the density forecast

f ∼ N (X0 + a1X1 + a2X2 + a3X3, 1),

which is the true predictive density under the data generating process and complete infor-

mation about the covariates. This ideal density forecast obtains a mean logarithmic score

of −1.432 in the training period and −1.487 in the test period.

4.2.5 Simulation example: Uncalibrated components

In the above simulation example, the individual density forecasts were calibrated. However,

the DLP and BLP recalibration techniques apply in the case of uncalibrated components

as well. To illustrate this, we retain the setting of the previous section, but consider the

density forecasts

g1 ∼ N (X0 + a1X1, 1), g2 ∼ N (X0 + a2X2, 1), g3 ∼ N (X0 + a3X3, 1),

where a1 = a2 = 1 and a3 = 1.1, as before. These forecasts are underdispersed and thus show

U-shaped PIT histograms, as illustrated in the upper row of Figure 4.4. Table 4.3 shows

maximum likelihood estimates for the OLP, DLP and BLP parameters. The estimate for the

DLP deflation parameter is 1.380, and the estimates for the BLP recalibration parameters

α and β are 0.670 and 0.643, in line with the underdispersion of the component forecasts.

The lower row of Figure 4.4 shows PIT histograms for the OLP method, which is still

underdispersed, because of the severe underdispersion of the component forecasts. The DLP

and BLP methods result in empirically calibrated density forecasts.

The logarithmic score for the various types of forecasts is shown in Table 4.4. The DLP

and BLP forecasts provide substantial improvement over the individual density forecasts as

well as the linearly combined OLP forecast.
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4.3 Density forecasts for daily maximum temperature at Seattle-Tacoma Air-
port

With some one-third of the US economy being weather sensitive, there is a critical need for

calibrated and sharp probabilistic weather forecasts, to allow for optimal decision making

under inherent environmental uncertainty (Dutton 2002; Regnier 2008).

In practice, probabilistic weather forecasts rely on ensemble prediction systems. An en-

semble system comprises multiple runs of a numerical weather prediction model, with the

runs differing in the initial conditions and/or the details of the mathematical representation

of the atmosphere (Palmer 2002; Gneiting and Raftery 2005). Here we consider two-days

ahead forecasts of daily maximum temperature at Seattle-Tacoma Airport, based on the

University of Washington Mesoscale Ensemble (UWME; Eckel and Mass 2005), which em-

ploys a regional numerical weather prediction model over the Pacific Northwest, with initial

and lateral boundary conditions supplied by eight distinct weather centers. A brief descrip-

tion of the ensemble members is given in Table 4.5.

Our training period ranges from January 1, 2006 to August 12, 2007, with a few days

missing in the data record, for a total of 500 training cases. The test period extends from

August 13, 2007 to June 30, 2009, for a total of 559 cases. We first use the maximum

likelihood method on the training data to estimate, for each ensemble member i = 1, . . . , 8

individually, a Gaussian predictive density of the form

fi ∼ N (ai + bixi, σ
2
i ), (4.10)

where xi is the point forecast from the ith ensemble member, ai and bi are member spe-

cific linear bias correction parameters, and σi is the member specific predictive standard

deviation. From Table 4.6 we see that the estimates for σ1, . . . , σ8 range from 1.958 to 2.214.

Next we combine the individual density forecasts. Table 4.7 shows maximum likelihood

estimates for the OLP, DLP and BLP parameters on the training period. For all three

methods, the GFS member, f1, obtains the highest weight and the ETA member, f3, the

lowest weight. This can readily be explained, in that both members have a common insti-

tutional origin, and thus are highly correlated, whence the more competitive GFS member
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Figure 4.5: Two-day ahead density forecasts for the maximum temperature at Seattle-
Tacoma Airport on June 28, 2008. The vertical line is at the verifying maximum, at 32.8
degrees Celsius or 91 degrees Fahrenheit.

acquires the weight of the ETA member as well. The DLP deflation parameter is estimated

at 0.768, and the BLP transformation parameters at 1.467, in line with the overdispersion

of the linear pool.

