
Downloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.orgDownloaded from knowledgecenter.siam.org

Butterfly Mixing: Accelerating Incremental-Update Algorithms on
Clusters

Huasha Zhao
∗

John Canny
†

Abstract

Incremental model-update strategies are widely used in

machine learning and data mining. By “incremental up-

date” we refer to models that are updated many times

using small subsets of the training data. Two well-

known examples are stochastic gradient and MCMC.

Both provide fast sequential performance and have gen-

erated many of the best-performing methods for partic-

ular problems (logistic regression, SVM, LDA etc.). But

these methods are difficult to adapt to parallel or clus-

ter settings because of the overhead of distributing model

updates through the network. Updates can be locally

batched to reduce communication overhead, but conver-

gence typically suffers as the batch size increases. In this

paper we introduce and analyze butterfly mixing, an ap-

proach which interleaves communication with computa-

tion. We evaluate butterfly mixing on stochastic gradi-

ent algorithms for logistic regression and SVM, on two

datasets. Results show that butterfly mix steps are fast

and failure-tolerant, and overall we achieved a 3.3x speed-

up over full mix (AllReduce) on an Amazon EC2 cluster.

1 Introduction

The availability of massive data sources creates
tremendous opportunities for business and the sci-
ences. But harnessing this potential is challenging.
Most machine learning methods involve some itera-
tion to infer the best model, and many can be formu-
lated directly as optimization problems. But tradi-
tional (batch) gradient-based optimization methods
are too slow to run many passes over large datasets.
Much faster convergence is typically obtained using
stochastic gradient descent [3] - continuous model up-
dates on relatively small subsets of the data. MCMC
methods also follow this paradigm with updates ide-
ally performed after each sample.

∗Electrical Engineering and Computer Science De-
partment, University of California, Berkeley. Email:
hzhao@eecs.berkeley.edu

†Computer Science Division, University of California,
Berkeley. Email: jfc@cs.berkeley.edu

Hence we consider “incremental update” strate-
gies in this paper. Both stochastic gradient and
MCMC methods provide good sequential perfor-
mance and have generated many of the best-
performing methods for particular problems (logistic
regression, SVM, LDA etc.). But these methods are
difficult to adapt to parallel or cluster settings be-
cause of the overhead of distributing frequent model
updates through the network. Updates can be locally
batched to reduce communication overhead, but con-
vergence typically suffers as the batch size increases
- see Figure 3 for an example. In this paper we intro-
duce and analyze butterfly mixing, an approach which
interleaves communication with computation.

Butterfly mixing uses a butterfly network on 2k

nodes, and executes one constant time communica-
tion step (a butterfly shuffle) for each computation
step. Butterfly mixing fully distributes model up-
dates after k steps, but data from smaller subsets
of nodes travels with lower latency. Convergence of
butterfly mixing is intermediate between full model
synchronization (an AllReduce operation) on every
cycle which has k times the communication cost, and
full AllReduce every k compute cycles which has the
same communication cost as butterfly mixing. We
show through simulation and experiment that but-
terfly mixing comes close to offering the best of both
worlds: i.e. low communication cost similar to pe-
riodic AllReduce but convergence which is closer to
AllReduce on every cycle. Our implementation uses
a hardware accelerated (through Intel MKL) matrix
library written in the Scala language to achieve state-
of-the-art performance on each node.

Stochastic gradient descent is a simple, widely
applicable algorithm that has proved to achieve rea-
sonably high performance on large-scale learning
problems [6]. There has been a lot of research re-
cently on stochastic gradient [9, 6] improving gra-
dient approximations, update schedules, and some
work on distributed implementations [22, 13]. How-
ever, stochastic gradient is most efficient with small
batches i.e. it is a “mostly sequential” method.

