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Abstract

Algorithms for Markov boundary discovery from data constitute an important recent development

in machine learning, primarily because they offer a principled solution to the variable/feature selec-

tion problem and give insight on local causal structure. Over the last decade many sound algorithms

have been proposed to identify a single Markov boundary of the response variable. Even though

faithful distributions and, more broadly, distributions that satisfy the intersection property always

have a single Markov boundary, other distributions/data sets may have multiple Markov boundaries

of the response variable. The latter distributions/data sets are common in practical data-analytic ap-

plications, and there are several reasons why it is important to induce multiple Markov boundaries

from such data. However, there are currently no sound and efficient algorithms that can accomplish

this task. This paper describes a family of algorithms TIE* that can discover all Markov bound-

aries in a distribution. The broad applicability as well as efficiency of the new algorithmic family is

demonstrated in an extensive benchmarking study that involved comparison with 26 state-of-the-art

algorithms/variants in 15 data sets from a diversity of application domains.

Keywords: Markov boundary discovery, variable/feature selection, information equivalence, vio-

lations of faithfulness

1. Introduction

The problem of variable/feature selection is of fundamental importance in machine learning, espe-

cially when it comes to analysis, modeling, and discovery from high-dimensional data sets (Guyon

and Elisseeff, 2003; Kohavi and John, 1997). In addition to the promise of cost effectiveness (as a

result of reducing the number of observed variables), two major goals of variable selection are to

improve the predictive performance of classification/regression models and to provide a better un-
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derstanding of the data-generative process (Guyon and Elisseeff, 2003). An emerging class of filter

algorithms proposes solution of the variable selection problem by identification of a Markov bound-

ary of the response variable of interest (Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña

et al., 2007; Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a,b). The Markov boundary

M is a minimal set of variables conditioned on which all the remaining variables in the data set,

excluding the response variable T, are rendered statistically independent of the response variable T.

Under certain assumptions about the learner and the loss function, Markov boundary is the solution

of the variable selection problem (Tsamardinos and Aliferis, 2003), that is, it is the minimal set

of variables with optimal predictive performance for the current distribution and response variable.

Furthermore, in faithful distributions, Markov boundary corresponds to a local causal neighborhood

of the response variable and consists of all its direct causes, effects, and causes of the direct effects

(Neapolitan, 2004; Tsamardinos and Aliferis, 2003).

An important theoretical result states that if the distribution satisfies the intersection property

(which is defined in Section 2.2), then it is guaranteed to have a unique Markov boundary of the re-

sponse variable (Pearl, 1988). Faithful distributions, which constitute a subclass of distributions that

satisfy the intersection property, also have a unique Markov boundary (Neapolitan, 2004; Tsamardi-

nos and Aliferis, 2003). However, some real-life distributions contain multiple Markov boundaries

and thus violate the intersection property and faithfulness condition. For example, a phenomenon

ubiquitous in analysis of high-throughput molecular data, known as the “multiplicity” of molecular

signatures (i.e., different gene/biomarker sets perform equally well in terms of predictive accuracy

of phenotypes) suggests existence of multiple Markov boundaries in these distributions (Dougherty

and Brun, 2006; Somorjai et al., 2003; Aliferis et al., 2010a). Likewise, many engineering systems

such as digital circuits and engines typically contain deterministic components and thus can lead to

multiple Markov boundaries (Gopnik and Schulz, 2007; Lemeire, 2007).

Related to the above, a distinguished statistician, the late Professor Leo Breiman, in his seminal

work (Breiman, 2001) coined the term “Rashomon effect” that describes the phenomenon of multi-

ple different predictive models that fit the data equally well. Breiman emphasized that “multiplicity

problem and its effect on conclusions drawn from models needs serious attention” (Breiman, 2001).

There are at least three practical benefits of algorithms that could systematically discover from

data multiple Markov boundaries of the response variable of interest:

First, such algorithms would improve discovery of the underlying mechanisms by not missing

causative variables. For example, if a causal Bayesian network with the graph X ← Y → T → Z is

parameterized such that variables X and Y contain equivalent information about T (see section 2.3

and the work by Lemeire, 2007), then there are two Markov boundaries of T: {X, Z} and {Y, Z}.
If an algorithm discovers only a single Markov boundary {X, Z}, then it would miss the directly

causative variable Y.

Second, such algorithms can be useful in exploring alternative cost-effective but equally pre-

dictive solutions in cases where different variables may have different costs associated with their

acquisition. For example, some variables may correspond to cheaper and safer medical tests, while

other equally predictive variables may correspond to more expensive and/or potentially unsafe tests.

The American College of Radiology maintains Appropriateness Criteria for Diagnostic Imaging

(http://www.acr.org/Quality-Safety/Appropriateness-Criteria/) that list diagnostic protocols (sets of

radiographic procedures/variables) with the same sensitivity and specificity (i.e., these protocols

can be thought of Markov boundaries of the diagnostic response variable) but different cost and
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radiation exposure level. Algorithms for induction of multiple Markov boundaries can be helpful

for de-novo identification of such protocols from patient data.

Third, such algorithms would shed light on the predictor multiplicity phenomenon and how it

affects the reproducibility of predictors. For example, in the domain of high-throughput molecular

analytics, induction of multiple Markov boundaries with subsequent validation in independent data

would allow testing whether multiple and equally predictive molecular signatures are due to intrinsic

information redundancy in the biological networks, small sample statistical indistinguishability of

signatures, correlated measurement noise, normalization/data preprocessing steps, or other factors

(Aliferis et al., 2010a).

Even though there are several well-developed algorithms for learning a single Markov boundary

(Aliferis et al., 2010a, 2003a; Mani and Cooper, 2004; Peña et al., 2007; Tsamardinos and Aliferis,

2003; Tsamardinos et al., 2003a,b), little research has been done in development of algorithms for

identification of multiple Markov boundaries. The most notable advances in the field are stochastic

Markov boundary algorithms that involve running multiple times either a standard or approximate

Markov boundary induction algorithm initialized with a random seed, for example, KIAMB (Peña

et al., 2007), EGS-NCMIGS and EGS-CMIM (Liu et al., 2010b). Another approach exemplified in

the EGSG algorithm (Liu et al., 2010) involves first grouping variables into multiple clusters such

that each cluster (i) has variables that are similar to each other and (ii) contributes “unique” infor-

mation about the response variable, and then randomly sampling a representative from each cluster

for the output Markov boundaries. In genomics data analysis, researchers try to induce multiple

variable sets (that sometimes approximate Markov boundaries) via application of a standard vari-

able selection algorithm to resampled data, for example, bootstrap samples (Ein-Dor et al., 2005;

Michiels et al., 2005; Roepman et al., 2006). Finally, other bioinformatics researchers proposed a

multiple variable set selection algorithm that iteratively applies a standard variable selection algo-

rithm after removing from the data all variables that participate in the previously discovered variable

sets with optimal classification performance (Natsoulis et al., 2005). As we will see in Sections 3

and 5 of this paper, the above early approaches are either highly heuristic and/or cannot be practi-

cally used to induce multiple Markov boundaries in high-dimensional data sets with relatively small

sample size.

