regulation of gene expression by methylation

development of a software framework to integrate genomic data

Brent S. Pedersen



Sequence Data

brentp@compbio:~/src/bwa-meth$ zless /proj/Schwartz/brentp/2013/ken-rrbs/pilot/38372 ACAGTG L0603 R1 001.fastq.gz | head -n 12
@HISEQ:105:C2UEIACXX:3:1101:1338:26021 1:N:0:ACAGTG
NTTTTTTTAGGTTTTTTTATTGTGGGGTAGGGGAGGTTTTTGGAAGTGTTTATGTTTTTTTTTGGAGTGATTTGGTAAGGTTTAAAATATTAGGTGTTTTA

+

#0<FFFFFF<OBFFFIIIFFI<F<BBFFFIIIIFFBFBBFFO0<BBBBFBBBF7BFFBBBBBB' ' 07B<BBBF '07<B0<BBBBBBBBBBF<' '00<BBBB
@HISEQ:165:C2UEIACXX:3:1101:1365:2029 1:N:0:ACAGTG
NTAATGAATAAGGATTGTTGTATTGGAATTATAAATTAGAGAGTGGGGATTATTGAAAGAAGTTAAAATGAATAAAAGTTGAAAATTGTGTGTTTTTAATA

+

#0<FF<BFFFFBBFFFBFF<FFFIB<FFFIFFFFFIII<FBFFFIFIIIFFIIIBFFFBFFBFFIIIII<BFFFFFF7<B7BBFFFF7<<B<BBBFFFBF<
@HISEQ:105:C2UEIACXX:3:1101:1425:2074 1:N:0:ACAGTG
NTTTAAGTAGTTTGGGGTATGGTGGTTTTATATTGGGGATAGGAAAAATGCGGAAGGAGTTATGGTTTGTATTTGGTATTGATTGCGTTAAGGTTGGTATT

+

#0<FFFFFFFFFFFFF<FFFBFIFIIFFIBFFFIBO ' 0<BFF<FFFFII<B7BBB<BFFFBBB<7BBB<BFFFF70<BBB ' <BB<<<BB<B###t#####
brentp@compbio:~/src/bwa-meth$ zless /proj/Schwartz/brentp/2013/ken-rrbs/pilot/38372 ACAGTG L0603 R1 001.fastq.gz | wc -1




Outline

e detecting gene expression

e detecting methylation

e analyzing expression and methylation
o traditional methods
o in-development methods/ideas



Gene Expression

e DNA -> RNA -> Protein

e \We measure (m)RNA as proxy for protein

o cheaper than measuring protein
o high-throughput methods (none for protein)

In asthmatics we expect to see genes related to
Immune response expressed at higher levels than in
healthy individuals



3!

image from: http://voer.edu.vn/module/dna-
replication

a s

i —i
brentp@compbio:~/src/denver-bio/jian-tolerance-2013$ wc -1 data/expr.norm.txt
23134 data/expr.norm.txt
brentp@compbio:~/src/denver-bio/jian-tolerance-2013$ head -15 data/expr.norm.txt | cut -f 1-10 | cols

probe

A 51 P414243

A 30 P01024440
A 30 P01025554
A 51 P328014
A 55 P2056220
A 55 P1985764
A 52 P108321
A 52 P123354
A 55 P2061724
A 55 P2049122
A 51 P385099
A 55 P2111005
A 55 P2041509
A 30 P01029765

tol-8
6.36
5.64
9.73
7.70
8.38
11.33
7.12
7.58
6.45
4.76
10.69
8.35
9.68
5.09

tol-2
5.87
5.31
9.88
7.75
8.06
11.10
5.87
7.65
5.54
4.43
11.24
8.22
9.41
4.64

control-8

7.60
SiolE
9.87
7.56
8.46
11.43
L2
.26
.86
.30
91
.06
.73
.14
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nontol-8 tol-7