785 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

When batch updates are parallelized, the batch size
is multiplied by the number of parallel nodes. Lo-
cal updates must then be combined by an additive
or average reduction, and then redistributed to the
hosts. This process is commonly known as AllRe-
duce. AllReduce can be implemented using peer
communication during gradient updates, and this has
been used to improve the performance of gradient al-
gorithms in the Map-Reduce framework[1]. However,
on all but the smallest, fastest networks, AllReduce
is much more expensive than a gradient update. As
we will show later, AllReduce is an order of magti-
tude slower then an optimal-sized gradient step given
both communication and computation capacity at gi-
gabytes scale (Gbps and Gflops).

AllReduce is commonly implemented with either
tree [1] or butterfly [14] topologies, as shown in Figure
1a and 1b. The tree topology uses the lowest overall
bandwidth, but effectively maximizes latency since
the delay is set by the slowest path in the tree. It
also has no fault-tolerance. A butterfly network can
be used to compute an AllReduce with half the worst-
case latency. Faults in the basic butterfly network
still affect the outputs, but on only a subset of the
nodes. Simple recovery strategies (failover to the sib-
ling just averaged with) can produce complete recov-
ery since every value is computed at two nodes. But-
terfly networks involve higher bandwidth, but this is
not normally a problem in switched networks in indi-
vidual racks. For larger clusters, a hybrid approach
can use butterfly communication within each rack
and then multi-node communication between racks
as limited by the available bandwidth. In any case,
the same strategy of interleaving communication and
computation can be used.

Whatever AllReduce strategy is used, typical
AllReduce communication times are significantly
higher than the time to perform model updates for
optimal-sized blocks of data. In the example pre-
sented in Figure 3, block sizes larger than 16000 (on
16 nodes that means 1000 samples per node) lead to
significant increases in convergence time. Processing
a 1k block of data takes less than 15 msec per node,
but communicating model updates through AllRe-
duce takes about 50 msecs (Figure 4a) or 200msecs
(Figure 4b) - these numbers were for butterfly AllRe-
duce, and the tree AllReduce times are much higher.
As Figure 4 shows, we can achieve much lower (effec-
tively constant) communication costs by using either
butterfly reduce steps or doing a full butterfly AllRe-
duce every k steps. The latter approach however de-
lays global model updates by a factor of k, effectively

increasing block size by k which is far from optimal.
With butterfly mixing communication time is still sig-
nificant, but we can use a batch size which is closer to
optimal and achieve better overall running time for a
given loss.

1.1 Contributions In this paper, we introduce
butterfly mixing and validate its performance on
two stochastic gradient algorithms on two datasets.
The method should provide similar gains for MCMC
methods, but that is the subject of future work.
It should also be of value for other optimization
methods that admit incremental optimization of a
model. An MPI version of butterfly mixing was
implemented with high performance libraries (Intel
MKL) in the Scala language. We evaluated the
system for training a topic classifier on RCV1 and a
sentiment predictor on a proprietary twitter dataset
featuring 170 million automatically labelled tweets.
We tested the system on a 64-node Amazon EC2
cluster. Experiments show that butterfly mix steps is
fast and failure-tolerant, and overall achieves a 3.3x
speed-up over AllReduce.

2 Related Works

In this section, we briefly survey some of the previ-
ous works on scalable machine learning and how it
informed the goals for this paper.

In recognition of the communication and compu-
tation trade-off in stochastic gradient method, Zinke-
vich et al. [22] propose a simple algorithm in which
multiple gradient descents run in parallels and their
outputs are averaged in the end. It has also been
shown that in many problems there is no advantage
to running this averaging method without communi-
cation [13]. Niu et al. [13] consider a lock-free ap-
proach to parallelize stochastic gradient descent, but
their focus is on single multi-core processors where
access/communication times are minimal. Similar
to us, Agarwal et al. [2] describe and analyse a
gradient-based optimization algorithm based on de-
layed stochastic gradient information. However, they
consider an arbitrary fixed network ignoring the costs
of routing messages, and leaving out the efficiency
gains of routing dynamically with a butterfly.