To address the limitations of prior methods, this work presents an algorithmic family TIE∗

(which is an acronym for “Target Information Equivalence”) for multiple Markov boundary induc-

tion. TIE∗ is presented in the form of a generative algorithm and can be instantiated differently for

different distributions. TIE∗ is sound and can be practically applied in typical data-analytic tasks.

We have previously introduced in the bioinformatics domain a specific instantiation of TIE∗ for

development of multiple molecular signatures of the phenotype using microarray gene expression

data (Statnikov and Aliferis, 2010a). The current paper significantly extends the earlier work for

general machine learning use. This includes a detailed description of the generative algorithm, ex-

panded theoretical and complexity analyses, various instantiations of the generative algorithm and

its implementation details, and an extensive benchmarking study in 15 data sets from a diversity of

application domains.

The remainder of this paper is organized as follows. Section 2 provides general theory and back-

ground. Section 3 lists prior algorithms for induction of multiple Markov boundaries and variable

sets. Section 4 describes the TIE∗ generative algorithm, traces its execution, presents specific instan-

tiations, proves algorithm correctness, and analyzes its computational complexity. This section also

introduces a simpler and faster algorithm iTIE∗ for special distributions. Section 5 describes empir-
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ical experiments with the TIE* algorithm and comparison with prior methods in simulated and real

data. The paper concludes with Section 6 that summarizes main findings, reiterates key principles

of TIE* efficiency, demonstrates how the generative algorithm TIE∗ can be configured for optimal

results, presents limitations of this study, and outlines directions for future research. The paper

includes several appendices with additional details about our work: Appendix A proves theorems

and lemmas; Appendix B presents parameterizations of example structures; Appendix C describes

and performs theoretical analysis of prior algorithms for induction of multiple Markov boundaries

and variable sets; Appendix D provides details about the TIE∗ algorithm and its implementations;

Appendix E provides additional details about experiments with simulated and real data.

2. Background and Theory

This section provides general theory and background.

2.1 Notation and Key Definitions

In this paper upper-case letters in italics denote random variables (e.g., A, B, C) and lower-case

letters in italics denote their values (e.g., a, b, c). Upper-case bold letters in italics denote random

variable sets (e.g., X , Y , Z) and lower-case bold letters in italics denote their values (e.g., x, y,

z). The terms “variables” and “vertices” are used interchangeably. If a graph contains an edge X

→ Y, then X is a parent of Y and Y is a child of X. A vertex X is a spouse of Y if they share a

common child vertex. An undirected edge X − Y denotes an adjacency relation between X and

Y (i.e., presence of an edge directly connecting X and Y). A path p is a set of consecutive edges

(independent of the direction) without visiting a vertex more than once. A directed path p from X

to Y is a set of consecutive edges with direction “→” connecting X with Y, that is, X → . . . → Y.

X is an ancestor of Y (and Y is a descendant of X) if there exists a directed path p from X to Y. A

directed cycle is a nonempty directed path that starts and ends on the same vertex X. Three classes

of graphs are considered in this work: (i) directed graphs: graphs where vertices are connected only

with edges “→”; (ii) directed acyclic graphs (DAGs): graphs without directed cycles and where

vertices are connected only with edges “→”; and (iii) ancestral graphs: graphs without directed

cycles and where vertices are connected with edges “→” or “↔” (an edge X ↔ Y implies that X is

not an ancestor of Y and Y is not an ancestor of X).

When the two sets of variables X and Y are conditionally independent given a set of variables

Z in the joint probability distribution P, we denote this as X ⊥ Y |Z . For notational convenience,

conditional dependence is defined as absence of conditional independence and denoted as X 6⊥ Y

| Z . Two sets of variables X and Y are considered independent and denoted as X ⊥ Y , when X

and Y are conditionally independent given an empty set of variables. Similarly, the dependence of

X and Y is defined and denoted as X 6⊥ Y .

We further refer the readers to the work by Glymour and Copper (1991), Neapolitan (2004),

Pearl (2009) and Spirtes et al. (2000) to review the standard definitions of collider, blocked path, d-

separation, m-separation, Bayesian network, causation, direct/indirect causation, and causal Bayesian

network that are used in this work. Below we state several essential definitions:

Definition 1 Local Markov condition: The joint probability distribution P over variables V satis-

fies the local Markov condition for a directed acyclic graph (DAG) G = <V , E> if and only if for
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each W in V , W is conditionally independent of all variables in V excluding descendants of W

given parents of W (Richardson and Spirtes, 1999).

Definition 2 Global Markov condition: The joint probability distribution P over variables V sat-

isfies the global Markov condition for a directed graph (ancestral graph) G = <V , E> if and only

if for any three disjoint subsets of variables X , Y , Z from V , if X is d-separated (m-separated)

from Y given Z in G then X is independent of Y given Z in P (Richardson and Spirtes, 1999,

2002).

It follows that if the underlying graph G is a DAG, then the global Markov condition is equiva-

lent to the local Markov condition (Richardson and Spirtes, 1999).

Finally, we provide several definitions of the faithfulness condition. This condition is funda-

mental for causal discovery and Markov boundary induction algorithms.

Definition 3 DAG-faithfulness: If all and only the conditional independence relations that are true

in P defined over variables V are entailed by the local Markov condition applied to a DAG G =

<V , E>, then P and G are DAG-faithful to one another (Spirtes et al., 2000).

The following definition extends DAG-faithfulness to any directed or ancestral graphs:

Definition 4 Graph-faithfulness: If all and only the conditional independence relations that are

true in P defined over variables V are entailed by the global Markov condition applied to a directed

or ancestral graph G = <V , E >, then P and G are graph-faithful to one another.

A relaxed version of the standard faithfulness assumption is given in the following definition:

Definition 5 Adjacency faithfulness: Given a directed or ancestral graph G = <V , E> and a

joint probability distribution P defined over variables V , P and G are adjacency faithful to one

another if every adjacency relation between X and Y in G implies that X and Y are conditionally

dependent given any subset of V \ {X, Y} in P (Ramsey et al., 2006).

The adjacency faithfulness assumption can be relaxed to focus on the specific response variable

of interest:

Definition 6 Local adjacency faithfulness: Given a directed or ancestral graph G = <V , E>
and a joint probability distribution P defined over variables V , P and G are locally adjacency

faithful with respect to T if every adjacency relation between T and X in G implies that T and X are

conditionally dependent given any subset of V \ {T, X} in P.

2.2 Basic Properties of Probability Distributions

The following theorem provides a set of useful tools for theoretical analysis of probability distribu-

tions and proofs of correctness of Markov boundary algorithms. It is stated similarly to the work by

Peña et al. (2007) and its proof is given in the book by Pearl (1988).

