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We review the great variety of critical scholarship on algorithms, automation, and big 

data in areas of contemporary life both to document where there has been robust 

scholarship and to contribute to existing scholarship by identifying gaps in our research 

agenda. We identify five domains with opportunities for further scholarship: (a) China, 

(b) international interference in democratic politics, (c) civic engagement in Latin 

American, (d) public services, and (e) national security and foreign affairs. We argue 

that the time is right to match dedication to critical theory of algorithmic communication 

with a dedication to empirical research through audit studies, network ethnography, and 

investigation of the political economy of algorithmic production. 
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 There is growing concern about the degree to which digital media and device networks can be 

used as tools of social control. Bots—the focus of this Special Section—are imbedded in larger questions 

about the place of algorithms, automation, and big data in public life. We often talk about bots in terms of 

their front-end activities: who they talk to, what they say, and what they do. They are framed more in 

terms of their actions and outcomes and less in terms of what makes them run. 

 

Bots are computer scripts that act autonomously based on platform data. In this article, we 

explore how algorithmic control manifests in the creation and subsequent use of big data. We do not offer 
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an exhaustive catalogue of critical big data research. Rather, this research review traces the currents, 

intersections, and openings for research on computational processes in contemporary political life. 

 

Critical Big Data, Critical Algorithms, and Automation 

 

 In this research review, we use the term big data to refer to large amounts of information 

collected about many people using many devices (Howard, Shorey, Woolley, & Guo, 2016). More than 

size, it characterizes data sets that can be searched, aggregated, and triangulated with other data sets 

(boyd & Crawford, 2012). While an increasing number of communication scholars embrace big data 

methods in their research, others working in the discipline have started to think critically about the 

implications of big data in the academy and beyond. Because communication as a discipline focuses on the 

exchange of information (Schramm, 1983), big data is a natural object of analysis for communication 

scholars, as it is generated by interaction with communication information technologies, such as social 

media, search engines, and the Internet. Big data takes the form of communication artifacts, such as 

photographs, microtargeting of profiles, social network content, and metadata. 

 

 In light of this, communication scholars have embarked on critical big data studies in an effort to 

demonstrate how flaws—ethical or methodological—in the collection and use of big data may reproduce 

social inequality (Crawford, Gray, & Miltner, 2014). These critical studies ask several kinds of questions: 

 

 What historical conditions lead to the emergence of big data as a form of knowledge? 

(Barnes & Wilson, 2014; Dalton, 2013) 

 Who controls big data, its production, and its analysis? What motives and imperatives 

drive their work? (Thatcher, 2014) 

 Who are the subjects of big data, and what knowledges are they producing? (Haklay, 

2013) 

 How is big data actually applied in the production of spaces, places, and landscapes? 

(Kitchin & Dodge, 2011) 

 What is to be done with big data, and what other kinds of knowledges could it help 

produce? 

 

Concern about the political impact of big data has led social and computer scientists to investigate how 

algorithmic control can be exercised and abused. In its most straightforward sense, the term algorithm 

can be used to describe any set of steps used to accomplish a task (Gillespie, 2016; Gurevich, 2011). If a 

computer is performing these steps, then algorithms automate the process. Once built, algorithms run 

autonomously and perform tasks with little oversight from humans (Zarsky, 2015). 

 

 Algorithms can be relatively straightforward. However, the term is often invoked to describe 

extremely complex computational processes that are difficult for everyday users to understand (Tufekci, 

2015). Scholars critically studying algorithms are especially attentive to the subjective decisions made by 

algorithms: classification, prioritization, association, and filtering (Diakopoulos, 2013a). These decisions 

are methods of analyzing big data, making it meaningful and useful. They transform information, and they 

have social consequences (Scannell, 2015). 
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Domains of Inquiry 

 

 The task of studying big data critically can be interpreted in two ways. One way is to examine 

work that uses big data to engage with—and ideally solve—social problems. But work that mobilizes big 

data for social good, although important, is not necessarily critical. The excitement of doing something 

called “big data” has led many universities and think tanks to announce big data initiatives to organize 

resources, provide a home for big data scientists, and publicly appear to be advancing big data science. 