Hadoop MapReduce [8] is the most popular plat-
form for distributed data processing, and Chu et al.
[7] describes a general framework to run machine
learning algorithms on top of it. However, Hadoop
has often been criticised for using “disk for commu-
nication”, and practical running times for machine
learning algorithms are typically much higher than

786 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

(a) Tree AllReduce (b) Butterfly AllReduce (c) Butterfly mixing

Figure 1: Different parallelization schemes for N = 4 nodes. Each node (circle) Mij performs model update on new
data at time i for node j. (a) and (b) synchronize model before every gradient step, with tree-based and butterfly
AllReduce respectively. They suffer from overwhelmingly high communication overhead. (c) reduces synchronization
overhead without losing convergence performance by mixing model update with communication.

algorithms using the network for communication. In
recognition of this, Spark [19, 21] was developed to
allow in-memory models as RDDs. However, Spark
was optimized for relatively infrequent “batch” oper-
ations on these datasets. RDDs are immutable and
each iteration involves creation of a new RDD with a
distributed dataflow scheduled by the Mesos system.
We believe this is a much longer operation than an
AllReduce step.

While one can use Hadoop and Spark for basic
data management, efficient Stochastic gradient im-
plementation requires custom communication code,
which can still be done on MapReduce jobs. That was
the approach used for Hadoop-compatible AllReduce
[1]. These authors added a communication primitive
to the map phase that allows map tasks to perform
multiple AllReduce steps throughout the map phase.
This approach has the same problems with AllReduce
addressed by our work, and we believe would bene-
fit from replacing the AllReduce step with a butter-
fly mix step. While we have used MPI for butterfly
mixing, similar gains should be possible in systems
that support more flexible message routing such as
Hyracks [5] and DraydLINQ [20], since these systems
can implement batterfly mixing directly.

3 Training Models with Stochastic Gradient
Descent

Stochastic gradient is typically used to minimize a
loss function L written as a sum of differentiable
functions over data instances L : Rd �→ R,

L(w) =
1

n

n�

i=1

L(w;xi, yi),(3.1)

where w is a d−dimensional weight vector to be
estimated, and xi ∈ Rd, yi ∈ {+1,−1} are the feature
vector and the label of the i

th example respectively.
Stochastic gradient can then be used to minimize

the loss function iteratively according to

w(t+ 1) = w(t)− γ(t)H(t)∇̂L(w(t)).(3.2)

In the formula above, γ(t) is a time varying
step size, and H(t) is called preconditioner, which
attempts to reduce the condition number of the
system and, as a result, to ensure the fast convergence
of the gradient method [18]. In this paper, we use
γ(t) = γ0√

t
and Jacob preconditioner to be the inverse

feature frequencies [9]. This simple weighting scheme
shows very good convergence on most problems.

In stochastic gradient method, ∇L(w(t)) is esti-
mated by partial average of the empirical loss func-
tion,

∇̂L(w(t)) =
1

|Tj |
�

i∈Tj

∇L(w;xi, yi)(3.3)

where Tj is the j
th “batch”, and |Tj | is called

batch size. Stochastic gradient converges fastest
with batch size 1, but in practice batch size can be
increased until there is significant interaction between
sample updates. This will occur when there is a lot of
overlap between the (sparse) model coefficients being
changed by different sample updates.

3.1 Logistic Regression Logistic regression
model [10] is among the most widely used supervised
learning models.

The loss function is defined as the negative log-

787 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

likelihood of the model, which can be written as,

L(w) =
1

n

n�

i=1

�
−yiw

Txi + log(1 + e
wTxi)

�
(3.4)

The gradient step to find optimal weight w in
logistic regression model can be computed according
to Equation 3.3 and

∇L(w;xi, yi) = xi(yi −
e
wTxi

1 + ew
Txi

).(3.5)

3.2 Support Vector Machine (SVM) SVM is
perhaps the most popular algorithm for training
classification models. The goal of linear SVM is to
find the minimal value of the following optimization
problem,

min
w,b

λ

2
||w||2 +

n�

i=1

max{0, 1− yiw
Txi}(3.6)

Shalev-Shwartz et al. [17] have shown that the
primal problem with hinge loss can be solved by first
updating w(t) using the following sub-gradient,

∇L(w;xi, yi) = λw − yixi,(3.7)

and then scaling w(t) by a factor of min{1, 1√
λ||w(t)||}

. While many algorithms for SVM have been devel-
oped, the fastest in recent years have used stochastic
gradient methods [6].