Theorem 1 Let X , Y , Z, and W be any four subsets of variables from V .1 The following five

properties hold in any joint probability distribution P over variables V :

1. Pearl originally provided this theorem for disjoint sets of variables (Pearl, 1988). However, he stated that the disjoint

requirement is made for the sake of clarity, and that the theorem can be extended to include overlapping subsets as

well.
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• Symmetry: X ⊥ Y | Z ⇔ Y ⊥X | Z,

• Decomposition: X ⊥ ( Y ∪W ) | Z ⇒X ⊥ Y | Z and X ⊥W | Z,

• Weak union: X ⊥ ( Y ∪W ) | Z ⇒X ⊥ Y | ( Z ∪W ),

• Contraction: X ⊥ Y | Z and X ⊥W | ( Z ∪ Y )⇒X ⊥ ( Y ∪W ) | Z,

• Self-conditioning: X ⊥ Z | Z.

If P is strictly positive, then in addition to the above five properties a sixth property holds:

• Intersection: X ⊥ Y | ( Z ∪W ) and X ⊥W | ( Z ∪ Y )⇒X ⊥ ( Y ∪W ) | Z.

If P is faithful to G, then P satisfies the above six properties and:

• Composition: X ⊥ Y | Z and X ⊥W | Z ⇒X ⊥ ( Y ∪W ) | Z.

The definition given below provides a relaxed version of the composition property that will be

used later in the theoretical analysis of Markov boundary induction algorithms.

Definition 7 Local composition property: Let X , Y , Z be any three subsets of variables from V .

The joint probability distribution P over variables V satisfies the local composition property with

respect to T if T⊥X|Z and T⊥ Y |Z⇒ T⊥ (X ∪Y )|Z.

2.3 Information Equivalence

In this subsection we review relevant information equivalence theory (Lemeire, 2007). We first

formally define information equivalence that leads to violations of the intersection property and

eliminates uniqueness of the Markov boundary (see next subsection). We then describe distribu-

tions that have information equivalence relations and point to a theoretical result that characterizes

violations of the intersection property.

Definition 8 Equivalent information: Two subsets of variables X and Y from V contain equiva-

lent information about a variable T iff the following conditions hold: T 6⊥X , T 6⊥ Y , T ⊥X | Y
and T ⊥ Y |X .

It follows from the definition of equivalent information and the definition of mutual information

(Cover and Thomas, 1991) that both X and Y contain the same information about T, that is, mutual

information I(X , T) = I(Y ,T) (Lemeire, 2007).

Information equivalences can result from deterministic relations. For example, if we consider

a Bayesian network with the graph
A ց
B ր

X → T that is parameterized such that X = AND(A,

B) and T 6⊥ X , then {X} and {A, B} contain equivalent information with respect to T according to

the above definition. However, information equivalences follow from a broader class of relations

than just deterministic ones (see Example 2 and Figure 1 in the next subsection). We thus define the

notion of equivalent partition that was originally introduced in the work by Lemeire (2007). To do

so we first provide the definition of T-partition:

Definition 9 T-partition: The domain of X, denoted by Xdom, can be partitioned into disjoint sub-

sets Xk
dom for which P(T | x) is the same for all x ∈ Xdom

k . We call this the T-partition of Xdom. We

define κT(X) as the index of the subset of the partition.

Accordingly, the conditional distribution can be rewritten solely based on the index of T-

partition, that is, P(T | X) = P(T | κT(X)) .
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Definition 10 Equivalent partition: A relation R ⊂ X×Y (where the “×” operator denotes the

Cartesian product) defines an equivalent partition in Ydom to a partition of Xdom if:

• for any x1 and x2 ∈Xdom that do not belong to the same partition and for any y1 ∈Ydom with

x1 R y1, it must be that ¬(x2Ry1).
• for all subsets Xk

dom of the partition, ∃x1 ∈ Xk
dom and ∃y1 ∈ Ydom such that x1Ry1.

In other words, for an equivalent partition, every partition Xk
dom corresponds to a partition Yl

dom.

If an element of Ydom is related to an element of partition Xdom, then it is not related to an element

of another partition, and each partition of Xdom has at least one element that is related to a partition

of Ydom. An example of an equivalent partition is provided in Figure 1 in the next subsection.

In the following theorem the concept of equivalent partition is used to characterize violations of

the intersection property; the proof of this theorem is given in the work by Lemeire (2007).

Theorem 2 If T 6⊥ X and T ⊥ Y | X then T ⊥ X | Y if and only if the relation x R y defined by

P(x,y)> 0 with x∈Xdom and y ∈Ydom defines an equivalent partition in Ydom to the T-partition of

Xdom.

It is worthwhile to mention that the above definitions of T-partition, equivalent partition, and

Theorem 2 can be trivially extended to sets of variables instead of individual variables X and Y.

Next we provide two more definitions of equivalent information that take into consideration

values of other variables and also lead to violations of the intersection property.

Definition 11 Conditional equivalent information: Two subsets of variables X and Y from V

contain equivalent information about a variable T conditioned on a non-empty subset of variables

W iff the following conditions hold T 6⊥ X |W , T 6⊥ Y |W , T ⊥ X | (Y ∪W ), and T ⊥ Y

| (X ∪W ).

Definition 12 Context-independent equivalent information: Two subsets of variables X and Y

from V contain context-independent equivalent information about a variable T iff X and Y contain

equivalent information about T conditioned on any subset of variables V \(X ∪ Y ∪ {T}).

Finally, we point out that, in general, equivalent information does not always imply context-

independent equivalent information. However, equivalent information due to deterministic relations

always implies context-independent equivalent information.

2.4 Markov Boundary Theory

In this subsection we first define the concepts of Markov blanket and Markov boundary and theo-

retically characterize distributions with multiple Markov boundaries of the same response variable.

Then we provide examples of such distributions and demonstrate that the number of Markov bound-

aries can even be exponential in the number of variables in the underlying network. We also state

and prove theoretical results that connect the concepts of Markov blanket and Markov boundary

with the data-generative graph. Finally, we define optimal predictor and prove a theorem that links

the concept of Markov blanket with optimal predictor.

Definition 13 Markov blanket: A Markov blanket M of the response variable T ∈ V in the joint

probability distribution P over variables V is a set of variables conditioned on which all other

variables are independent of T, that is, for every X ∈ (V \M\{T}), T ⊥ X |M .

505



STATNIKOV, LYTKIN, LEMEIRE AND ALIFERIS

Trivially, the set of all variables V excluding T is a Markov blanket of T. Also one can take

a small Markov blanket and produce a larger one by adding arbitrary (predictively redundant or

irrelevant) variables. Hence, only minimal Markov blankets are of interest.

Definition 14 Markov boundary: If no proper subset of M satisfies the definition of Markov blan-

ket of T, then M is called a Markov boundary of T.

The following theorem states a sufficient assumption for the uniqueness of Markov boundaries

and its proof is given in the book by Pearl (1988).

Theorem 3 If a joint probability distribution P over variables V satisfies the intersection property,

then for each X ∈ V , there exists a unique Markov boundary of X.