6.79
5.58
oz
7.20
7.84
11.21
5.42
7.12
7 0243
5.02
13.54
7.67
olE
4.98

6.52
2 112
ozl
e
8.28
11l 5P
.62
.67
.43
.86
77
.09
e
.99
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brentp@compbio:~/src/denver-bio/jian-tolerance-2013$ l
i1

4

I
5'

tol-1
6.24
5.36
9.34
Y
8.19
10.88
5.69
7.56
6.64
4.94
11.29
7.87
9.31
5.04

control-5

7.45
5.00
9.66
7.46
8.27
11.39
.79
.91
.06
.46
.96
5 /2]
.64
.18

SPONUENNdO

nontol-3

6.71
2o LS
8.94
7.56
8.59
10.79
5.78
7.69
6.43
4.88
14.49
8.09
BEEn
4.72

nontol-4
6.50
5.74
9.37
7.55
8.45
11.05
5.77
7.78
7.01
5.08
12.89
8.42
9.62
4.90

3]


http://voer.edu.vn/module/dna-replication
http://voer.edu.vn/module/dna-replication
http://voer.edu.vn/module/dna-replication

RNA-Seq: Dete pre-mRNA

Aligning spliced reads back to genome
is hard!

Every paper detects new, undiscovered
transcripts.

Many methods allow aligning to set of
known transcripts.

Short read is split by
intron when aligning
to reference Genome




RNA-Seq: Detecting Gene Expression

Much more information:

e Alternative splicing (different transcript of gene)
e Allele-specific expression

e Genetic Variants
o

Finer resolution of differences in expression

100 kb | mm10
22,300,000| 22,350,000| 22.400,000| 22.450,000|
dd Ly UCSC Genes (RefSeq, GenBank, tRNAs & Comparative Genamics)
Rims1 15T T
Rims1 %
Rims1
Rims1 | ' '




Detecting DNA Methylation

e DNA Methylation Regulates gene expression
e A heritable mark on top of the genetic information (hence

P F- g |

T T T T 1 1 T T T TT T
T T 17 1 T T T TT T
TTT T T T T R A AAAA A
A A AA A AAA ::

GCCCAAGATCGGAGATTTCGGGCTCGAAAGGCTTCTCGCCGGGGATACTAG

o upon sequencing un-methylated C’s appear as T's and
methylated C’s remain unchanged.
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Bisulfite Sequencing
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MethylCoder: software pipeline for bisulfite-treated sequences

Brent Pedersen*, Tzung-Fu Hsieh, Christian Ibarra and Robert L. Fischer
Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

Associate Editor: Martin Bishop

ABSTRACT

Motivation: MethylCoder is a software program that generates
per-base methylation data given a set of bisulfite-treated reads. It
provides the option to use either of two existing short-read aligners,
each with different strengths. It accounts for soft-masked alignments
and overlapping paired-end reads. MethylCoder outputs data in text
and binary formats in addition to the final alignment in SAM format,
so that common high-throughput sequencing tools can be used on
the resulting output. It is more flexible than existing software and
competitive in terms of speed and memory use.

Availability: MethylCoder requires only a python interpreter and a C
compiler to run. Extensive documentation and the full source code
are available under the MIT license at: https://github.com/brentp
/methylcode.

Contact: bpederse@gmail.com

are limited to the bowtie aligner and do not support color space reads.
Bisulfite-treated reads analysis tool (BRAT; Harris et al., 2009) also
uses a hashing approach and is the only other aligner that avoids
double-counting overlapping paired-end reads.

We introduce MethylCoder, a fast, memory-efficient BS-Seq
pipeline. It supports both paired- and single-end reads in color space
or nucleotide formats. MethylCoder provides a single entry point
and common output formats for the bowtie (Langmead et al., 2009)
and genomic short-read nucleotide alignment program (GSNAP)
(Wu and Nacu, 2010) aligners. Each of these aligners has different
strengths; GSNAP has no limitation on the size of the reference, but
does not consider quality information with the reads. Bowtie can
only map to references <4 Gb in total length, but considers quality
and can map color space reads. Utilizing these short-read aligners,
while providing access to their arguments, ensures that MethylCoder

AGCT




Mapping BS-Seq Reads

We don’t know which T's in the reads are actual T's and which are
unmethylated (and therefore converted) C’s.

