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Sequence Data



Outline

● detecting gene expression
● detecting methylation
● analyzing expression and methylation

○ traditional methods
○ in-development methods/ideas



Gene Expression

● DNA -> RNA -> Protein
● We measure (m)RNA as proxy for protein

○ cheaper than measuring protein
○ high-throughput methods (none for protein)

In asthmatics we expect to see genes related to 
immune response expressed at higher levels than in 
healthy individuals



Microarrays (briefly)
● work by base-complementarity (A pairs with T, C with G)

● fixed set of “probes” attached to the microarray that are complementary to 

known pieces of mRNA.

● the probes bind (hybridize) to the mRNA with a frequency relative to their 

abundance (highly expressed => more frequently bound)

● dye attached to mRNA is read as a light signal to get relative quanitity

Detecting Gene Expression
image from: http://voer.edu.vn/module/dna-
replication

http://voer.edu.vn/module/dna-replication
http://voer.edu.vn/module/dna-replication
http://voer.edu.vn/module/dna-replication


RNA-Seq: Detecting Gene Expression
Aligning spliced reads back to genome 
is hard!

Every paper detects new, undiscovered 
transcripts.

Many methods allow aligning to set of 
known transcripts.



RNA-Seq: Detecting Gene Expression

Much more information:
● Alternative splicing (different transcript of gene)
● Allele-specific expression
● Genetic Variants
● Finer resolution of differences in expression



Detecting DNA Methylation

● DNA Methylation Regulates gene expression
● A heritable mark on top of the genetic information (hence 

epigenetic)
● Occurs only at Cytosines. Most often at Cytosines followed 

by Guanines (known as CpG’s).
● Most common methods use Bisulfite-Sequencing (BS-Seq)

○ treat DNA with Bisulfite
○ upon sequencing un-methylated C’s appear as T’s and 

methylated C’s remain unchanged.



Bisulfite Sequencing

● Used to uncover per-base methylation
● Methylated Cytosines remain Cytosines
● Un-methylated Cytosines are converted to Thymine
● BS-treated reads must be mapped back to the genome to 

determine their methylation status.

● potential  mismatches due to conversions.



Mapping BS-Seq Reads
We don’t know which T’s in the reads are actual T’s and which are 
unmethylated (and therefore converted) C’s. 

We can’t use traditional aligners to map reads back to the genome 
because of C=>T mismatches. So:
● Convert* genome C => T, reverse-complement, G => A.
● Convert* reads C => T
● Map converted reads to converted reference
● For each alignment, recover original (un-converted) read and 

compare to un-converted reference to calculate Methylation.
* where "convert" is In silico



Output
● Per-base report on conversions:

      ====    ======= =========== === ===
    chr     context bp-position C's T's
    ====    ======= =========== === === 
    chr1    CG+     106         1   7
    chr1    CG-     107         6   2
    chr1    CG+     108         7   1
    chr1    CG-     109         11  0
    chr1    CHG+    113         0   9
    chr1    CG+     114         9   0
    chr1    CG-     115         12  1
   

● % Methylation calculated as (C / (C + T))



Methylation: What it does (?)

Regulates Nearby Gene Expression !!

Methylation Expression

Methylation Expression



Methylation: What it does (where)

Bell et. al Genome Biology 2011, 12:R10 doi:10.1186/gb-2011-12-1-r10

Promoter Methylation Methylation 
Auto-Correlation



Methylation: What it does 
(sometimes)

Plotted are log (base 2) ratios of liver to brain expression 
against DeltaM values for liver and brain DNAm. Orange 
dots represent T-DMRs located within 300 bp from the 
corresponding gene's transcriptional start site (TSS). Green 
dots represent T-DMRs that are located from 300 to 2,000 
bp from the TSS of an annotated gene. Black dots, in the 
middle, represent log ratios for all genes further than 2 kb 
from an annotated TSS

Nature Genetics 41, 178 - 186 (2009) . Irizzary et al



Methylation: What it does 

But we (and many others) find:

● Expression changes from genome-wide experiments
● Methylation changes from genome-wide experiments

         low overlap

Methylation changes explain very few and very little of the expression 
changes

WHY?