Since every joint probability distribution P that is faithful to G satisfies the intersection property

(Theorem 1), then there is a unique Markov boundary in such distributions according to Theorem

3. However, Theorem 3 does not guarantee that Markov boundaries will be unique in distributions

that do not satisfy the intersection property. In fact, as we will see below, Markov boundaries may

not be unique in such distributions.

The following two lemmas allow us to explicitly construct and verify multiple Markov blankets

and Markov boundaries when the distribution violates the intersection property (proofs are given in

Appendix A).

Lemma 1 If M is a Markov blanket of T that contains a set Y , and there is a subset of variables

Z such that Z and Y contain context-independent equivalent information about T, then M new =
(M\Y )∪Z is also a Markov blanket of T.

Lemma 2 If M is a Markov blanket of T and there exists a subset of variables M new ⊆ V \{T}
such that T ⊥M |M new, then M new is also a Markov blanket of T.

The above lemmas also hold when M is a Markov boundary and immediately imply that M new

is a Markov boundary assuming minimality of this subset.

The following three examples provide graphical structures and related probability distributions

where multiple Markov boundaries exist. Notably, these examples also demonstrate that multiple

Markov boundaries can exist even in large samples. Thus it is not an exclusively small-sample

phenomenon, as it was postulated by earlier research (Ein-Dor et al., 2005, 2006).

Example 1 Consider a joint probability distribution P described by a Bayesian network with graph

A→ B→ T where A, B, and T are binary random variables that take values {0,1}. Given the

local Markov condition, the joint probability distribution can be defined as follows: P(A = 0) =
0.3, P(B= 0 |A= 1) = 1.0, P(B= 1 |A= 0) = 1.0, P(T= 0 |B= 1) = 0.2, P(T= 0 |B= 0) = 0.4.
Two Markov boundaries of T exist in this distribution: {A} and {B}.

Example 2 Figure 1 shows a graph of a causal Bayesian network and constraints on its parame-

terization.2 As can be seen, there is an equivalent partition in the domain of A to the T-partition

2. This example has been previously published in the work by Statnikov and Aliferis (2010a) and is presented here with

the intent to illustrate the definition of equivalent partition.
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Figure 1: Graph of a causal Bayesian network with four variables (top) and constraints on its pa-

rameterization (bottom). Variables A, B, T take three values {0,1,2}, and variable C takes

two values {0,1}. Red dashed arrows denote non-zero conditional probabilities of each

variable given its parents. For example, P(T = 0 | A = 1) 6= 0, while P(T = 0 | A = 2) =
0.

of the domain of B. The following hold in any joint probability distribution of a causal Bayesian

network that satisfies the constraints in the figure:

• A and B are not deterministically related, yet they contain equivalent information about T;

• There are two Markov boundaries of T ({A,C}and {B,C});

• If an algorithm selects only one Markov boundary of T (e.g., {B,C}), then there is danger to

miss causative variables (i.e., direct cause A) and focus instead on confounded ones (i.e., B);

• The union of all Markov boundaries of T includes all variables that are adjacent with T

({A,C}).

Example 3 Consider a Bayesian network shown in Figure 2. It involves n + 1 binary variables:

X1,X2, . . . ,Xn and a response variable T. Variables Xi can be divided into m groups such that

any two variables in a group contain context-independent equivalent information about T. Assume

that n is divisible by m. Since there are n/m variables in each group, the total number of Markov

boundaries is (n/m)m. Now assume that k = n/m. Then the total number of Markov boundaries is

km. Since k > 1 and m = O(n), it follows that the number of Markov boundaries grows exponentially

in the number of variables in this example.

Now we provide theoretical results that connect the concepts of Markov blanket and Markov

boundary with the underlying causal graph. Theorem 4 was proved in the work by Neapolitan

(2004) and Pearl (1988), Theorem 5 was proved in the work by Neapolitan (2004) and Tsamardinos

and Aliferis (2003), and the proof of Theorem 6 is given in Appendix A.

Theorem 4 If a joint probability distribution P satisfies the global Markov condition for directed

graph G, then the set of children, parents, and spouses of T is a Markov blanket of T.
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T 

X1X2 X3 … Xn/m-1 Xn/m 

Xn/m+1 Xn/m+2 Xn/m+3 … X2n/m-1 X2n/m 

X(m-1)n/m+1 X(m-1)n/m+2 X(m-1)n/m+3 … Xn-1 Xn 

Group #1 of variables with context-independent equivalent information about T 

… 

Group #2 of variables with context-independent equivalent information about T 

Group #m of variables with context-independent equivalent information about T 

Figure 2: Graph of a Bayesian network used to demonstrate that the number of Markov boundaries

can be exponential in the number of variables in the network. The network parameter-

ization is provided in Table 5 in Appendix B. The response variable is T. All variables

take values {0,1}. All variables Xi in each group provide context-independent equivalent

information about T.

Theorem 5 If a joint probability distribution P is DAG-faithful to G, then the set of children, par-

ents, and spouses of T is a unique Markov boundary of T.

Theorem 6 If a joint probability distribution P satisfies the global Markov condition for ancestral

graph G, then the set of children, parents, and spouses of T, and vertices connected with T or

children of T by a bi-directed path (i.e., only with edges “↔”) and their respective parents is a

Markov blanket of T.

A graphical illustration of Theorem 6 is provided in Figure 3.

Definition 15 Optimal predictor: Given a data set D (a sample from distribution P) for variables

V , a learning algorithm L, and a performance metric M to assess learner’s models, a variable set

X ⊆ V \{T} is an optimal predictor of T if X maximizes the performance metric M for predicting

T using learner L in the data set D.

The following theorem links together the definitions of Markov blanket and optimal predictor,

and its proof is given in Appendix A.

Theorem 7 If M is a performance metric that is maximized only when P(T | V \{T}) is estimated

accurately3 and L is a learning algorithm that can approximate any conditional probability distri-

bution,4 then M is a Markov blanket of T if and only if it is an optimal predictor of T.

3. For example, M can be negative mean squared error between estimated and true values of P(T |V \{T}) (Tsamardinos

and Aliferis, 2003).

4. For example, L can be feed-forward neural networks or support vector machines that are known to have universal

approximation capabilities (Hammer and Gersmann, 2003; Pinkus, 1999; Scarselli and Chung Tsoi, 1998).
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a) b) 

Figure 3: Graphical illustration of a Markov blanket in an ancestral graph. a) Data-generative DAG,

variables H1 and H2 are latent. b) Corresponding ancestral graph. The set of parents,

children, and spouses of T are shown in blue. Vertices connected with T or children of

T by a bi-directed path and their respective parents are shown in red and are underlined.

If the global Markov condition holds for the graph and joint probability distribution, a

Markov blanket of T consists of vertices shown in blue and red. All grey vertices will be

then independent of T conditioned on the Markov blanket.