We can’t use traditional aligners to map reads back to the genome
because of C=>T mismatches. So:

Convert* genome C => T, reverse-complement, G => A.
Convert*reads C=>T

Map converted reads to converted reference

For each alignment, recover original (un-converted) read and
compare to un-converted reference to calculate Methylation.

* where "convert" is In silico



Output

e Per-base report on conversions:

chr context bp-position C's T's
chrl CG+ 106 1 7
chrl CG- 107 6 2
chrl CG+ 108 7 1
chrl CG- 109 11 O
chrl CHG+ 113 0 9
chrl CG+ 114 9 0
chrl CG- 115 12 1

e % Methylation calculated as (C / (C + T))



Methylation: What it does (?)

Regulates Nearby Gene Expression !!

@ Methylation ﬁ Expression

ﬁ Methylation @ Expression



Methylation: What it does (where)

(c) Co-methylation

(b) Methylation at the TSS

1.0 1.0 4
0.8 — 08
c
g $06 o
< 2 in same CGI- . .
3 504 L :
- Qo
0.2 —
out of CGls
0.0 l .
4 5

I I I
-0.5 0.0 05 1.0 1.5 0 1 2 3

Distance to TSS (kb)

Distance between CpG-sites (kb)

Methylation
Auto-Correlation

-1.5 ~-1.0

Promoter Methylation

Bell et. al Genome Biology 2011, 12:R10 doi:10.1186/gb-2011-12-1-r10



Methylation: What it does
(sometimes)

Plotted are log (base 2) ratios of liver to brain expression
against DeltaM values for liver and brain DNAm. Orange
dots represent T-DMRs located within 300 bp from the
corresponding gene's transcriptional start site (TSS). Green
dots represent T-DMRs that are located from 300 to 2,000
bp from the TSS of an annotated gene. Black dots, in the
middle, represent log ratios for all genes further than 2 kb
from an annotated TSS

Differential expression

Nature Genetics 41, 178 - 186 (2009) . Irizzary et al

I I I
-15 -10 -05 0 0.5 1.0 1.5

Differential methylation



Methylation: What it does

But we (and many others) find:

e Expression changes from genome-wide experiments
e Methylation changes from genome-wide experiments

—p low overlap

Methylation changes explain very few and very little of the expression
changes

WHY?



Independent Analysis

List of Methylation Sites List of Expression Sites
associated with disease associated with disease
gene-123 gene-AAZ

gene-456 gene-FGA

gene-777 gene-GCG

gene-678 _gene-BBB

gene-222 | — gene-KKQ

gene-BBB «— | gene-LLS

gene-342 gene-MMM

Post-Hoc Comparisons of Independent Analyses.
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Traditional Analyses

Fit a linear model at each probe:

expression ~ disease + age + gender
Extract p-value for disease parameter.
Report genes with corrected p-value < 0.05

May account for batch effects and/or study design.



Side Note: Multiple Testing

Test 40K sites, how to determine which are
truly “different™?

p-value of 0.05 on 40,000 tests on random data
(with no true differences) will give about 2,000
false positives.



Traditional Analyses For Methylation

Fit a linear model at each probe:
methylation ~ disease + age + gender
But, methylation arrays now have 480K probes.
0.05/ 480K == 1.04x10’

Most methods now aggregate across probes to
iIncrease power since adjacent methylation
sites are often highly correlated.



Traditional Analyses For Methylation

Aggregate information
across probes to find:

DMR:
Differentially
Methylated
Region

Image From Jaffe et al.
Bumphunting paper.

~"| ® cancer ® normal

Methylation

Mean Diff @

| I | | | |
42233000 42233500 42234000 42234500 42235000 42235500
Chromosome 2



Methylation: Finding DMRs

GOAL: find even subtle, 2-probe DMR’s while minimizing false +

1.0 -

0.9

0.8 -

0.7 -

06 -

B disease - 0
B disease -1



DMR-finding methods

Bumphunting:

1.