Many such initiatives foster the cross-disciplinary collaboration necessary to make big data methodologies 

available to those working outside of fields of inquiry already driven by statistical methods. However, 

some of these initiatives fail to engage their own research teams with the questions about the ethics of 

using personal information, the access and ownership of data sets, and the impact of research outcomes. 

Few big data projects successfully and fully integrate information ethics in their research efforts. 

 

 A second way is to focus on the use of big data itself: its role in either directly harming the 

research subjects or indirectly harming the public through poor generalizations. Big data studies done in 

this vein ask about the implications of big data and use a lens of critique to think about the effects of this 

research on individual autonomy and social equity. Our review is of the existing scholarship in this second 

domain. 

 

 Critiques of big data can also take a few different forms. Gillespie and Seaver’s (2015) reading 

list on critical algorithm studies provides a helpful typology for understanding the different kinds of 

arguments used to critique methods of big data production. First, big data research can be criticized for 

removing the complexity and context of social systems. As people are reduced to numbers, we lose sight 

of the hows and whys of actions in favor of measurable behaviors and outcomes. These critiques are not 

unique to big data but are also aimed at quantitative work generally. In this way, big data has the same 

problems as small data. Research of this type can be simply summarized as a critique of big data’s 

accuracy and the validity of inferences made from it. 

 

 Second, big data can be criticized because the methods used to create these enormous data sets 

are still reliant on personal information. Academics, policy workers, lawyers, and journalists regularly point 

out that businesses and organizations across numerous sectors continue to gather personal data, whether 

from a credit check or an online search, without individuals’ consent. Even data that is anonymized can be 

linked, with some effort, back to individuals (de Montjoye, Radaelli, Singh, & Pentland, 2015). Critique in 

this area often takes the form of legal and policy responses to data-gathering practices that infringe on 

personal autonomy. For example, big data allows for the accumulation of detailed personal profiles, 

enabling advertisers or political campaigns to microtarget based on information collected through Internet 

browsing or purchasing habits (Auerbach, 2013). This problem has persisted since astroturfing and 

political redlining were identified and defined as having a contemporary basis in digital networks (Howard, 

2006). Research of this type can be summarized as a critique of surveillance and our right to control our 

own personally identifiable information. 

 

 Third, big data can be criticized because the methods used to analyze these data sets are 

embedded with values and reflect existing biases (Barocas & Selbst, 2015). The same predictive analytics 
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that harvest data for product recommendations can be used to select job candidates or make predictions 

about the likelihood that one may commit a crime based on one’s social network (boyd, Levy, & Marwick, 

2014; Stroud, 2014). These practices are, at their core, exclusionary. Metrics may rely on existing 

categorizations such as cultural fit, which would ultimately make an organization more homophilous. 

Research of this type offers a critique of algorithmically structured discrimination, focusing on big data’s 

power to systematically favor groups of people. Critical research into the politics of algorithms, 

automation, and big data often mobilize multiple forms of critique. In conversation with a large network of 

researchers, we identify 13 domains of inquiry. 

 

Banking and Credit 

 

 Modern banking is driven by complex data-driven algorithmic trading, often without close 

oversight from humans (MacKenzie, 2014). Intermediaries, such as floor brokers, have been replaced with 

automated matching engines for rapid exchanges—despite the fact that the technology contributes to 

“flash crashes” in the market (Beunza & Millo, 2014). Outdate regulatory systems do little to mitigate the 

immense effects of these fluctuations (Snider, 2014). 

 

 Sociological research in this area has shown that these numeric systems are, nevertheless, still 

reflective of human judgment. Banking algorithms are designed to replicate human trading patterns and 

are informed by economic theories (Lenglet, 2011; MacKenzie, 2006; Muniesa, 2014). They also respond 

to social data, sometimes impulsively—as was the case in 2013, when a hacked @AP tweet sent the S&P 

into a $136.5 billion downward spiral (Karppi & Crawford, 2015). 

 

 Data collection by credit and insurance brokers presents an early example of data-driven 

discrimination. Throughout the 1990s, Janet Ford (1988) flagged the practice and potential future harms 

of basing credit availability on dehumanized data. Neighborhood zip codes serve as shorthand for 

discriminatory redlining based on race. Today, “digital redlining” could incorporate demographic data 

gathered from social media sites (Noyes, 2015; Wihbey, 2015). Private companies also use data 

generated from everyday transactions—bills, subscriptions, prepaid cards—to build extensive user profiles 

of far more depth than even the credit bureaus (Mui, 2011). Banking and credit systems once relied on 

communities and segments to determine credit; big data allows them to judge “quantified individuals” 

(Turow, McGuigan, & Maris, 2015). 