2.5 Prior Algorithms for Learning a Single Markov Boundary

The Markov boundary algorithm IAMB is described in Figure 4 (Tsamardinos and Aliferis, 2003;

Tsamardinos et al., 2003a). Originally, this algorithm was proved to be correct (i.e., that it identifies

a Markov boundary) if the joint probability distribution P is DAG-faithful to G. Then it was proved

to be correct when the composition property holds (Peña et al., 2007). The following theorem further

relaxes conditions sufficient for correctness of IAMB, requiring that only the local composition

property holds; the proof is given in Appendix A.

Theorem 8 IAMB outputs a Markov boundary of T if the joint probability distribution P satisfies

the local composition property with respect to T.

Notice that IAMB identifies a Markov boundary of T by essentially implementing its definition

and conditioning on the entire Markov boundary when testing variables for independence from

the response T. Conditioning on the entire Markov boundary may become especially problematic

in discrete data where the sample size required for high-confidence statistical tests of conditional

independence grows exponentially in the size of the conditioning set. This in part motivated the

development of the sample-efficient Markov boundary induction algorithmic family Generalized

Local Learning, or GLL (Aliferis et al., 2010a). Figure 5 presents the Semi-Interleaved HITON-PC

algorithm (Aliferis et al., 2010a), an instantiation of the GLL algorithmic family that we will use in

the present paper. Originally, Semi-Interleaved HITON-PC was proved to correctly identify a set of

parents and children of T in the Bayesian network N =<G,P> if the joint probability distribution

P is DAG-faithful to G and the so-called symmetry correction is not required (Aliferis et al., 2010a).

509



STATNIKOV, LYTKIN, LEMEIRE AND ALIFERIS

Algorithm IAMB 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 

 

  Phase I: Forward 

1. Initialize M with an empty set 

2. Initialize the set of eligible variables E ß V \ {T} 

3. Repeat 

4. Y ß argmaxXÎE Association(T,  X | M) 
5. E ß E \ {Y} 

6. If M|YT /̂  then 

7. M ß M È {Y} 

8. E ß V \ M \ {T}  

9. Until E is empty 

 

   Phase II: Backward 

10. For each X Î M 

11. If | ( \{ })T X X^ M  then 

12. M ß M \ {X} 

13. End 

14. Output M 
 

Z|

Z|

Figure 4: IAMB algorithm.

The algorithm also retains its correctness for identification of a Markov boundary of T under more

relaxed assumptions stated in Theorem 9 (proof is given in Appendix A).

Theorem 9 Semi-Interleaved HITON-PC outputs a Markov boundary of T if there is a Markov

boundary of T in the joint probability distribution P such that all its members are marginally de-

pendent on T and are also conditionally dependent on T, except for violations of the intersection

property that lead to context-independent information equivalence relations.

Theorem 9 can be also restated and proved using sufficient assumptions that are motivated by

the common assumptions in the causal discovery literature: (i) the joint probability distribution P

and directed or ancestral graph G are locally adjacency faithful with respect to T with the exception

of violations of the intersection property that lead to context-independent information equivalence

relations; (ii) P satisfies the global Markov condition for G; (iii) the set of vertices adjacent with T

in G is a Markov blanket of T.

The proofs of correctness for the Markov boundary algorithms in Theorems 8 and 9 implic-

itly assume that the statistical decisions about dependence and independence are correct. This re-

quirement is satisfied when the data set D is a sufficiently large i.i.d. (independent and identically

distributed) sample of the underlying probability distribution P. When the sample size is small, the

statistical tests of independence will incur type I and II errors. This may affect the correctness of

the algorithms output Markov boundary.

In the empirical experiments of this work, we use Semi-Interleaved HITON-PC without “sym-

metry correction” as a primary method for Markov boundary induction because prior research has
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Algorithm Semi-Interleaved HITON-PC (without “symmetry correction”) 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: a Markov boundary M of T. 

 

  Phase I: Forward 

1. Initialize M with an empty set 

2. Initialize the set of eligible variables E ß V \ {T} 

3. Repeat 

4. Y ß argmaxXÎE Association(T,  X) 
5. E ß E \ {Y} 

6. If there is no subset Z Í M such that Z|YT ^
 
then 

7. M ß M È {Y} 

8. Until E is empty 

 

   Phase II: Backward 

9. For each X Î M 

10. If there is a subset Z Í M \ {X} such that Z|XT ^  then 

11. M ß M \ {X} 

12. End 

13. Output M 
 

Figure 5: Semi-Interleaved HITON-PC algorithm (without “symmetry correction”), member of the

Generalized Local Learning (GLL) algorithmic family. The algorithm is restated in a

fashion similar to IAMB for ease of comparative understanding. Original pseudo-code is

given in the work by Aliferis et al. (2010a).

demonstrated empirical superiority of this algorithm compared to the version with the “symmetry

correction”; the GLL-MB family of algorithms (including Semi-Interleaved HITON-MB) that can

identify Markov boundary members that are non-adjacent spouses of T (and thus may be marginally

independent with T); IAMB algorithms (Tsamardinos et al., 2003a); and other comparator Markov

boundary induction methods (Aliferis et al., 2010a,b).

3. Prior Algorithms for Learning Multiple Markov Boundaries and Variable Sets

Table 1 summarizes the properties of prior algorithms for learning multiple Markov boundaries and

variable sets, while a detailed description of the algorithms and their theoretical analysis is presented

in Appendix C. As can be seen, there is no algorithm that is simultaneously theoretically correct,

complete, computationally and sample efficient, and does not rely on extensive parameterization.

This was our motivation for introducing the TIE∗ algorithmic family that is described in Section 4.

We would like to note that not all algorithms listed in Table 1 are designed for identification

of Markov boundaries; methods Resampling+RFE, Resampling+UAF, and IR-SPLR are designed

for variable selection. However, sometimes variable sets output by these methods can approximate

Markov boundaries, that is why we included these methods in our study (Aliferis et al., 2010a,b).
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Markov boundary identification 

(assuming faithfulness except for 

violations of the intersection property) 

Parameterization: 

does not require  

prior knowledge of Computa-

tionally 

efficient 

sample 

efficient 

 

correct   

(identifies Markov 

boundaries) 

complete  

(identifies all 

Markov 

boundaries) 

the number 

of Markov 

boundaries/  

variable sets 

the size of 

Markov 

boundaries/ 

variable sets 

KIAMB + + - + - - 
EGS-CMIM - - - - - + 
EGS-NCMIGS - - - +/- - + 
EGSG - - - + - + 
Resampling+RFE - - - + - + 
Resampling+UAF - - - + - + 
IR-HITON-PC + - + + + + 
IR-SPLR - - + + + + 

Table 1: Prior algorithms for learning multiple Markov boundaries and variable sets. “+′′ means

that the corresponding property is satisfied by a method, “−” means that the property is not

satisfied, and “+/−” denotes cases where the property is satisfied under certain conditions.

4. TIE∗: A Family of Multiple Markov Boundary Induction Algorithms

In this section we present a generative anytime algorithm TIE∗ (which is an acronym for “Target

Information Equivalence”) for learning from data all Markov boundaries of the response variable.