4 Butterfly Mixing Algorithm

In this section, we present our butterfly mixing algo-
rithm, and briefly study its convergence behaviour.

4.1 Butterfly Network In a butterfly network,
every node computes some function of its own value
and one other node and outputs to itself and one
other node. The neighbors at one level of the network
are all neighbors in a particular dimension of a
hypercube over the nodes. For our purposes, the node
operation will always be an average. At the end of
the process every output node holds the average of
the inputs. The latency is k for 2k nodes which is best
possible for point-to-point communication. Butterfly
network is failure tolerant: A fault or delay at one
step only affects the subtree above it.

The resulting butterfly communication structure
is illustrated in Figure 1c. All N nodes execute
the same average algorithm so that all N partial
averages are in motion simultaneously. After k steps,

the average is replicated on every single node. As
highlighted in Figure 1c with N = 4 nodes, at t = 2
step, each node already contains gradient information
from all the other nodes.

4.2 Butterfly Mixing Butterfly mixing inter-
leaves the above average operation in butterfly net-
work with iterative stochastic gradient updates. De-
note wk(t) as the weight vector available on node k

at time t, and gk(t) the gradient evaluated at the cur-
rent position. We now present in detail the model of
butterfly updates of weight vector w.

Let Skj be the set of times that weight vector is
received by node j from node k. In our algorithm, S
is determined by butterfly reduction structure. For
instance, S

kk includes all time ticks up to the end
of the algorithm for all k ∈ {1, 2, . . . , N}, because
each node “sends” gradient update to its own at
each iterative step. As another example, according
to butterfly structure, S

12 = {1, 3, 5, . . .} for N =
4, which is an arithmetic sequence with common
difference k = 2. The full reduce algorithm is
presented in Algorithm 1.

Algorithm 1 Butterfly reduce algorithm that aggre-
gate weight vectors in a balanced pattern

function ButterflyReduce(W, k, t,N)
i ← mod(t, logN)
j ← k + 2i−1

if j > 2i × �k−0.5
2 � then

j ← j − 2i

end if
return mean(wk

,wj)
end function

Butterfly mixing is initialized with zero at the
beginning. At time t, each node updates its weight
vector according to messages wj(t), {j|t ∈ S

ij} it
receives, and incorporates new training examples
coming in to compute its current gradient and new
position. Specifically, xk(t) is updated according to
the formula,

wk(t+ 1) =
1

2

�

{j|t∈Sij}

wj(t) + γ
k(t)H(t)gk(t+ 1),

(4.8)

where set {j|t ∈ S
ij} is of cardinality 2 for all t,

so that the expectation of stochastic process wk(t)
remains stable.

The detailed butterfly mixing is presented in Al-
gorithm 2, where W is an aggregation of wk

, ∀k ∈

788 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

Algorithm 2 Distributed stochastic gradient de-
scent with butterfly mixing

Require: Data split across N cluster nodes
w = 0, t = 0, H = inverse feature frequencies
repeat

for all nodes k parallel do
for j = 0 → � n

m� − 1 do
wk ← ButterflyReduce(W, k, t,N)
gk ← 1

m

�jm+m−1
i=jm ∇L

i(wk;xi
, y

i)

wk ← wk − γtHgk

t ← t+ 1
end for

end for
until p pass over data

{1, 2, . . . , N}. Notice that the distributed iterative
update model does not guarantee the agreement on
the average of weight vector w across nodes at any
time t. However, as we will show later, the final aver-
age of wk does converge in a reasonably small num-
ber of iterations. An intuitive explanation would be
that butterfly reduction accelerates the convergence
of wk(t) to a small neighbourhood of the optimal
through efficient aggregation of gradient steps across
the network, while timely update of asynchronous
mixing provides refined gradient direction by intro-
ducing new training examples at each mixing.