 

Business 

 

 Since the mid-2000s, the same logics used in Wall Street trading algorithms have been applied to 

a range of online businesses (Steiner, 2013). Advertising space is bought in real-time ad auctions, 

microtargeting individual customers based on browser histories (Auerbach, 2013). Strategies such as 

cookie tracking have become accepted elements of business online (Leyshon, French, Thrift, Crewe, & 

Webb, 2005). 

 

 Consumers, regularly trade their data for digital services, often without fully understanding the 

terms-of-service agreements that govern the trade (Singer, 2015; Turow, Hennessy, & Draper, 2015). 
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Marketing firms aggregate this data and categorize users into desirable or less desirable consumer 

segments (Keller & Neufeld, 2014; Turow, 2011). The same features used to “personalize” product 

recommendations can also be used to manipulate prices and steer users toward more expensive products 

(Hannak, Mislove, Soeller, Wilson, & Lazer, 2014). Even banks use social media data to build customer 

profiles, using significant life events to market their offerings (Crosman, 2015). 

 

Discrimination and Civil Rights 

 

 Social science research has documented the rise of data-driven discrimination—wherein social 

decisions derived from big data analysis lead to unfair treatment of minorities (Upturn, 2014). One of the 

ways this happens is through automated classification. For example, hiring decisions based on similarity 

algorithms may reproduce existing disparities in the workforce (Barocas & Selbst, 2014; boyd, Levy, & 

Marwick, 2014). Classification systems are not necessarily discriminatory, and with intentional design, 

researchers can build systems that classify both effectively and fairly (Dwork, Hardt, Pitassi, Reingold, & 

Zemel, 2011). 

 

 Discrimination can be introduced or reinforced through algorithms both in their design and in 

their use (Bozdag, 2013). Filtering algorithms that learn from user input may be replicating larger societal 

biases. For example, Google search results tend to reflect occupational gender stereotypes—returning 

images of men in male-associated professions, even if women are an equal or majority share of that 

workforce (Kay, Matuszek, & Munson, 2015). When question stems regarding race are typed into the 

Google search bar, they also elicit autocomplete answers that are associated with negative stereotypes 

(Baker & Potts, 2013). These types of search results reinforce racial and gender stereotypes and 

perpetuate destructive representations, especially for women of color (Noble, 2012). 

 

 Big data classification can also lead to discriminatory targeting. Leading up to the 2008 recession, 

triangulated data were used to target minorities for subprime loans (Gangadharan, 2014). Users who 

searched for non-White-associated names were more likely to be targeted for advertisements about arrest 

records than those who searched for White-associated names—despite the fact that this ad copy was 

generated regardless of an actual arrest record being present (Sweeney, 2013). 

 

 Self-provided data from users can also lead to user discrimination based on race—especially in 

sharing economy marketplaces like AirBnB (Edelman & Luca, 2014; Edelman, Luca, & Svirsky, 2016). 

Reviews on Yelp also show bias based on the racial identities of businesses’ neighborhoods (Zukin, 

Lindeman, & Hurson, 2015). Though analyses of big data actually revealed these biases, they also reveal 

the ways that user biases are incorporated into automated systems. Hart and Case (2014) provide an 

evocative, interactive example of this in Parable of the Polygons: A Playable Post on the Shape of 

Society—showing how even a small amount of bias can lead to complete segregation of populations. It is 

easy to imagine how these user preferences are learned by automated classification systems. The cause of 

systematic biases can be very difficult to determine and remedy, as the algorithms that make associations 

are completely inaccessible to researchers and to the broader public (Pasquale, 2015). 
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Democracy, Elections, and National Security 

 

 Data-driven polls, social media bots, and campaign protocols are of concern to those focused on 

the critical study of big data in politics. Political campaigns in Western democracies now operate via data-

focused systems for voter outreach and categorization. Beginning in 2008, the Obama campaign received 

widespread attention for innovative and extensive use of voter data to reach communities and individual 

voters (Issenberg, 2012; Kreiss, 2016). Effectively mobilizing so much data requires immense financial 

resources, only available to the most established political candidates. Storage alone cost billions of dollars 

(Pearce, 2013). 