2.

3.

4.

find coefficient from a linear model for every site (e.g. for disease)

a. (these form the putative bumps)

generate simulated data by shuffling the residuals of the null model
(without disease) and adding them to the predictions for the null model.
Fit full model to simulated data from 2. to generate null distribution of
betas.

compare observed betas to simulated to get significance

include locally weighted smoothing and sum the coefficients in a region above
some cutoff.

From Jaffe et al.
Bumphunting paper.
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Comb-p: software for combining, analyzing, grouping and
Liptak (1 SOrTecting spatially correlated P-values

Brent S. Pedersen’”, David A. Schwartz', Ivana V. Yang'" and Katerina J. Kechris®*
1 . flnd 'Department of Medicine and “Department of Biostatistics and Informatics, University of Colorado, Denver, Anschutz

Medical Campus, Aurora, CO 80045, USA
Associate Editor: Alex Bateman

ABSTRACT

Summary: comb-p is a command-line tool and a python library that
manipulates BED files of possibly irregularly spaced P-values and
(1) calculates auto-correlation, (2) combines adjacent P-values, (3) per-
forms false discovery adjustment, (4) finds regions of enrichment
(i.e. series of adjacent low P-values) and (5) assigns significance to
those regions. In addition, tools are provided for visualization and as-
sessment. We provide validation and example uses on bisulfite-seq
with P-values from Fisher’s exact test, tiled methylation probes using a
linear model and Dam-ID for chromatin binding using moderated
t-statistics. Because the library accepts input in a simple, standardized
format and is unaffected by the origin of the P-values, it can be used
for a wide variety of applications.

Availability: comb-p is maintained under the BSD license. The docu
mentation and implementation are available at https://github.com/
brentp/combined-pvalues.

Contact: bpederse@gmail.com

2 APPROACH

Tiling array studies relying on two-sample comparisons may be
amenable to the calculation of sliding window averages of log
ratios or two-sample test statistics. However, more complex
study designs often require covariates and report P-values from
linear models or other statistical tests.

We utilize a *moving averages” method of P-value correction
that does not depend on the test used to generate the P-values.
Fisher (1948) developed an approach of combining P-values
from independent tests to get a single meta-analysis test statistic
with a x distribution and degrees of freedom based on the
number of tests being combined. A similar method developed
by Stouffer er al. (1949) and Liptak (1958) first converts
P-values to Z-scores which are then summed and scaled to
create a single, combined Z-score. The Stouffer=Liptak method
lends itself to the addition of weights on each P-value. Zaykin
et al. (2002) introduced a method to use weights to perform a

sease)
‘ending
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A-Clustering Python Module

https://github.com/brentp/aclust | https://pypi.python.org/pypi/aclust
Streaming, agglomerative clustering

since we know objects are sorted, we can find
local clusters without reading into memory.

for cluster in aclust(sorted objs, max dist, max skip=1,

linkage='single', multi member=False):

result = test cluster(cluster, covariates, model)
yield result


https://github.com/brentp/aclust
https://pypi.python.org/pypi/aclust
https://github.com/brentp/aclust

Finding DMRs: Proposed Method(s)

1. Find clusters of similar probes as in A-clustering
a. unbiased selection discards single probes without consideration of study-
design
b. reduce multiple-testing burden by testing N regions instead of / CpG’s
2. Transform data as needed
a. logit/inverse logit
b. outlier removal (**)

3. Apply any method to assign significance:
a. bump-hunting (sort of)

b. combine p-values with liptak or z-sco?e\ Provide all of these methods

c. GEE \ with the same interface and
i. any correlation structure / compare them.

ii. cluster by CpG or by sample
d. mixed-model (random slope or inW

e. SKAT



Implementation: clustermodel

P
o
[ ]

o > library(devtools)
o > install_github("brentp/clustermodelr”)

P . i, files).


https://github.com/brentp/clustermodel
https://github.com/brentp/clustermodel
https://github.com/brentp/clustermodelr
https://github.com/brentp/clustermodelr