This generative algorithm describes a family of related but not identical algorithms which can be

seen as instantiations of the same broad algorithmic principles. We decided to state TIE∗ as a gener-

ative algorithm in order to facilitate a broader understanding of this methodology and devise formal

conditions for correctness not only at the algorithm level but also at the level of algorithm family.

The latter is achieved by specifying the general set of assumptions (admissibility rules) that apply

to the generative algorithm and provide a set of flexible tools for constructing numerous algorith-

mic instantiations, each of which is guaranteed to be correct. This methodology thus significantly

facilitates development of new correct algorithms for discovery of multiple Markov boundaries in

various distributions.

4.1 Pseudo-Code and Trace

The pseudo-code of the TIE∗ generative algorithm is provided in Figure 6. On input TIE∗ receives

(i) a data set D (a sample from distribution P) for variables V , including a response variable T; (ii) a

single Markov boundary induction algorithm X; (iii) a procedure Y to generate data sets De from the

so-called embedded distributions that are obtained by removing subsets of variables from the full

set of variables V in the original distribution P; and (iv) a criterion Z to verify Markov boundaries

of T. The inputs X, Y, Z are selected to be suitable for the distribution at hand and should satisfy

admissibility rules stated in Figure 7 for correctness of the algorithm (see next two subsections for

details). The algorithm outputs all Markov boundaries of T that exist in the distribution P.
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Generative algorithm TIE* 

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary induction algorithm X; 

· procedure Y to generate datasets from the embedded distributions; 

· criterion Z to verify Markov boundaries of T. 

(specific examples of inputs X, Y, Z are given in subsection 4.2) 
 

Output: all Markov boundaries of T that exist in P. 

 

1. Use algorithm X to learn a Markov boundary M of T from the dataset D for variables V (i.e., in 

the original distribution P) 

2. Output M 

3. Repeat 

4. Use procedure Y to generate a dataset D
e
 from the embedded distribution by removing a 

subset of variables G from the full set of variables V in the original distribution (also denoted 

as D(V \ G)). 

5. Use algorithm X to learn a Markov boundary Mnew of T from the dataset D
e
 

6. If Mnew is a Markov boundary of T in the original distribution according to criterion Z, output 

Mnew 

7. Until all datasets D
e
 generated by procedure Y have been considered. 

 

Figure 6: TIE∗ generative algorithm.

 
Admissibility rules for inputs X, Y, Z of the TIE* algorithm  

 

I. The Markov boundary induction algorithm X can correctly identify a Markov boundary of T 

both in the dataset D (from the original distribution) and in all datasets D
e
 (from the embedded 

distributions) that are generated by procedure Y. 

II. For every Markov boundary of T (M) that exists in the original distribution, the procedure Y 

generates a dataset D
e 
= D(V \ G) such that M can be discovered by the Markov boundary 

induction algorithm X applied to the dataset D
e
. 

III. The criterion Z can correctly verify that Mnew is a Markov boundary of T in the original 

distribution. 
 

Figure 7: Admissibility rules for inputs X, Y, Z of the TIE∗ algorithm.

In step 1, TIE∗ uses a Markov boundary induction algorithm X to learn a Markov boundary

M of T from the data set D for variables V (i.e., in the original distribution). Then M is output

in step 2. In step 4, the algorithm uses a procedure Y to generate a data set De that spans over a

subset of variables that participate in D. The motivation is that De may lead to identification of a

new Markov boundary of T that was previously “invisible” to a single Markov boundary induction

algorithm because it was “masked” by another Markov boundary of T. Next, in step 5 the Markov

boundary algorithm X is applied to D
e, resulting in a Markov boundary M new in the embedded

distribution. If M new is also a Markov boundary of T in the original distribution according to

criterion Z, then M new is output (step 6). The loop in steps 3-7 is repeated until all data sets D
e

generated by procedure Y have been considered.
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T 

D E F 

A 

C 

B 

Figure 8: Graph of a causal Bayesian network used to trace the TIE∗ algorithm. The network

parameterization is provided in Table 6 in Appendix B. The response variable is T. All

variables take values {0,1} except for B that takes values {0,1,2,3}. Variables A and C

contain equivalent information about T and are highlighted with the same color. Likewise,

two variables {D,E} jointly and a single variable B contain equivalent information about

T and thus are also highlighted with the same color.

Next we provide a high-level trace of the algorithm. Consider running an instance of the TIE∗

algorithm with admissible inputs X, Y, Z implemented by an oracle in the data set D generated from

the example causal Bayesian network shown in Figure 8.5 The response variable T is directly caused

by C, D, E, and F. The underlying distribution is such that variables A and C contain equivalent

information about T; likewise two variables {D,E} jointly and a single variable B contain equivalent

information about T. In step 1 of TIE∗ (Figure 6), a Markov boundary induction algorithm X is

applied to learn a Markov boundary of T, resulting in M = {A,B,F}. Then M is output in step 2.

In step 4, a procedure Y considers removing G = {F} and generates a data set De for variables V

\ G. Then in step 5 the Markov boundary induction algorithm P is run on the data set De . This

yields a Markov boundary of T in the embedded distribution M new = {A,B}. The criterion Z in step

6 does not confirm that M new is also Markov boundary of T in the original distribution; thus M new

is not output. The loop is run again. In step 4 the procedure Y considers removing G = {A} and

generates a data set De for variables V \G. The Markov boundary induction algorithm X in step 5

yields a Markov boundary of T in the embedded distribution M new = {C,B,F}. The criterion Z in

step 6 confirms that M new is also a Markov boundary in the original distribution, thus it is returned.

Similarly, when the Markov boundary induction algorithm X is run on the data set De = V \ G
where G = {B} or G = {A,B}, two additional Markov boundaries of T in the original distribution,

{A,D,E,F} or {C,D,E,F}, respectively, are found and output. The algorithm terminates shortly.

In total, four Markov boundaries of T are output by the algorithm: {A,B,F}, {C,B,F}, {A,D,E,F}
and {C,D,E,F}. These are exactly all Markov boundaries of T that exist in the distribution.

5. Specific examples of inputs X, Y, Z are given in the next subsection and are omitted here in order to emphasize core

algorithmic principles of TIE∗.
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4.2 Specific Instantiations

In this subsection we give several specific instantiations of the generative algorithm TIE∗ (Figure 6)

and in the next subsection we prove their admissibility (i.e., that they satisfy rules stated in Figure 7).

An instantiation of TIE∗ is specified by assigning its inputs X, Y, Z to well-defined algorithms.

Input X: This is a Markov boundary induction algorithm. For example, we can use IAMB

(Figure 4) or Semi-Interleaved HITON-PC (Figure 5) algorithms that were described in Section

2.5. Other sound Markov boundary induction algorithms can be used as well (Aliferis et al., 2010a,

2003a; Mani and Cooper, 2004; Peña et al., 2007; Tsamardinos and Aliferis, 2003; Tsamardinos

et al., 2003a,b).