Comparisons between different reduction and
mixing schemes are illustrated in Figure 1. The com-
munication latency for the butterfly mixing network
is the same as performing a tree AllReduce every 2k
steps, and a butterfly AllReduce every k updates.
Butterfly mixing guarantees that data are fully mixed
after k steps, but because the mixing is continuous
the average over smaller sub-cubes of data is avail-
able at lower latencies. We would therefore expect the
butterfly mix network convergence rate to be some-
where between a network with AllReduce on every
step, and periodic AllReduce every k steps. As we
will see, performance is in fact closer to Allreduce on
every step in terms of convergence, while the commu-
nication cost is the same as AllReduce every k steps.

4.3 Convergence Results We briefly present the
convergence analysis of our algorithm in this subsec-
tion. A similar proof and analysis could be found in
Sec. 7 of [4]. The proof consists of two major com-
ponents. We first find a single vector z(t) to keep
track of all vectors w1(t),w2(t), . . . ,wN (t), simulta-
neously and analyze its convergence; then we show
that wk(t) is actually converge to z(t) at a certain

rate. The overall convergence performance is a mix-
ture of the above two.

In Section 4.2, vector wk(t) is defined recursively
in Equation 4.8. It will be useful for the analysis if we
explicitly expandwk(t) in terms of gradient estimates
gj(t), ∀j ∈ {1, 2, . . . , N}, 0 < τ < t, that is,

wk(t) =
t−1�

τ=1

N�

j=1

Φkj(t, τ)γj(τ)gj(τ).(4.9)

It can be shown that the limit of coefficient scalar
Φkj(t, τ), ∀k converges to Φj(τ) linearly with rate ρ,
as follows,

|Φkj(t, τ)− Φj(τ)| ≤ Aρ
t−τ

, ∀t > τ > 0.(4.10)

On the other hand, it is natural to define z(t)
that summarizes all wk(t), ∀k ∈ {1, 2, . . . , N} using
the limit of Φkj(t, τ),

z(t) =
t−1�

τ=1

N�

j=1

Φj(τ)γj(τ)gj(τ),(4.11)

Note that z(t) can also be expressed in a recursive
way to apply Lipschiz properties,

z(t+ 1) = z(t) +
N�

j=1

Φk(t)γj(t)gj(t),(4.12)

Under Lipschitz continuity assumptions on loss
function L and some bounded gradient conditions,
we have

||z(t)−wk(t)||2 ≤ A

t−1�

τ=1

1

τ
ρ
t−τ

b(τ),(4.13)

L(z(t+ 1)) ≤ L(z(t))−1

t
G(t) + C

t�

τ=1

ρ
t−τ b

2(τ)

τ2
,

(4.14)

where b(t) =
�N

k=1 ||gk(t)||2 and G(t) =

−
�N

k=1 Φ
k(t)||gk(t)||22, for t ≥ 1. This concludes the

convergence of the algorithm.

5 System Implementation

Butterfly mixing is a rather general design pattern
that can be implemented on top of many systems.
We start with a simple MPI version written on top
of the BIDMat matrix toolkit in the Scala language:
http://bid.berkeley.edu/BIDMat/index.php/.
BIDMat inherits the REPL (command interpreter)
from Scala but also runs on a JVM and so can

789 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

be used in cluster toolkits like Hadoop and Spark.
Its uses native code linkage to high-performance
libraries including Intel MKL and HDF5 for file IO.
Our system can be configured for training widely
used logistic regression model and SVM. And, it can
be easily extendible and suitable to any cumulative
update method, and particular any gradient-based
optimization algorithms.

5.1 Communication Module We build our MPI
communication framework on top of MPJ Express
[16], which is an open-source implementation of Java
bindings for the MPI standard. The performance
of MPJ Express has been completely studied in
[15] and shown to be close to a more widely used
C/C++MPI interface, Open MPI [11]. Furthermore,
MPJ Express provides seamless integration with to
butterfly mixing developing environment.

Four communication patterns, including butter-
fly mixing, have been implemented and detailed be-
low. We also enforce synchronization using mpi bar-
rier at the end of each communication step.