Figure 4.5 illustrates the various density forecasts for June 28, 2008, an unusually hot day

at Seattle-Tacoma Airport with a verifying maximum temperature of 32.8 degrees Celsius

or 91 degrees Fahrenheit. The member specific individual density forecasts are shown by

the dotted lines, and the OLP forecast by the dash-dotted line. The nonlinearly aggregated

DLP and BLP densities, which are shown by the solid and dashed lines, are sharper than

the OLP density.

PIT histograms for the test period are shown in Figure 4.6. The individual, member

specific density forecasts f1, . . . , f8 are empirically calibrated, showing nearly uniform PIT

histograms. The linearly aggregated OLP forecast is overdispersed, as reflected by an inverse

U-shaped and skewed PIT histogram. The DLP and BLP forecasts show somewhat rough

and skewed, yet more nearly uniform PIT histograms. These results are corroborated by
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Table 4.5: Composition of the eight-member University of Washington Mesoscale Ensemble
(UWME; Eckel and Mass 2005), with member acronyms and organizational sources for ini-
tial and lateral boundary conditions. The United States National Centers for Environmental
Prediction supply two distinct sets of initial and lateral boundary conditions, namely, from
its Global Forecast System (GFS) and Limited-Area Mesoscale Model (ETA).

Index Acronym Source of Initial and Lateral Boundary Conditions

1 GFS National Centers for Environmental Prediction
2 CMCG Canadian Meteorological Centre
3 ETA National Centers for Environmental Prediction
4 GASP Australian Bureau of Meteorology
5 JMA Japanese Meteorological Agency
6 NGPS Fleet Numerical Meteorology and Oceanography Center
7 TCWB Taiwan Central Weather Bureau
8 UKMO United Kingdom Met Office

Table 4.6: Maximum likelihood estimates for the predictive standard deviation, σi, for the
individual, member specific density forecasts in the temperature example.

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

1.966 2.051 2.119 2.214 1.958 2.055 2.084 1.995

Table 4.7: Maximum likelihood estimates for the parameters of the combined density fore-
casts in the temperature example.

w1 w2 w3 w4 w5 w6 w7 w8 c α β σ

OLP 0.394 0.005 0.000 0.000 0.317 0.030 0.144 0.109 — — — —
DLP 0.304 0.080 0.000 0.085 0.216 0.051 0.172 0.090 0.768 — — —
BLP 0.295 0.079 0.000 0.083 0.230 0.062 0.173 0.076 — 1.467 1.467 —
BMA 0.305 0.075 0.000 0.081 0.216 0.056 0.170 0.098 — — — 1.566

Table 4.8: Mean logarithmic score for the individual and combined density forecasts in the
temperature example, for the training period and the test period.

Training Test

f1 −2.091 −2.088
f2 −2.134 −2.071
f3 −2.167 −2.093
f4 −2.211 −2.172
f5 −2.088 −2.043
f6 −2.136 −2.143
f7 −2.150 −2.131
f8 −2.107 −2.041
OLP −2.027 −2.010
DLP −1.990 −1.961
BLP −1.988 −1.960
BMA −1.992 −1.963
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Figure 4.6: PIT histograms for the individual and combined density forecasts in the tem-
perature example, for the test period.
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Table 4.8, which shows the mean logarithmic score for the various density forecasts, both for

the training period and the test period. The linearly combined OLP forecast shows a higher

score than any of the individual density forecasts, which attests to the benefits of forecast

aggregation. Nevertheless, the linear pool is suboptimal, because it is overdispersed, and

thus is outperformed by the nonlinearly aggregated DLP and BLP density forecasts.