Example Usage

python -m clustercorr \
'methylation ~ case + age_delivery + insulin_ever' \
--gee-args ar,id \
covariates.txt \
methylation.txt \
--min-cluster-size 4 \
--rho-min 0.4 --outlier-sds 3 > dmrs.output.bed



Simulating Methylation Data

Things that are true:

e \We Simulate data so we can tune our algorithms for
detecting methylation differences.

e simulating correlated data is hard (iets go shopping)

e Assumptions in the simulations drive how we tune
the algorithms



Simulating Methylation Data

Method 1: Sofer, Tamar, et al. "A-clustering: a novel method for the detection of co-regulated
methylation regions, and regions associated with exposure." Bioinformatics (2013): btt498.

—

Real methylation data with 100 samples
2. Find site with multi-CpG correlation
3. weighted random selection of 2 * 20 samples
a. group H: weight increases likelihood of choosing sample with high methylation
b. group L: weight decreases likelihood of choosing sample with high methylation
4. contrast 20 in group H vs 20 in group L to find differentially methylated region
5. if weightis 0, group H should not be different from group L => random data

6. measure true+, false+ [ where truth is determined by the weight parameter]



Simulating Methylation Data

Method 2: Jaffe, Andrew E., et al. "Bump hunting to identify differentially methylated regions in
epigenetic epidemiology studies." International journal of epidemiology 41.1 (2012): 200-209.

—

Choose a CpG-to-CpG correlation
2. Generate-data with an auto-regressive moving average model (ARMA(1))

a. utilize a t-distribution with 5 df (simulates outliers)

w

insert DMRs at a given beta

4. They use longer DMRs (10 or 20 probes). But we want to find down to 2 probe DMRs.



Simulating Methylation Data

Method 3:

Take existing data and:

° randomize the case/control status

e fit reduced model (with other covariates), shuffle residuals, then randomize case-control status

and check false positives.



Simulation Results (Random Data)

Bump(hunt)ing deally 6 < 1e-4

500 e left should be flat
o e right should be y = x

| -

66,977 tested regions
o at 1e-4, expect 6.698
with p < 1e-4

n-valiie



Simulation Results (Random Data)

SKAT-0O 8 <1e4




Simulation Results (Random Data)

mixed model: methylation intercept by sample

1000 -




Simulation Results (Random Data)

mixed model: methylation intercept by CpG
14000 - [ [ [ [ (N 10 - [ [ /. | | | |

!
12000 - . /
2 . i

10000

1166 < 1e-4




Simulation Results (Random Data)

mixed model: methylation intercept by ClpGland sample




Simulation Results (Random Data)

GEE: auto-regressive by sample 35 <1e-4

1000 -




Simulation Results (Random Data)

GEE: exchangeable by CpG 566 < 1e-4




Simulation Results (Random Data)

Liptak 7 <1e-4

1000 -




Simulation Results (Random Data)

How do those change:
e with the size of the DMR?
o size in simulated data doesn’t seem to affect false+ rate
e with the assumptions about correlation? **
e with the number of samples simulated?
o fewer false+ with more samples?
e with a more complex study design?



Evaluating Methods

falee + trile +

BUT:
e JStill not using methylation and expression
e Conclusions from output depend on assumptions

O, — —— — - O, — _—— —_—_

10 samples 20 samples 40 samples 10 samples 20 samples 40 samples



Remember Example Usage

python -m clustermodel \
'methylation ~ case + (1|CpG) + (1]id)" \
covariates.txt \
methylation.txt \
> dmrs.output.bed



Expression Example Usage

python -m clustermodel \
'methylation ~ expression + (1|CpG) + (1]id)' \
covariates.txt \

methylation.txt \ \

> dmrS.output.bed Contains an “expression” column.

But, how to test a lot of expression sites
against a lot of methylation sites?