 

 During the same election, Facebook launched the “I’m voting” button—a nudge to promote voting 

that generated voting behavior data for millions of people (Sifry, 2014). Later, big data research based on 

61 million Facebook users indicated that the positive social pressure of the voting button encouraged 

friends to do the same (Bond et al., 2012). In light of this, scholars have raised concerns about the 

possibility of other automated technologies manipulating elections. Social bots attack activists and spread 

propaganda worldwide (Woolley, 2016; Woolley & Howard, 2016). Research on search engines also 

demonstrates their influence on candidate selection (Epstein, 2015). Certainly the experience of the 

United States with algorithms, automation and politics is not universal, and research on political 

conversation in the United Kingdom has demonstrated that electronic petitions and other forms of online 

engagement through social media platforms have long-term, somewhat positive, consequences for civic 

engagement (Margetts, John, Hale, & Yasseri, 2015; Vaccari, Chadwick, & O’Loughlin, 2015). 

 

 Internationally, Edward Snowden’s revelations made it clear that intelligence services in many 

countries, particularly in the United States and United Kingdom, build and use large data sets in spying 

missions and among many sectors of domestic and foreign affairs (Lyon, 2014). Those that criticize this 

practice often do so under the banner of privacy, but it is crucial that researchers better contextualize the 

role of data in these practices. Big data, and the algorithms that make it meaningful, has played a key role 

in modern warfare: creating associations, tracking bodies, and producing targets (Amoore, 2009; Howard, 

2015). 

 

Computational Journalism and News Production 

 

 According to recent research from the Pew Research Center for Journalism and Media, the 

majority of Americans get news from social media (Gottfried & Shearer, 2016). Social media is a prevalent 

source of and space for political discussion, representing the possibility of a modern public sphere (Caplan 

& Reed, 2016). This makes the design of sites and apps that deliver content for users especially important 

(Ananny & Crawford, 2014; Benthall, 2015). Search engine producers find themselves caught between 

market factors and the values of fairness and representativeness that motivate journalists (Van 

Couvering, 2007). 

 

 News-filtering algorithms serve a gatekeeping function, editing what social media users see 

(Tufekci, 2015). Search engines serve a similar function (Introna & Nissenbaum, 2000). Personalization 

through algorithms has the potential to create “filter bubbles” in which algorithms favor information that 
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users find agreeable and eliminate other types of information (Pariser, 2013). Big data scholars often 

acknowledge that algorithms have immense power when they make unknown and unexpected patterns of 

social inequality or public opinion apparent. However, equally important is the threat of invisibility as 

algorithms make content or users disappear from view (Bucher, 2012). Invisibility caused by deliberate 

exclusion is seen as censorship, but invisibility may also be the product less insidious forms of algorithmic 

curation (Gillespie, 2012). Both forms have political consequences (Granka, 2010). 

 

 Journalists are increasingly informed by audience metrics and granular data on viewers. Although 

viewers, and now page views, are established performance metrics for media, the success of news stories 

is also measured in terms of interaction and integration on social media sites (Lichterman, 2016). Clicks 

and comments provide almost instant audience feedback, leading to new levels of responsiveness 

(Anderson, 2011). Big data and algorithms have shaped journalistic production, ushering in an era of 

“computational journalism” (Anderson, 2013; Lewis, 2015). 

 

Education 

 

 The protection of student data was identified as a top priority in a report from the Obama 

administration’s Big Data and Privacy working group (White House, 2014). Big data is used in educational 

settings for algorithmic student placement, testing, aptitude evaluation—for states, regions, districts, and 

students—and other areas. Critical researchers study outcomes and effects of these data-reliant education 

systems. Policy makers acknowledge the potential positive futures of big data in school systems. However, 

in education, big data has often been among the most inaccurate and ineffective data (O’Neil, 2013; 

Strauss, 2014). Educational technologies, which aim to provide individualized learning for students, also 

produce individualized data. Though the selling of data is controversial in many contexts, educational data 

are of specific concern. If integrated into algorithmic systems—similar to the ones built for credit scoring 

or professional hiring—it could declare and reinforce a child’s aptitude for the rest of his or her life 

(Chideya, 2015). 