Finally, we compare to the Bayesian model averaging (BMA; Raftery et al. 2005) tech-

nique, which is a state of the art approach to generating density forecasts from forecast

ensembles. The BMA density forecast is of the form

f ∼
8∑

i=1

wi N (ai + bixi, σ2), (4.11)

with BMA weights, w1, . . . , w8, that are nonnegative and sum to 1, member specific bias

parameters ai and bi for i = 1, . . . , 8, and a common variance parameter, σ2. In view of

our individual density forecasts f1, . . . , f8 being Gaussian, the OLP density and the BMA

density are of the same functional form. However, there is a conceptual difference, in that

the OLP weights are fitted conditionally on the individual density forecasts. Thus, a two-

stage procedure is used, in which the member specific component densities are estimated

first, and only then the weights, with the component forecasts held fixed. In contrast, the

BMA method estimates the weights, w1, . . . , w8, and the common spread parameter, σ, for

the component forecasts in the Gaussian mixture model (4.11) simultaneously. While the

BMA method can be employed with member specific spread parameters, the assumption of

a common spread parameter stabilizes the estimation algorithm and does not appreciably

deteriorate the predictive performance (Raftery et al. 2005).

Table 4.7 shows maximum likelihood estimates for the BMA parameters, obtained with

the R package ensembleBMA (Fraley et al. 2009). The BMA weights echo the DLP

weights. The BMA spread parameter σ is estimated at 1.566 and differs from the predictive

standard deviations for the member specific density forecasts by factors ranging from 0.707

to 0.800, much in line with our estimate of 0.768 for the DLP deflation parameter, c. Thus,

the DLP and BMA density forecasts are very much alike, which is confirmed by the PIT

histograms in Figure 4.6 and logarithmic scores in Table 4.8. In Figure 4.5 the graphs for
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the DLP and BMA density forecasts are nearly identical and lie essentially on top of each

other, and so we refrain from plotting the BMA density.

4.4 Density forecasts for S&P 500 returns

In this second data example, we follow Diebold et al. (1998) in considering S&P 500 log

returns for the period of July 3, 1962 to December 29, 1995. The data record through

December 1978 is used as training period, for a total of 4,133 training cases. All estimates

reported are maximum likelihood fits on the training period obtained with the R package

fGarch (Wuertz and Rmetrics Core Team 2007). The balance of the record is used as test

period, for a total of 4,298 one-day ahead density forecasts.

The first component forecast, f1, is based on a generalized autoregressive conditional

heteroscedasticity (GARCH; Bollerslev 1986) specification for the variance structure. With

rt denoting the log return on day t, our GARCH(1,1) model assumes that rt = σtεt, where

εt is Student-t distributed with ν degrees of freedom, while σt evolves dynamically as

σ2
t = ω + αr2

t−1 + βσ2
t−1.

The maximum likelihood estimates for the GARCH parameters are ω = 0.000, α = 0.089,

β = 0.903 and ν = 9.25.

The second component forecast, f2, is based on a standard moving average (MA) model

for the mean dynamics, which assumes that rt = Zt+θZt−1, where {Zt} is a Gaussian white

noise process with mean zero and variance σ2. The maximum likelihood estimates for the

MA parameters are θ = 0.252 and σ = 0.00736.

Our goal now is to combine the density forecasts f1 and f2. Table 4.9 shows maximum

likelihood estimates for the OLP, DLP and BLP parameters. For all three methods, the

conditionally heteroscedastic forecast f1 obtains a much higher weight than the simplistic

density forecast f2. The DLP deflation parameter is estimated at 0.940, and the BLP

recalibration parameters α and β at 1.100 and 1.081. This suggests that the overdispersion

of the OLP forecast is quite mild, which is confirmed by the corresponding PIT histogram in

Figure 4.7. Table 4.10 shows the mean logarithmic score for the various types of forecasts.
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Table 4.9: Maximum likelihood estimates of the parameters for the combined density fore-
casts in the S&P 500 example.

w1 w2 c α β

OLP 0.821 0.179 — — —
DLP 0.756 0.244 0.940 — —
BLP 0.758 0.242 — 1.100 1.081

Table 4.10: Mean logarithmic score for the individual and combined density forecasts in the
S&P 500 example, for the training period and the test period.