• NoReduce: there was no communication be-
tween nodes in the cluster.

• Complete AllReduce: an MPI AllReduce was
performed on every step, which is equivalent to
a sequential batch SGD where batch size was
single-node batch size times number of nodes.
AllReduce is implemented with the MPI stan-
dard API, public void Allreduce(...). We
use the butterfly implementation of AllReduce in
MPJ Express package with EXOTIC_ALLREDUCE

tag turned on.

• Butterfly mixing: a Butterfly mix step oc-
curred on each round, where each node send and
receive updated weight w to/from its pair node.
This procedure is implemented using the API
public Status Sendrecv(...).

• Periodic AllReduce: A complete butterfly
AllReduce was performed every log2N steps.
Periodic AllReduce has the same communication
cost as butterfly mixing.

6 Experiments

We chose to train a standard logistic regression model
on a widely used sparse training set, Reuters RCV1
[12] and a linear SVM on a filtered subset of about 6
months of data from Twitter.

Figure 2: Convergence Performance with Different Com-
munication Schemes.

6.1 Description of Datasets The RCV1 news is
standard data set for algorithm benchmarking. It
consists of a collection of approximately 800,000 news
articles, each of which is assigned to one or more cat-
egories. We are focusing on training binary classifier
for CCAT (Commerce) category with logistic regres-
sion model of dimension 50k. The input of the clas-
sifier is an article bag-of-words feature vector with
tf-idf values, and the output is a binary variable indi-
cating whether an individual article belongs to CCAT
or not. Articles are randomly shuffled and split into
approximately 760,000 training examples and 40,000
test examples. Training examples are further evenly
portioned to N cluster nodes.

To further evaluate the performance of butterfly
mixing, we build a tweets sentiment classifier using
SVM with 250k uni-gram features. We collected a
filtered stream of about 6 months of tweets which
contain emoticons such as:

• Positive sentiment: “:-)”, “:D”, “;)” etc.

• Negative sentiment: “:-(”, “=(”, “;(” etc.

There are about 170 million unique tweets in this
dataset. Since emoticons have known positive or
negative sentiment, they are used as training labels.

6.2 Simulation Study We first study the conver-
gence rates between different parallization schemes
given training sizes. Experiments are performed on
RCV1 dataset on a virtual cluster withN = 16 nodes.
We measured the logistic loss as a function of the
number of examples processed. As is shown in Figure
2, in terms of loss at a fixed amount of data, the but-
terfly mix loss is indeed closer to complete AllReduce
than periodic AllReduce. More importantly, butter-

790 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

fly mixing is even closer to complete AllReduce when
the graph is sliced at a fixed loss value. As marked in
Figure 2, at loss = 4000, butterfly mixing consumes
almost as much data as complete AllReduce, while
periodic AllReduce needs 60% more. Similar ratios
occur at other loss values.

This result is very encouraging. On this relatively
small cluster, we have been able to approach the
convergence rate of complete AllReduce using only
1/log2N as much communications. We also reduced
the time to reach a given loss value by roughly 30%
relative to periodic AllReduce by simply reordering
the gradient and mixing step.

6.3 System Performance on Real Cluster We
tested our system on both Berkeley CITRIS cluster
for high-performance computing and Amazon EC2
cluster. The CITRIS cluster is made up of 33 IBM
Dataplex server nodes. Each node has two Intel Xeon
quad core processors (Nehelam’s) at 2.7 Ghz with
about 24GB of RAM. All the nodes are connected
with QDR Infiniband interconnect. For the EC2
cluster, we use M3 Extra Large instances with 15G
memory and 13 EC2 compute units.

Figure 3: Impact of Aggregate Batch Sizes on Conver-
gence Performance.