Independent Analysis
List of Methylation Sites 
associated with disease

gene-123
gene-456
gene-777
gene-678
gene-222
gene-BBB
gene-342

List of Expression Sites 
associated with disease

gene-AAZ
gene-FGA
gene-GCG
gene-BBB
gene-KKQ
gene-LLS
gene-MMM

Post-Hoc Comparisons of Independent Analyses.



Exhaustive
single-probe
 analysis



Traditional Analyses

Fit a linear model at each probe:
      expression ~ disease + age + gender
Extract p-value for disease parameter. 
Report genes with corrected p-value < 0.05

May account for batch effects and/or study design.



Side Note: Multiple Testing

Test 40K sites, how to determine which are 
truly “different”?

p-value of 0.05 on 40,000 tests on random data 
(with no true differences) will give about 2,000 
false positives.



Traditional Analyses For Methylation

Fit a linear model at each probe:
      methylation ~ disease + age + gender
But, methylation arrays now have 480K probes.
    0.05 / 480K == 1.04x10-7

Most methods now aggregate across probes to 
increase power since adjacent methylation 
sites are often highly correlated.



Traditional Analyses For Methylation

DMR: 
Differentially 
Methylated 
Region

Image From Jaffe et al. 
Bumphunting paper.

Aggregate information
across probes to find:



Methylation: Finding DMRs
GOAL: find even subtle, 2-probe DMR’s while minimizing false +



DMR-finding methods
Bumphunting:
1. find coefficient from a linear model for every site (e.g. for disease)

a. (these form the putative bumps)
2. generate simulated data by shuffling the residuals of the null model 

(without disease) and adding them to the predictions for the null model.
3. Fit full model to simulated data from 2. to generate null distribution of 

betas.
4. compare observed betas to simulated to get significance

include locally weighted smoothing and sum the coefficients in a region above 
some cutoff. From Jaffe et al. 

Bumphunting paper.



DMR-finding Methods
Liptak (Pedersen et al):
1. find p-value coefficient from a linear model for every site (e.g. for disease)
2. find putative regions by seeding on some maximum p-value and extending 

N bases as long as we find another probe with a p-value less than some 
other p-value. (seed and extend)

3. Combine the p-values for probes in the region to get a single regional p-
value.
a. combination takes correlation of adjacent p-values into account.
b. how we calculate correlation matters.

Problems?



DMR-finding Methods
A-Clustering: Tofer et al
1. find correlated regions (e.g. using single-linkage to merge probes within 

1000 bases and with correlation > 0.5 into a single group)
2. Fit a single model to all of the probes in the correlated data and extract p-

value for covariate of interest.
a. use Generalized Estimating Equations (GEE) with assumption of 

exchangeable correlation to model
b. GEE’s are robust to correlation assumption and (somewhat) similar to 

mixed-models

Sofer, Tamar, et al. "A-clustering: a novel method for the detection of co-regulated methylation regions, and regions 
associated with exposure." Bioinformatics (2013): btt498



A-Clustering Python Module
https://github.com/brentp/aclust | https://pypi.python.org/pypi/aclust

Streaming, agglomerative clustering

since we know objects are sorted, we can find 
local clusters without reading into memory.

https://github.com/brentp/aclust
https://pypi.python.org/pypi/aclust
https://github.com/brentp/aclust


Finding DMRs: Proposed Method(s)
1. Find clusters of similar probes as in A-clustering

a. unbiased selection discards single probes without consideration of study-
design

b. reduce multiple-testing burden by testing N regions instead of I CpG’s
2. Transform data as needed

a. logit/inverse logit
b. outlier removal (**)

3. Apply any method to assign significance:
a. bump-hunting (sort of)
b. combine p-values with liptak or z-score
c. GEE

i. any correlation structure
ii. cluster by CpG or by sample

d. mixed-model (random slope or intercept)
e. SKAT

Provide all of these methods 
with the same interface and 
compare them.



Implementation: clustermodel

Python:
● https://github.com/brentp/clustermodel
● data processing, clustering

R:
● https://github.com/brentp/clustermodelr
● modelling

Pyper: communicate between R and Python (and binary files).