Training Test

f1 3.606 3.458
f2 3.492 3.247
OLP 3.612 3.469
DLP 3.614 3.470
BLP 3.614 3.470

The OLP forecast performs slightly better than the component forecast f1, with a score that

is very slightly lower than for the nonlinearly aggregated DLP and BLP density forecasts,

both for the training and the test period.

Finally, we consider the predictive performance of a more comprehensive model, which

addresses both the first and the second order dynamics, in that rt = µt + εt where {µt}
and {εt} are MA(1) and t-GARCH(1,1) processes, respectively. The maximum likelihood

estimates in this mixed specification are θ = 0.269 and σ = 0.00736 for the MA parameters,

and ω = 0.000, α = 0.098, β = 0.892 and ν = 8.284 for the GARCH parameters. The

resulting forecast can be thought of as combining information sets with respect to the

first and second order dynamics, as opposed to combining the corresponding component

forecasts f1 and f2. It outperforms the other types of density forecasts and achieves a mean

logarithmic score of 3.638 for the training period and 3.473 for the test period.
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Figure 4.7: PIT histograms for the combined density forecasts in the S&P 500 example, for
the test period.

4.5 Discussion

We have demonstrated theoretically and in simulation and data studies that linear com-

binations of calibrated density forecasts are uncalibrated. Our key result, Theorem 4.2.4,

generalizes the extant finding of Hora (2004), which applied to two forecasts, to the case of

multiple density forecasts, and identifies the direction of the departure, in that the linear

pool is overdispersed. Thus, linearly combined density forecasts tend to show hump or

inverse U-shaped PIT histograms. Madigan and Raftery(2004) show that a weighted linear

combination of distinct models tend to out perform individual models or density forecasts in

terms of log score. Our results are no exception to that. However, we show that while den-

sity forecast combination by linear aggregation improves on the individual forecast densities

it is in itself suboptimal and one might be able to do better by combining using non-linear

techniques. This is also similar to our findings in chapter 2 where linear pooling was shown

to be suboptimal for combining probability forecasts.

Also, it is interesting to note that the linear combination which is a uncalibrated forecast

improves upon individual calibrated forecasts in terms of log score. This can be explained

by the fact that the log score being a proper score, is composed of two components namely,
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calibration and sharpness. So, although the combined forecast has a smaller calibration

component it can have a large sharpness component thus enabling it to have a larger log

score as compared to individual forecasts.

We have proposed two nonlinear aggregation methods for density forecasts, namely the

deflated linear pool (DLP) and the beta transformed linear pool (BLP). Both methods nest

the traditional linear opinion pool and can be used effectively to combine calibrated as

well as uncalibrated sources. In our simulation and data studies, the nonlinear methods

gave empirically calibrated density forecasts, and outperformed the individual as well as

the linearly combined density forecasts, to varying degrees. The parsimonious DLP tech-

nique, which generalizes the linear pool by allowing for a single deflation parameter that

modifies the spread of the component densities, shows good predictive performance, in line

with the well-established stylized fact that simple forecasting methods outperform overly

sophisticated ones. The BLP method operates on the corresponding cumulative distribution

functions, rather than the density forecasts themselves, and thus applies in the general case

of probabilistic forecasts for ordered real-valued outcomes, including discrete, continuous

and mixed discrete-continuous variables. Alternative approaches to density forecast aggre-

gation that remain to be explored in practice include consensus models (Winkler 1981) and

copula-based approaches (Jouini and Clemen 1996).

While forecast combination is beneficial, it is often preferable to aggregate information

sets and derive a density forecast from the combined information basis. In our simulation

setting, the benefits of this latter approach were huge; in the data examples, the out-of-

sample improvement in the predictive performance was small. Of course, if the density

forecasts are supplied by external expert sources, there might be no practical way of com-

bining information sets, and one depends on forecast aggregation. Future work is called for

to provide additional theoretically principled as well as applied guidance in doing this.