We evaluated the performance of the system in
terms of “time to reach targeted loss” Tloss. We can
break down Tloss into the following two parts,

Tloss = α
mSloss

N
+ β

m(N)
Sloss(Sbatch)

Sbatch
(6.15)

where Sbatch is the aggregate batch size across N

nodes, and Sloss is the training size required to
reach the target loss value. The first part of the
formula measures computation time, where α

m is a
model specific parameter that quantifies the time of

processing unit size of training data for model m;
and the second part is communication time, in which
β
m is also model relevant and a function of cluster

size N for Complete AllReduce. Note above that
parallelization will provide benefit only when α

m is
comparable to, if not much bigger than β

m.
It is important to notice that the training size re-

quired for convergence Sloss is a function of Sbatch. As
illustrated in Figure 3, the smaller Sbatch is, the fewer
training examples are required to reach certain loss.
Interestingly, we can observe the saturation effect
when Sbatch reaches 16000: further decrease on Sbatch

does not improve the convergence performance. Ac-
tually, Sbatch is a key parameter that determines the
overall system performance. Larger batch size will in-
dicate less communication time, however, it will also
worsen the convergence performance in terms of Sloss

which will eventually lift up Tloss.
To further understand the trade-off between com-

munication and computation, we present in Figure
4 the benchmark of wall clock times taken for com-
puting/communication per gradient step. Computa-
tion time should break down to CPU time for gra-
dient step and disk time, while communication time
should be a function of model sizes (model dimension
× size of Double) as well as the size of cluster. We
report the computation time for processing model-
sized data, this number can provide some insight on
CPU/network trade-off, because optimal batch size
should be multiples of model size, and “mini-batch”
size processed by individual node in one round should
be comparable to model size after paralellization. Re-
sults are shown in Figure 4, as we can see, commu-
nication time per butterfly mixing is stable across
different sizes of cluster N and comparable to that
of computation for both models. At the same time,
communication time is much worse for AllReduce,
where it increases logarithmically with N .

We test the algorithm performance with differ-
ent communication schemes on the CITRIS clus-
ter. Sbatch are tuned to minimize Tloss for different
schemes according to 6.15. Loss on test data is plot-
ted against wall clock time for both RCV1 and Twit-
ter datasets in Figure 5. This results are very promis-
ing. Butterfly mixing have been able to achieve 2.5x
and 2x speed-up in comparison with complete AllRe-
duce (at loss = 30000 and 4000) on Twitter and
RCV1 datasets respectively. We have also saved 30%
time to reach a given loss value relative to periodic
AllReduce.

Finally, we explore the running time as a function
of the number of nodes. We changed the number of

791 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

(a) Model Size: 400kBytes (b) Model Size: 2Mbyes

Figure 4: Communication Overhead per Gradient Step. Dash lines show the times it takes to process model-sized
training data on a single node.

nodes from 2 to 64 and computed the speedup ratio
relative to the run with single node 1. Speedup ratio
is defined as the ratio between Tloss’s of different
cluster setups. Sbatch for each cluster is optimized
individually to balance the communication trade-
off as in 6.15. Results on Twitter dataset are
reported in Figure 6. Butterfly mixing scales well
on both clusters, providing a 5x speedup on the 16-
node CITRIS cluster and 11.5x speedup on the 64-
node EC2 cluster. In contrast, complete AllReduce
performs badly with merely 3.5x gain on the 64-
node cluster, and this verifies the argument earlier
that iterative algorithms are in general difficult to
adapt to parallel. In fact, AllReduce spend most
time to communicate model updates across nodes,
while butterfly mixing successfully mitigates this
communication dilemma and achieves a 3.3x (out of
6x theoretically) performance gain over AllReduce on
the 64-node cluster.

7 Conclusions and Future Work

In this paper, we described butterfly mixing as an ap-
proach to improve the cluster performance with incre-
mental update algorithms such as stochastic gradient
and MCMC. Experiments were done with stochastic
gradient implementations of logistic regression and
SVM. Work remains to quantify the performance of
butterfly mixing on different algorithms especially
MCMC and on clusters with dynamic node schedul-
ing. We will also explore the uses of butterfly mixing
in conjunction with more advanced gradient estima-

1We run the experiments for cluster size 2-16 on the CITRIS
cluster, and cluster size 64 on Amazon EC2.