> library(devtools)

> install_github("brentp/clustermodelr")

https://github.com/brentp/clustermodel
https://github.com/brentp/clustermodel
https://github.com/brentp/clustermodelr
https://github.com/brentp/clustermodelr


Example Usage

python -m clustercorr \
   'methylation ~ case + age_delivery + insulin_ever +(1|CpG) + (1|id)' \
    covariates.txt \ 
    methylation.txt \
    --min-cluster-size 4 \
    --rho-min 0.4 --outlier-sds 3 > dmrs.output.bed

python -m clustercorr \
    'methylation ~ case + age_delivery + insulin_ever' \
   --combine --z-score
    covariates.txt \ 
    methylation.txt \
    --min-cluster-size 4 \
    --rho-min 0.4 --outlier-sds 3 > dmrs.output.bed

python -m clustercorr \
    'methylation ~ case + age_delivery + insulin_ever' \
   --gee-args ar,id \
    covariates.txt \ 
    methylation.txt \
    --min-cluster-size 4 \
    --rho-min 0.4 --outlier-sds 3 > dmrs.output.bed



Simulating Methylation Data

Things that are true:
● We Simulate data so we can tune our algorithms for 

detecting methylation differences.

● simulating correlated data is hard (let’s go shopping)

● Assumptions in the simulations drive how we tune 
the algorithms



Simulating Methylation Data

Method 1: Sofer, Tamar, et al. "A-clustering: a novel method for the detection of co-regulated 
methylation regions, and regions associated with exposure." Bioinformatics (2013): btt498.

1. Real methylation data with 100 samples

2. Find site with multi-CpG correlation

3. weighted random selection of 2 * 20 samples

a. group H: weight increases likelihood of choosing sample with high methylation

b. group L: weight decreases likelihood of choosing sample with high methylation

4. contrast 20 in group H vs 20 in group L to find differentially methylated region

5. if weight is 0, group H should not be different from group L => random data

6. measure true+, false+ [ where truth is determined by the weight parameter]



Simulating Methylation Data

Method 2: Jaffe, Andrew E., et al. "Bump hunting to identify differentially methylated regions in 
epigenetic epidemiology studies." International journal of epidemiology 41.1 (2012): 200-209.

1. Choose a CpG-to-CpG correlation

2. Generate-data with an auto-regressive moving average model (ARMA(1))

a. utilize a t-distribution with 5 df (simulates outliers)

3. insert DMRs at a given beta

4. They use longer DMRs (10 or 20 probes). But we want to find down to 2 probe DMRs.



Simulating Methylation Data

Method 3: 
Take existing data and:

●  randomize the case/control status 

● fit reduced model (with other covariates), shuffle residuals, then randomize case-control status

and check false positives.



Simulation Results (Random Data)
Bump(hunt)ing Ideally:

● left should be flat
● right should be y = x

6 < 1e-4

66,977 tested regions
at 1e-4, expect 6.698 
with p < 1e-4



Simulation Results (Random Data)
SKAT-O 8 < 1e-4



Simulation Results (Random Data)
mixed model: methylation intercept by sample

15 < 1e-4



Simulation Results (Random Data)
mixed model: methylation intercept by CpG

1166 < 1e-4



Simulation Results (Random Data)
mixed model: methylation intercept by CpG and sample

26 < 1e-4



Simulation Results (Random Data)
GEE: auto-regressive by sample 35 < 1e-4



Simulation Results (Random Data)
GEE: exchangeable by CpG 566 < 1e-4



Simulation Results (Random Data)
Liptak 7 < 1e-4



Simulation Results (Random Data)

How do those change:
● with the size of the DMR?

○ size in simulated data doesn’t seem to affect false+ rate
● with the assumptions about correlation? **
● with the number of samples simulated?

○ fewer false+ with more samples?
● with a more complex study design?