 

Health 

 

 Research concerned with big data used in health care has grown at pace with the industry’s 

switch from paper to digital records. The massive amount of health-care data in the world leaves pundits 

concerned with leaks or discriminatory outcomes (American Association for the Advancement of Science, 

Federal Bureau of Investigation, & United Nations Interregional Crime and Justice Research Institute, 

2014). Moreover, scientists and companies now use big data generated from online platforms in attempts 

to predict disease outbreaks and health-care crises—with mixed results (Butler, 2013; Lazer, Kennedy, 

King, & Vespignani, 2014). Individuals also produce significant amounts of data through health devices 

such as Fitbits. These data are primarily generated for personal monitoring or to be shared with a 

community—part of a larger trend toward self-tracking (Neff & Nafus, 2016; Reigeluth, 2014). Yet, these 

little data have the potential to be combined into aggregate big data because of unclear terms-of-service 

agreements and the need for updated privacy policies. 
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Work and Labor 

 

 Algorithms and data increasingly serve the functions that middle management once did. They 

identify job candidates through personality tests and algorithms based on estimates of work efficiency or 

labor potential (Peck, 2013; Weber & Dwoskin, 2014). They assign and review tasks for workers. In the 

case of Uber, for example, an algorithm assigns drivers to passengers partially based on location—and 

passengers then rate drivers to ensure system quality through data collection from users (Lee, Kusbit, 

Metsky, & Dabbish, 2015). Ratings systems favor consumers, often having no system of appeal should a 

worker be given a rating unfairly. 

 

 Along with these developments come a host of other ethical quandaries. Geolocation puts 

workers under constant surveillance, allowing employers to know their whereabouts at all times to 

maximize productivity (Levy, 2015). This may extend even beyond work hours, as employers use 

wearable devices to reward healthy lifestyle choices like exercise and sleep (O’Connor, 2015). The 

activities of workers and consumers generate valuable, uncompensated, and often personally identifiable 

data to improve algorithmic systems. 

 

 Public conversation about automation typically frames it as a threat to employment, but these 

discussions obscure the tangled relationship between people and automated labor. Human employees 

often perform both the initial and final steps of a task that is otherwise fully automated, grooming and 

censoring the enormous amounts of data that flow through social media and e-commerce platforms 

(Chen, 2014; Ekbia & Nardi, 2014). This labor is distributed internationally, relying on computational 

systems for organization and governance (Aneesh, 2009). 

 

Urban Life, Smart Cities, and the Internet of Things 

 

 Data and computation are imbedded in our everyday environment (Greenfield, 2015). Smart 

cities are wired with environmental sensors, which amplify already existing techniques for monitoring the 

activities of citizens (Howard, 2015; O’Reilly, 2013). Critical projects focused on this arena trace how 

technology is used in cityscapes and address potential power imbalances, discriminatory practices, and 

other sociocultural outcomes of data-supported cities (Powell, 2014). 

 

 Mobile technologies and social media produce an immense amount of location-based data, most 

obviously though geotags. Combined with the fact that much of these data are produced and analyzed in 

real time, spatial and temporal data contribute to surveillance (Graham & Wood, 2003). For example, in a 

since-deleted blog post, Uber wrote about rides they suspected to be one-night stands based on overnight 

stays at destinations other than home (Tufekci & King, 2014). Though seemingly innocuous, this post 

highlighted the kinds of information that can be gleaned simply from location-based data. 

  

 Spatial and temporal data are also being produced by more devices than ever before. The 

Internet of things (IoT) refers to the multitude of physical devices, automobiles, climate control systems, 

and appliances connected to the Internet and thus producing and requiring large swaths of data (Bessis & 

Dobre, 2014; Greengard, 2015). Critical research studying the IoT looks at the ways information gathered 
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from these device systems are used in ways unexpected by owners or operators (Howard, 2015). 

Scholars, pundits, and professionals concerned with a globally connected physical world make security and 

privacy key arenas of focus. Is the IoT a form of media? What will it mean if our physical world is 

governed by digital-rights-management software and algorithms that evaluate our rights of use for 

material goods? 