Figure 6: Speedup Ratio Relative to Single Processor.

tion methods (e.g. LBFGS) which may admit larger
optimal block sizes and reduce the communication
“pressure”.

References

[1] A. Agarwal, O. Chapelle, M. Dudik, and J. Lang-
ford. A reliable effective terascale linear learning
system. Arxiv preprint arXiv:1110.4198, 2011.

[2] A. Agarwal and J.C. Duchi. Distributed de-
layed stochastic optimization. arXiv preprint

arXiv:1104.5525, 2011.
[3] D.P. Bertsekas. Nonlinear programming. 1999.
[4] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and

distributed computation. 1989.
[5] V. Borkar, M. Carey, R. Grover, N. Onose, and

R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In Data

792 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

(a) RCV1 (b) Twitter

Figure 5: Convergence Performance including Communication Overhead on a 16-node Cluster.

Engineering (ICDE), 2011 IEEE 27th International

Conference on, pages 1151–1162. IEEE, 2011.
[6] L. Bottou and O. Bousquet. The tradeoffs of large

scale learning. Advances in neural information

processing systems, 20:161–168, 2008.
[7] C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski,

A.Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. Advances in neural informa-

tion processing systems, 19:281, 2007.
[8] J. Dean and S. Ghemawat. Mapreduce: Simplified

data processing on large clusters. Communications

of the ACM, 51(1):107–113, 2008.
[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-

dient methods for online learning and stochastic op-
timization. Journal of Machine Learning Research,
12:2121–2159, 2010.

[10] J. Friedman, T. Hastie, and R. Tibshirani. The

elements of statistical learning, second edition.
Springer Series in Statistics, 2009.

[11] Edgar Gabriel, Graham E. Fagg, George Bosilca,
Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, Ralph H. Cas-
tain, David J. Daniel, Richard L. Graham, and Tim-
othy S. Woodall. Open MPI: Goals, concept, and
design of a next generation MPI implementation.
In Proceedings, 11th European PVM/MPI Users’

Group Meeting, pages 97–104, Budapest, Hungary,
September 2004.

[12] D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization re-
search. The Journal of Machine Learning Research,
5:361–397, 2004.

[13] F. Niu, B. Recht, C. Ré, and S.J. Wright. Hogwild!:
A lock-free approach to parallelizing stochastic gra-
dient descent. Advances in Neural Information Pro-

cessing Systems, 2011.
[14] P. Patarasuk and X. Yuan. Bandwidth efficient all-

reduce operation on tree topologies. In Parallel and

Distributed Processing Symposium, 2007. IPDPS

2007. IEEE International, pages 1–8. IEEE, 2007.
[15] A. Shafi, B. Carpenter, M. Baker, and A. Hussain.

A comparative study of java and c performance
in two large-scale parallel applications. Concur-

rency and Computation: Practice and Experience,
21(15):1882–1906, 2009.

[16] Aamir Shafi, Bryan Carpenter, and Mark Baker.
Nested parallelism for multi-core hpc systems using
java. J. Parallel Distrib. Comput., 69(6):532–545,
2009.

[17] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pega-
sos: Primal estimated sub-gradient solver for svm.
In Proceedings of the 24th international conference

on Machine learning, pages 807–814. ACM, 2007.
[18] J.R. Shewchuk. An introduction to the conjugate

gradient method without the agonizing pain. 1994.
[19] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy.
Hive: a warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment,
2(2):1626–1629, 2009.

[20] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P.K. Gunda, and J. Currey. Dryadlinq: A
system for general-purpose distributed data-parallel
computing using a high-level language. In Pro-

ceedings of the 8th USENIX conference on Operat-

ing systems design and implementation, pages 1–14.
USENIX Association, 2008.

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. 2012.

[22] M. Zinkevich, M. Weimer, A. Smola, and L. Li. Par-
allelized stochastic gradient descent. Advances in

Neural Information Processing Systems, 23(23):1–9,
2010.

793 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Downloaded from knowledgecenter.siam.org