Expression Example Usage

RES SHR COMMAND

27868 brentp
27869 brentp
27870 brentp
python -m cEErE

27878 brentp

11 C110) Y4B 27872 brentp
27873 brentp

: 127874 brentp
Covarlate brentp
27879 brentp
methylatu brentp

27871 brentp

OO OO0 ODODODO OO O
oo ococoOoCcoOCOO0OOOO®
vy un
oo oo oOCDOCODOOO®
A0 00XV

--X expre

Parallelization important because we’re testing up to:
--X-locs ¢ ~25K expression probes * 100K methylation regions

--X-dist 5| 2,500,000,000 tests

> dmrs.ol we probably want to reduce the number of tests by looking at local
relationships.

trix.txt
each

thylation.

2lized)




Expression Example Usage

Doesn’t have to be expression,
python -m clustermodel \ can be any matrix of data to

'methylation ~ (1/CpG) + (1]id)\ | testagainst.

. - o QOTU’s from microbiome
covariates. ixt \ e Long list of covariates
methy|ati0n.txt \ Py Genetic Variants
--X ?7?7?\

> dmrs.output.bed




Deep Thoughts

We know that local changes in methylation should affect
expression.

Use that to compare methods by finding how many
significant expression::methylation associations we find:

e in real data (true +)

e in data where expression samples are shuffled
relative to methylation (removes expression::
methylation association (false +)



Comparison of Methods

method outlier_removal false+|true+ ratio

combine-liptak NO 117 223523 0.0005234361
combine-z-score NO 120 235145| 0.0005103234
GEE autoregressive NO 147 274863| 0.0005348119
GEE exchangeable NO 11330 431703| 0.0262448952
mixed-effect NO 112 297993 0.0003758478
combine-liptak YES 31 174846| 0.0001772989
combine-z-score YES 21 235589| 8.913829E-005
GEE autoregressive YES 175 308030[ 0.0005681265
GEE exchangeable YES 9424 423291| 0.0222636437
mixed-effect YES 57 321299 0.0001774048




Example Output

#chrom start end

chr1
chr1
chr1
chr1
chr1
chr1
chr1
chr1
chr1

795626
838227
841953
847691
860485
876686
880713
895867
922530

795849
838399
842134
847830
860799
876828
880855
896042
922669

coef p

-0.00854791240868 0.294913446774 5
-0.0110692993468 0.469833850996 6
0.00983936802679 0.583288570285 6
0.0113425659212 0.437455916454 5
0.00207611617104 0.896598686966 5
0.00926762379034 0.414417426125 5
-0.0127340057724 0.568003009012 5
0.00116539019903 0.951352372135 6
-0.0108648006754 0.374373866703 5

n_probes method

mixed-model
mixed-model
mixed-model
mixed-model
mixed-model
mixed-model
mixed-model
mixed-model
mixed-model



Example Output
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Example Output:

, , , , , - p-value: 9.78e-10 disease: 0,074 , , . , ,

1.0- mmm disease - 0 - '_
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Example Output:

0.9- Mm disease -0
I disease - 1

0.8 -

0.7 -

0.6 -

o
w
|

o
ey
[

o
w
|

©
N
[

chrll:1,241,341

chrll:1,241,375

p-value: 4.6e-08 disease; 0.057

p-value

|
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Example Output:

python -m clustercorr \
'methylation ~ disease + log2CT + smoking + SNP' \
bcovs.txt \
bmeth.txt \
--gee-args ex,id --rho-min 0.2 --png show



Other Uses: genotypes

python -m clustercorr \

SKAT compares this null model against one which

'disease - gender' \ <~ includes the genotypes. Weights each SNP by AF.
--skat cluster/ipf.covs.txt \
cluster/ipf.genotypes.txt \

--min-cluster-size 5\
--max-dist 20000 \
--rho-min 0.5\
--linkage complete

SKAT requires groups of variants, this allows
to specify the groups as clusters of correlated
sites.




Future Work

test methods on data simulated by Jaffee et al
method
test and optimize for small samples

handle bisulfite-sequencing data (in progress)
ensemble methods?

Handle multiple X tests



Thanks

https://github.com/brentp
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