Input Y: This is a procedure to generate data sets from the embedded distributions that would

allow identification of new Markov boundaries of T. Before we give specific examples of this pro-

cedure, it is worthwhile to understand its use in TIE∗. The main principle of TIE∗ is to first identify

a Markov boundary of T in the original distribution and then iteratively run a Markov boundary

induction algorithm in data sets from the embedded distributions (that are obtained by removing

subsets of variables from M ) in order to identify new Markov boundaries in the original distri-

bution. Generating such data sets from the embedded distributions is the purpose of procedure Y.

The reason why we need to remove subsets of variables from the original data and rerun Markov

boundary induction algorithm in the data set De = P ( V \ G ) is because some variables “mask”

Markov boundaries during operation of conventional single Markov boundary induction algorithms

by rendering some of the Markov boundary members conditionally independent of T. One possible

approach is to generate data sets by removing subsets of the original Markov boundary, or, more

broadly, subsets from all currently identified Markov boundaries. The procedure termed IGS (which

is an acronym for “Incremental Generation of Subsets”) implements the above stated approach and

is described in Figure 9.6

Below and in Table 2 we revisit the trace of TIE∗ that was given in the previous subsection, now

focusing on the operation of the procedure IGS (Y) from Figure 9. Recall that application of the

Markov boundary induction algorithm in step 1 of TIE∗ resulted in M = {A,B,F}. In step 4 of

TIE∗, the procedure IGS can generate data sets De = D ( V \G ) from the embedded distributions

by removing any of the three possible subsets G = {A} or {B} or {F} from V (it will not consider

larger subsets because of the requirement of the smallest subset size in step 1 of IGS, see Figure

9). Recall that next we considered a data set De obtained by removing G = {F} and identified via

algorithm X a Markov boundary in the embedded distribution M new ={A,B} that did not turn out

to be a Markov boundary in the original distribution. When the procedure IGS is executed in the

following iterations of steps 3-7, it will never generate data set De without {F} because G∗1 = {F}
and we require that G does not include G∗j for j = 1,. . . ,m. In the next iteration, IGS can generate

two possible data sets De by removing G = {A} or {B} from V . In order to be consistent with our

previous trace, assume that the procedure IGS output a data set De obtained by removing G = {A}
which led to identification of a new Markov boundary both in the original and embedded distribution

6. To retain simplicity of the TIE∗ pseudo-code (Figure 6), we implicitly assume that M i,Gi,G
∗
j are stored during

operation of the generative algorithm TIE∗. This can be implemented by setting a counter of all identified Markov

boundaries in the original distribution (i) and a counter of all identified Markov boundaries in the embedded dis-

tribution that are not Markov boundaries the original distribution ( j). Then the following assignments should be

made: M1←M and G
∗
1←⊘ after step 1 of TIE∗;M i←Mnew and G

∗
i←G

∗ in step 6 of TIE∗ if Mnew is a Markov

boundary in the original distribution; and G
∗
j←G in step 6 of TIE∗ if Mnew is not a Markov boundary in the original

distribution.
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Procedure IGS to generate datasets from the embedded distributions  
 

// This is an instantiation of the procedure Y in the generative algorithm TIE*  

 

Inputs
6
: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundaries 
nMM ,...,1

of T (in the original distribution) obtained so far by TIE* and 

ordered by the time of discovery from earliest (
1M ) to latest ( nM ); 

· subsets 
nGG ,...,1

 that were used in previous calls to IGS to generate datasets from the 

embedded distributions that led to discovery of the above Markov boundaries (we use G1=Æ); 

· subsets **

1 ,..., mGG
 
that were used in previous calls to IGS to generate datasets from the 

embedded distributions that did not lead to Markov boundaries in the original distribution.   

 

1. Generate the smallest subset of variables G: )( iii GMGG ÈÍÌ for some i = 1, .., n that 

neither includes 
*

jG  nor coincides with 
kG  for any j =1, …, m and k =1, …, n 

2. D
e 
ß D(V \ G)   // This is a dataset from the embedded distribution 

 

Figure 9: Procedure IGS (Y) to generate data sets from the embedded distributions Note that IGS

is a procedure (not a function), and we assume that De and G are accessible in the scope

of TIE∗.

M new={C,B,F}. When the procedure IGS is executed in the next iteration, it will generate a data

set De by removing a subset G = {B} from V (all other subsets will have two or more variables and

thus will not be considered). This would lead to identification of a new Markov boundary both in

the original and embedded distribution M new ={A,D,E,F}. When the procedure IGS is executed in

the next iteration, it can generate data sets De by removing G ={A,B} or{A,C} or {B,D} or {B,E}
from V . Assume that the procedure generated a data set De by removing G ={A,B}, which would

lead to identification of a new Markov boundary both in the original and embedded distribution

M new ={C,D,E,F}. Several more iterations will follow, but no new Markov boundaries in the

original distribution will be identified (see Table 2 for one more iteration), and TIE∗ will terminate.

As it follows from the above example, we may have several possibilities for the subset G (and

thus for defining a data set De ) in the procedure IGS and we need to define rules in order to select

a single subset. We therefore provide three specific implementations of the procedure IGS:

• IGS-Lex (“Lex” stands for “lexicographical”): Procedure IGS from Figure 9 where one

chooses a subset G with the smallest lexicographical order of its variables;

• IGS-MinAssoc (“MinAssoc” stands for “minimal association”): Procedure IGS from Figure 9

where one chooses a subset G with the smallest association with the response variable T;

• IGS-MaxAssoc (“MaxAssoc” stands for “maximal association”): Procedure IGS from Fig-

ure 9 where one chooses a subset G with the largest association with the response variable T.

The above three instantiations of the procedure IGS may lead to different traces of the TIE∗

algorithm, however the final output of the algorithm will be the same (it will discover all Markov

boundaries of T).
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Loop 

iteration 

(steps 3-7) 

Procedure IGS (step 4) Identified Markov 

boundary (MB) 

(step 5) 

MB in original 

distribution 

(step 6)? Inputs 
Possible 

subsets G 

Output  

D
e
 

#1 
× M1={A, B, F} 

× G1=Æ 

{A},  

{B}, 

{F} 

D(V \ {F}) {A, B} NO 

#2 

× M1 

× G1 

× }{*

1 F=G  

{A},  

{B} 
D(V \ {A}) {C, B, F} YES 

#3 

× M1, M2={C, B, F} 

× G1, G2={A} 

× 
*

1G  

{B} D(V \ {B}) {A, D, E, F} YES 

#4 

× M1, M2, M3={A, D, E, F} 

× G1, G2, G3={B} 

× 
*

1G  

{A, B},  

{A, C}, 

{B, D},  

{B, E}.  

D(V \ {A, B}) {C, D, E, F} YES 

#5 

× M1, M2, M3,  

M4={C, D, E, F} 

× G1, G2, G3, G4={A, B} 

× 
*

1G  

{A, C}, 

{B, D},  

{B, E}. 