Evaluating Methods

BUT:
● Still not using methylation and expression
● Conclusions from output depend on assumptions



Remember Example Usage

python -m clustermodel \
    'methylation ~ case + (1|CpG) + (1|id)' \
    covariates.txt \ 
    methylation.txt \
    > dmrs.output.bed



Expression Example Usage

python -m clustermodel \
    'methylation ~ expression + (1|CpG) + (1|id)' \
    covariates.txt \ 
    methylation.txt \
    > dmrs.output.bed Contains an “expression” column.

But, how to test a lot of expression sites 
against a lot of methylation sites?



Expression Example Usage

python -m clustermodel \
    'methylation ~ (1|CpG) + (1|id)' \
    covariates.txt \ 
    methylation.txt \
    --X expression_matrix.txt \
    --X-locs expression_locs.txt \
    --X-dist 50000 \
    > dmrs.output.bed

Each probe in 
expression_matrix.txt
tested against each 
DMR from methylation.
txt 
within 50KB.

(Automatically parallelized)

Parallelization important because we’re testing up to:
 ~25K expression probes * 100K methylation regions 

2,500,000,000 tests 

we probably want to reduce the number of tests by looking at local 
relationships.



Expression Example Usage

python -m clustermodel \
    'methylation ~ (1|CpG) + (1|id)' \
    covariates.txt \ 
    methylation.txt \
    --X ??? \
    > dmrs.output.bed

Doesn’t have to be expression, 
can be any matrix of data to 
test against.
● OTU’s from microbiome
● Long list of covariates
● Genetic Variants



Deep Thoughts

We know that local changes in methylation should affect 
expression.

Use that to compare methods by finding how many 
significant expression::methylation associations we find:
● in real data (true +)
● in data where expression samples are shuffled 

relative to methylation (removes expression::
methylation association (false +) 



Comparison of Methods



Example Output

#chrom  start   end        coef                         p                    n_probes  method
chr1    795626  795849  -0.00854791240868  0.294913446774  5         mixed-model
chr1    838227  838399  -0.0110692993468   0.469833850996  6         mixed-model
chr1    841953  842134  0.00983936802679   0.583288570285  6         mixed-model
chr1    847691  847830  0.0113425659212    0.437455916454  5         mixed-model
chr1    860485  860799  0.00207611617104   0.896598686966  5         mixed-model
chr1    876686  876828  0.00926762379034   0.414417426125  5         mixed-model
chr1    880713  880855  -0.0127340057724   0.568003009012  5         mixed-model
chr1    895867  896042  0.00116539019903   0.951352372135  6         mixed-model
chr1    922530  922669  -0.0108648006754   0.374373866703  5         mixed-model



Example Output
python -m clustercorr \
    'methylation ~ disease + log2CT + smoking + SNP' \
    bcovs.txt \
    bmeth.txt \
    --gee-args ar,id --rho-min 0.2 --png show



Example Output:
python -m clustercorr \
    'methylation ~ disease + log2CT + smoking + SNP' \
    bcovs.txt \
    bmeth.txt \
    --outlier-sds 3 \
    --gee-args ex,CpG --rho-min 0.2 --png show



Example Output:
python -m clustercorr \
    'methylation ~ disease + log2CT + smoking + SNP' \
    bcovs.txt \
    bmeth.txt \
    --outlier-sds 3
    --gee-args ex,CpG --rho-min 0.5 --png show



Example Output:
python -m clustercorr \
    'methylation ~ disease + log2CT + smoking + SNP' \
    bcovs.txt \
    bmeth.txt \
    --gee-args ex,id --rho-min 0.2 --png show



Other Uses: genotypes
python -m clustercorr \
    'disease ~ gender' \
    --skat cluster/ipf.covs.txt \
    cluster/ipf.genotypes.txt \
    --min-cluster-size 5 \
    --max-dist 20000 \
    --rho-min 0.5 \
    --linkage complete

SKAT compares this null model against one which 
includes the genotypes. Weights each SNP by AF.

SKAT requires groups of variants, this allows 
to specify the groups as clusters of correlated 
sites.



Future Work

● test methods on data simulated by Jaffee et al 
method

● test and optimize for small samples
● handle bisulfite-sequencing data (in progress)
● ensemble methods?
● Handle multiple X tests



Thanks

https://github.com/brentp

https://github.com/brentp
https://github.com/brentp