In addition to the ramifications in density forecasting, our findings bear on the related

problem of the fusion of expert opinions that are expressed in the form of probability

densities. Ha-Duong (2008) reviews methods for doing this, and applies them to combine

expert opinions about the climate sensitivity constant, which is a key quantity in the study

of the greenhouse effect. Our results suggest that if each individual expert is calibrated,
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linear aggregation methods result in combined assessments that are underconfident and

show an unduly wide range of uncertainty, when in fact a sharper assessment could be

made.

Appendix A: Details for Example 4.2.3

Let Zσ = fσ(Y ) denote the PIT for the density forecast fσ. Then Zσ has expectation 1
2 and

its cumulative distribution function is Fσ(z) = Φ(σ Φ−1(z)). In particular, Z1 has a uniform

distribution. If σ < 1 then |Zσ − 1
2 | is stochastically larger than |Z1 − 1

2 | and therefore

var(Zσ) = E(Zσ − E[Zσ])2 = E|Zσ − 1
2 |2 > E|Z1 − 1

2 |2 =
1
12

.

An analogous argument applies when σ > 1. To prove the variance formula (4.2), we use

the fact that var(Zσ) = E[Z2
σ] − (E[Zσ])2 and invoke the well-known expectation equality

E[Zr] = r
∫∞
0 zr−1(1 − F (z)) dz for a nonnegative random variable Z with cumulative

distribution function F , where r > 0.

Appendix B: Method of scoring

We give details for the method of scoring (see, for example, Ferguson 1996) for numerically

maximizing the log likelihood function, ` = `BLP, of the BLP model, as a function of the

weights w1, . . . , wk and transformation parameters α and β. The OLP model arises in

the special case in which α = β = 1. Let Y denote a random variable that has a beta

distribution with parameters α and β. Then

∂`

∂α
=

J∑

j=1

log

(
k∑

i=1

wiFij(yj)

)
− J E[log Y ],

∂`

∂β
=

J∑

j=1

log

(
1−

k∑

i=1

wiFij(yj)

)
− J E[log(1− Y )]

and

∂`

∂wi
=

J∑

j=1

(
(α− 1)(Fij(yj)− Fkj(yj))∑k

l=1 wlFlj(yj)
− (β − 1)(Fij(yj)− Fkj(yj))

1−∑k
l=1 wlFlj(yj)

+
fij(yj)− fkj(yj)∑k

l=1 wlflj(yj)

)
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for i = 1, . . . , k − 1. The second derivatives are

∂2`

∂α2
= −J var(log(Y )),

∂2`

∂β2
= −J var(log(1−Y )),

∂2`

∂α ∂β
= −J cov(log(Y ), log(1−Y ))

and
∂2`

∂α ∂wi
=

J∑

j=1

Fij(yj)− Fkj(yj)∑k
l=1 wlFlj(yj)

,
∂2`

∂β ∂wi
=

J∑

j=1

Fkj(yj)− Fij(yj)

1−∑k
l=1 wlFlj(yj)

for i = 1, . . . , k − 1, while

∂2`

∂wi1∂wi2

= −
J∑

j=1

(fi1j(yj)− fkj(yj))(fi2j(yj)− fkj(yj))

(
∑k

l=1 wlflj(yj))2

−
J∑

j=1

(
α− 1

(
∑k

l=1 wlFlj(yj))2
+

β − 1

(1−∑k
l=1 wlFlj(yj))2

)
(Fi1j(yj)− Fkj(yj)) (Fi2j(yj)− Fkj(yj))

for i1 = 1, . . . , k − 1 and i2 = 1, . . . , k − 1. The method of scoring now applies Newton’s

algorithm to optimize the likelihood as a function of the parameter vector.