 

Policing and Incarceration 

 

 Data analysis techniques that use big information streams are now essential in many states’ 

considerations of sentencing, parole, and other aspects of incarceration. Big data and the prison system is 

a growing field, with risk-assessment software making computational decisions about lives of incarcerated 

citizens (Calabresi, 2014). Risk assessment tools incorporate factors such as educational attainment and 

employment history, which are strong indicators of socioeconomic status (Palacios, 2014). This raises red 

flags for scholars concerned with punishments based on poverty (Starr, 2013). Additionally, similar survey 

tools are shown to underestimate the recidivism rates for White inmates (Larson, 2016). Much of the 

sensitive information about prisoners’ backgrounds is stored online—leading to questions about the 

security and privacy of the data. 

 

 There has also been a recent surge of interest, especially among academics and media 

practitioners, about the ways law enforcement agencies use data-driven analytics to inform decisions 

related to policing (Brayne, Rosenblat, & boyd, 2015; O’Neil, 2016). It has come to light that the Los 

Angeles Police Department, the Chicago Police Department, and other agencies in dozens of U.S. cities use 

conclusions drawn from big data for predictive policing (Stroud, 2014; van Rijmenam, 2015). These 

departments use computational power to predict crimes and identify potential offenders. However, the 

exact methods used for calculation remain opaque (Eubanks, 2015). The New York Police Department also 

uses social media to monitor the activity of citizens, specifically young people of color (Hackman, 2015). 

These tactics raise many questions about how communication systems, from software-based social media 

algorithms to hardware such as drones, are being used for discriminatory profiling, surveillance, and police 

abuse (Choi-Fitzpatrick, 2014). 

 

Robotics and Automation 

 

 Robotics complicate concepts of big data because robots can be designed to download and 

execute actions based on cloud-based data. Access to large swaths of data could prove useful for robots 

run by self-learning software, but automated use of such data could also lead to unexpected or dangerous 

behavior of technologies such as drones, driverless cars, or medical robotics (Calo, 2014). 

 

 Online, autonomous bots collect data to perform routine functions on platforms such as 

Wikipedia. They also produce data through their interactions on social media platforms, often designed to 

look and act like human users (Abokhodair, Yoo, & McDonald, 2015). Bots make up almost half of all 

online traffic (Incapsula, 2015), and their activities are motivated by and imbedded in data logs across the 

Web. They infiltrate social networks with relative ease (Boshmaf, Muslukhov, Beznosov, & Ripeanu, 2011). 

For example, an estimated 24 million Instagram users are actually bots—a number that should raise 
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concerns for any researcher using big data to draw conclusions about the communicative practices of 

human users (Franceschi-Bicchierai, 2015). 

 

Communication Policy 

 

 It is difficult to think of an aspect of public life that has not been affected by the use of 

algorithms, automation, and big data. Yet, the methods that fuel these computational processes often 

remain in the hands of private companies, inaccessible to researchers or the broader public. In light of 

these processes’ widespread impact and opacity, there is a need for transparency and regulation of 

algorithms (Medina, 2015). Current laws, such as the Computer Fraud and Abuse Act, actually hinder 

Internet researchers’ ability to investigate their operations (Sandvig v. Lynch, 2016). 

 

 Social science researchers have called for algorithmic due process in two primary forms. First, 

algorithms should be evaluated for their accuracy and fairness, if not for their impact on political discourse 

(Citron & Pasquale, 2014; Mittelstadt, 2016). Algorithms can be variously audited: through evaluating 

code, observing real users, or creating fictitious users as part of an experiment (Guilbeault, 2016; 

Sandvig, Hamilton, Karahalios, & Langbort, 2016). Researchers and journalists attempt to reverse 

engineer these systems to better understand how they work (Diakopoulos, 2013b). Second, people should 

be notified, and given an opportunity to contest, the conclusions drawn about them from their data 

(Crawford & Schultz, 2014). This issue is intimately tied to questions of privacy and data ownership. 

However, should algorithms be open to investigation, questions still remain about responsibility and 

accountability (Neyland, 2016; Rosenblat, Kneese, & boyd, 2014). 

 

Privacy, Security, and Surveillance 

 

 Personal privacy is among the most pressing concerns for those studying issues of big data. Both 

business-based data collection and government-based surveillance threaten to erode civil liberties and 

privacy (McQuillan, 2015). Massive databases of private information are vulnerable to attack and theft, 

and the amalgamation of other data online can pose widespread risks to security. Much of these data are 

not only personally identifiable information but also visual, using images as biometric data (Gates, 2011). 

Modern surveillance systems use algorithmic technologies to identify and classify the people depicted 

(Introna & Wood, 2002). Scholars are concerned with how these data might be abused—what if they were 

to fall into the wrong hands? (R. T. Ford, 2000). Researchers exploring security and privacy implications of 

big data seek to understand and illuminate the ways such data not only challenges these ideals but also 

change them. 

 

Conclusion 

 

Critical data research is flourishing but needs help turning insights into creative applications. 

Finding fault in the political economy of data, identifying the research and policy projects with 

questionable ethics, and demonstrating the inadequacies of social research that is not self-reflexive has 
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proved to be relatively straightforward, though not easy. What domains are notably absent from 

contemporary inquiry on algorithms, automation, and politics?2 

 

China 

 

 Our current understanding of algorithms and social control in China is extremely limited. We 

know that the vast majority of Chinese citizens use a relatively narrow suite of tools that duplicate the 

technology services and applications offered in other countries (King, Pan, & Roberts, 2016). Yet we also 

know that these tools are built by state agencies with censorship and surveillance as a core design value. 

Nonetheless, we know little of how algorithmic manipulation occurs over systems such as Weibo, Renren, 

and WeChat. China is important for multiple reasons. First, on the question of algorithms and social 

control, China’s information infrastructure will shape the lives of a billion people. Second, China is the 

source of algorithmic manipulations—such as social media bots that have an impact on public life in 

democracies. Third, many of the hardware and software innovations by the Chinese state are being sold to 

other countries hoping to develop their information infrastructures. This means that the tools for 

algorithmic control are being exported to other authoritarian regimes that also seek an Internet for social 

control, while Chinese security services retain ultimate control. 

  

 What are the specific structures and functions of algorithmic control and big data manipulation in 

China? How do citizens—and democracy advocates—respond to or circumvent, and how widespread is, 

critical knowledge of algorithmic control? What are the mechanisms by which the Chinese government 

uses big data to influence social media and public opinion beyond its borders? 

 

 A growing number of authoritarian regimes are using algorithms to manipulate conversations not 

only in their own countries but also the public spheres of democracies (Howard, 2015). Strategies include 

attacking civil society groups in democracies, muddying international debate on sensitive security issues, 

and interfering with public opinion during elections. Which countries try to exercise soft power through 

algorithms and big data? How often, and in what ways, do governments meddle in the public sphere of 

other countries using big data and algorithms? How is political discourse and good governance in 

democracies and open societies threatened by algorithmic manipulation originating outside their borders? 

 

Civic Engagement in Latin America 

 

 In several countries in Latin America, big data and the Internet of things actually represent 

opportunities for civic engagement. Global attention may be focused on political crises and recalcitrant 

regimes across Asia, Eastern Europe, and the Middle East, but it is in Latin America that we find relatively 

                                                 
2 This gap analysis is based on a series of conversations with leading experts in the field. For sharing their 

perspectives on these questions we are grateful to Nancy Baym, Laura Brandimarte, Finn Brunton, Alberto 

Cerda, John Cheney-Lippold, Kate Crawford, Greg Elmer, Jeremy Epstein, Brittany Fiore-Gartland, Tarleton 

Gillespie, Janet Haven, Lance Hoffman, Paul Jacobs, Nathan Jurgenson, Karen Levy, Lori McGlinchey, Eric 

Meyer, Anita Nikolich, Cathy O’Neil, Eric Sears, David Robinson, Samuel Sinyangwe, Stefaan Verhulst, 

Janet Vertesi, Taha Yasseri, and Harlan Yu. 
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stable democracies with political interest in investing in public information infrastructure. Latin American 

civil society groups also have some fairly specific opportunities to engage with other nations and citizens 

on the horizon. Chile will be rewriting its constitution in the next two years and has signaled interest in 

crowdsourcing the constitutional process, in addressing privacy issues at the constitutional level, and in 

investing in e-voting. Cuba, with relatively high levels of engineering education, is opening and 

transitioning. Argentina is home to an active community of hacktivists. Brazil has a unique history of 

technology-enabled participatory budgeting, an exceptionally vibrant social-media-user population, a 

commitment to open source software, a sophisticated level of public interest in Marco Civil da Internet, 

and broad values of technology use that differ from those in the United States. If there is a region where 

making the analysis and findings of critical big data work will be welcomed and translated into policy 

action, that region is Latin America. 