In the special case of the OLP, α = β = 1 are fixed and the above expressions reduce to

∂`

∂wi
=

J∑

j=1

fij(yj)− fkj(yj)∑k
l=1 wlflj(yj)

for i = 1, . . . , k − 1, while

∂2`

∂wi1∂wi2

= −
J∑

j=1

(fi1j(yj)− fkj(yj))(fi2j(yj)− fkj(yj))

(
∑k

l=1 wlflj(yj))2

for i1 = 1, . . . , k − 1 and i2 = 1, . . . , k − 1.
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Chapter 5

CONCLUDING REMARKS

We have taken up the problem of combining and evaluating probabilistic forecasts. In

Chapter 2, we considered the use of weighted scoring rules to evaluate density forecasts in

different regions of interest. The weighted logarithmic scoring rule suggested by Amisano

and Giacomini (2007) is not proper and hence can be hedged. To remedy the situation,

weighted versions of continuous ranked probability scores (CRPS) are proposed. These

scoring rules while emphasizing different regions of density also retain propriety. Threshold

and quantile based decompositions of CRPS provide a diagnostic tool to assess the perfor-

mance of the densities in different regions. We applied our methods on simulation examples

and case studies on Bank of England inflation forecasts and wind speed forecasts in Pacific

Northwest. A closely related work is Diks, Panchenko and van Dijk (2008). This paper also

points out the impropriety of weighted logarithmic score. The authors propose two versions

of weighted scoring rules, namely the conditional likelihood (CL) and censored likelihood

(CSL) scoring rules. These scoring rules equal the logarithmic scoring rule on a collapsed

sample space and hence are proper but not strictly proper.

In Chapter 3, the question of combining forecast probabilities for binary events was

taken up. The traditional method of combining probability forecasts by taking a weighted

linear combination was shown to be deficient in two important ways namely, calibration and

sharpness, even when the individual forecasts are calibrated. The result is quite general

and doesn‘t make any restrictive assumptions about the joint structure of observations

and forecasts. Wallsten and Diederich (2001) establish a related result in the asymptotic

scenario when the number of forecasters goes to infinity and the individual forecasters are

conditionally independent given the observation. Their result showed that in the limit the

conditional event probability given the weighted average will converge to 0 or 1 according

to the average being below or above 0.5.
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In order to come up with a calibrated as well as sharp combined forecast, the use of beta

transformed linear opinion pool (BLP) was proposed. This combination procedure takes a

weighted combination and applies a beta cumulative distribution function to it. The weights

as well as the parameters of the beta transform are estimated simultaneously on the training

data by maximizing the log score. The method was applied to simulation examples as well

as a case study on the probability of precipitation forecasts, with good results.

Chapter 4 considers the problem of combining density forecasts. The use of linearly

combined density forecasts has been recommended among others by Winkler (1968). While

linearly combined density forecasts can improve upon the individual density forecasts, they

are necessarily uncalibrated and hence suboptimal. This is a generalization of Hora (2004)

who proves this result for the case of two forecasters. We also show that the linearly

combined forecast is overdispersed. Thus, the linearly combined density forecast requires

recalibration. We accomplish this by two different approaches by the use of deflated linear

opinion pool (DLP) or by beta transformed linear opinion pool (BLP). The DLP method first

deflates the scale of individual densities and then takes a weighted average whereas the BLP

applies a beta cdf transform to the linearly combined cumulative distribution function. The

parameters are obtained jointly by maximizing the log score over training data. The method

has been illustrated on simulation examples and a case study on temperature forecasting at

Sea-Tac Airport with good results.

As another way to combine density forecasts, Winkler (1981) suggests a normal consensus

model. In this approach, the combined distribution is a normal distribution. The mean of

the distribution equals a weighted average of the mean of individual density forecasts and

variance is a function of the covariance between the forecasts of the individual forecasters.

Although this method will work well when the true forecast distribution is normal, it will

not be effective if the true distribution is non-normal. The BLP and the DLP approaches

will work even when the true distribution is non-normal.

The present work points towards two general directions of further research. We have

separately shown the lack of calibration and under confidence (or overdispersion) of linear

pool for the case of density forecasts and binary forecasts. It would be of interest to use

general notions of calibration and to establish the above result for any predictive distribution
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function (discrete, continuous, or mixed) and thus bridge a major theoretical gap. One

could perhaps generalize these results to averaging operators other than linear pool, like

the harmonic or the geometric mean. Another direction of future research is the use of

aggregation techniques like copulas, to combine the different forecasts. This can potentially

improve upon the combination procedures we have used.
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