 

Public Services and Security 

 

 A growing number of public services, including police, are being caught up in an uncritical drive 

for big data analysis. There are many kinds of models for making various levels of government more 

sophisticated in their use of data, but some models must be better than others. One business model, used 

by the city of Los Angeles, is to crowdsource data gathering using publicly accessible records. Private 

companies then sell real-time data back to municipal governments in Los Angeles after processing the 

data through proprietary algorithms. The city of Chicago collects vast amounts of information, ostensibly 

through policing operations, but releases some of the data through an open data initiative that helps local 

entrepreneurs develop hyperlocal apps (O’Neil, 2016). It is not known how much policy oversight or 

ethical review has been extended to such efforts to bring data into city government. A study of best 

practices or a recommended process for emerging smart cities, perhaps in conjunction with the national 

conference of mayors, would help to set a high standard for transparent and ethical big data involved with 

public housing, policing, and other public services. 

 

 How should public agencies engage with private data vendors when exploring new big data 

projects? What kind of big data training should contemporary policy makers have? When should big data 

projects and data be developed within public agencies, and when should they be contracted out, and 

under what terms? 

 

National Security, Domestic and Foreign Affairs 

 

 The work of Edward Snowden and Julian Assange has brought to light a profusion of new ways in 

which data, computation, and advanced technology are used in domestic and foreign intelligence 

operations. These revelations were centered on the idea that new varieties of surveillance were invading 

the privacy of citizens. Essentially, security practitioners were accused of building massive databases of 

information containing all sorts of communication—with little attention to nuance or relevance. Because 

concerns stemming from these various leaks center on more acute questions of surveillance and privacy, 

the role of big data, and its continued application in national and international security settings, is often 

obscured or supplanted by generalized conversation. More robust conversation about the way big data 

research affects both domestic and foreign policy is certainly needed. Although the use of big data by 
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corporations has received increasing critical attention, more research is needed on how this information is 

collected and used by governments interested in shaping foreign policy outcomes, achieving national 

security goals, and interfering in the governance of other countries. How much data collection is too 

much? What kind of public policy oversight would allow national security agencies to meet reasonable 

collection goals? 

 

 Research on algorithms, automation, and politics has the potential to shape public policy and 

social norms. The amount of attention to this type of work is growing, but much opportunity exists for new 

lines of creativity and critique. We argue that these lines of inquiry should become mainstream concerns 

for both critical theorists and social scientists. For critical theorists, algorithms operate on social life—they 

encode social structure. For social scientists, algorithms govern a growing number of social processes, and 

thus most modern research questions can include some big data analysis. Moreover, most contemporary 

social problems have an algorithmic dimension in that computational processes can either exacerbate or 

diminish social inequalities, depending on how they are designed and applied. 

 

Mainstreaming Algorithmic Research 

 

 The next big step for improving our understanding of the political power of algorithms is to 

mainstream critical big data research. By mainstreaming, we mean: 

 

● Raising the level of scholarly interest in understanding algorithms, automation, and 

politics. 

● Improving the sophistication of journalists working with big data or writing about it. 

● Raising the literacy of public policy makers on the findings of critical and empirical 

research. 

● Drawing popular attention to the impact of algorithms on public life. 

 

 Although many big data research projects are multidisciplinary, research that collaborates across 

domains is lacking. Research that incorporates individuals situated in businesses, governments, and the 

academy will foster a more nuanced understanding of how algorithms are used and the mechanisms that 

may (or may not) be in place to make sure it is used acceptably. It will allow for researchers to arrive at 

critiques and solutions that take into account the actual practices and constraints of institutions that use 

big data—rather than merely to critique from ethical ideals. Some of the most rigorous thinking about big 

data is being done by critical theorists whose powerful ideas are not being integrated into work done social 

scientists, much less those who are building systems or writing policy. Critical big data research needs 

teams of researchers to build conceptual bridges and to identify shared terms so that the work being done 

across domains can be effective. 
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