D(V \ {A, C}) {B, F} NO 

 

Table 2: Part of the trace of TIE∗, focusing on operation of the procedure Y.

Input Z: This is a criterion that can verify whether M new, a Markov boundary in the embed-

ded distribution (that was found by application of the Markov boundary induction algorithm X in

step 5 of TIE∗ to the data set De) is also a Markov boundary in the original distribution. In other

words, it is a criterion to verify the Markov boundary property of M new in the original definition.

For example, we can use the following two criteria given in Figures 10 and 11. Criterion Indepen-

dence from Figure 10 is closely related to the definition of the Markov boundary, and essentially

implies its verification. Criterion Predictivity from Figure 11 verifies Markov boundaries by assess-

ing their predictive (classification or regression) performance using some learning algorithm and

performance metric.

Appendix D provides two concrete admissible instantiations of the generative algorithm TIE∗

(admissibility follows from theoretical results presented in the next subsection). The instantiation

in Figure 17 is obtained using X = Semi-Interleaved HITON-PC, Y = IGS, Z = Predictivity. The

instantiation in Figure 18 is obtained using X = Semi-Interleaved HITON-PC, Y = IGS, Z = Inde-

pendence. Appendix D also gives practical considerations for computer implementations of TIE∗.

4.3 Analysis of the Algorithm Correctness

In this subsection we state theorems about correctness of TIE∗ and its specific instantiations that

were described in the previous subsection and Appendix D. The proofs of all theorems are given in

Appendix A.

First we show that the generative algorithm TIE∗ is sound and complete:
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Criterion Independence to verify Markov boundaries  
 

// This is an instantiation of the criterion Z in the generative algorithm TIE*  

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary M of T in the original distribution; 

· Markov boundary Mnew of T in the embedded distribution. 
      

Output:  

· TRUE if Mnew is a Markov boundary of T in the original distribution; 

· FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 

If 
newT MM |^ , output TRUE; otherwise output FALSE. 

 

m̂

m̂

m̂

Figure 10: Criterion Independence (Z) to verify Markov boundaries.

  
Criterion Predictivity to verify Markov boundaries  
 

// This is an instantiation of the criterion Z in the generative algorithm TIE*  

 

Inputs: 

· dataset D (a sample from distribution P) for variables V, including a response variable T; 

· Markov boundary M of T in the original distribution; 

· Markov boundary Mnew of T in the embedded distribution; 

· learning algorithm L (to build a prediction model for T given data D for some subset of  

variables from V); 

· performance metric M (to assess the prediction model obtained by L; larger values of this 

performance metric correspond to higher predictivity of the model). 
 

Output:  

· TRUE if Mnew is a Markov boundary of T in the original distribution; 

· FALSE if Mnew is a not a Markov blanket of T in the original distribution. 

 

1. 1m̂ ß performance estimate using metric M for prediction model obtained by L in data D for 

variables M 

2. 2m̂ ß performance estimate using metric M for prediction model obtained by L in data D for 

variables Mnew 

3. If 21
ˆˆ mm £  (taking into account statistical uncertainty), output TRUE; otherwise output FALSE. 

 

Figure 11: Criterion Predictivity (Z) to verify Markov boundaries.

Theorem 10 The generative algorithm TIE∗ outputs all and only Markov boundaries of T that exist

in the joint probability distribution P if the inputs X, Y, Z are admissible (i.e., satisfy admissibility

rules in Figure 7).
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Now we show that IAMB (Figure 4) and Semi-Interleaved HITON-PC (Figure 5) are admissible

Markov boundary algorithms for TIE∗ under sufficient assumptions. In the case of the IAMB algo-

rithm, the sufficient assumptions for TIE∗ admissibility are the same as sufficient assumptions for

the general algorithm correctness (see Theorem 8). This leads to the following theorem.

Theorem 11 IAMB is an admissible Markov boundary induction algorithm for TIE∗ (input X) if

the joint probability distribution P satisfies the local composition property with respect to T.

However, the sufficient assumptions for the general correctness of Semi-Interleaved HITON-PC

(Theorem 9) are not sufficient for TIE∗ admissibility and require further restriction. Specifically,

we need to require that all members of all Markov boundaries retain marginal and conditional de-

pendence on T, except for certain violations of the intersection property. This leads to the following

theorem.

Theorem 12 Semi-Interleaved HITON-PC is an admissible Markov boundary induction algorithm

for TIE∗ (input P) if all members of all Markov boundaries of T that exist in the joint probability

distribution P are marginally dependent on T and are also conditionally dependent on T, except

for violations of the intersection property that lead to context-independent information equivalence

relations.

The next theorem states that the procedure IGS (Figure 9) is admissible for TIE∗:

Theorem 13 Procedure IGS to generate data sets from the embedded distributions (input Y) is

admissible for TIE∗.

Finally we show that both criteria Independence (Figure 10) and Predictivity (Figure 11) for verifi-

cation of Markov boundaries are admissible for TIE∗ and state sufficient assumptions for the latter

criterion. The former criterion implicitly assumes correctness of statistical decisions, similarly to

IAMB and Semi-Interleaved HITON-PC (see end of Section 2.5 for related discussion).

Theorem 14 Criterion Independence to verify Markov boundaries (input Z) is admissible for TIE∗

Theorem 15 Criterion Predictivity to verify Markov boundaries (input Z) is admissible for TIE∗ if

the following conditions hold: (i) the learning algorithm L can accurately approximate any condi-

tional probability distribution, and (ii) the performance metric M is maximized only when P( T| V
\ {T}) is estimated accurately.

As mentioned in the beginning of Section 4, the generative nature of TIE∗ facilitates design of new

algorithms for discovery of multiple Markov boundaries by simply instantiating TIE∗ with input

components X, Y, Z. Furthermore, if X, Y, Z are admissible, then TIE∗ will be sound and complete

according to Theorem 10, otherwise the algorithm will be heuristic. For example, one can take an

established Markov boundary induction algorithm, prove its admissibility, and then plug it into TIE∗

with admissible components Y and Z (e.g., ones presented above). This will yield a new correct

algorithm and significant economies in the proof of its correctness because one has only to prove

admissibility of new input components.
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4.4 Complexity Analysis

We first note that the computational complexity of TIE∗ depends on a specific instantiation of its

input components X (Markov boundary induction algorithm), Y (procedure for generating data sets

from the embedded distributions) and Z (criterion for verifying Markov boundaries), and on the

underlying joint probability distribution over a set variables V . In this subsection we will consider

the complexity of the following two specific instantiations of TIE∗: (X= Semi-Interleaved HITON-

PC, Y=IGS-Lex, Z=Independence) and (X= IAMB, Y=IGS-Lex, Z=Independence).

Since in our experiments we found that Markov boundary induction (with input component X)

was the most computationally expensive step in TIE∗ and accounted for > 99% of algorithm run-

time, we will omit from consideration the complexity of components Y and Z, and will use the

complexity of component X to derive an estimate of the total computational complexity of TIE∗.

Following general practice in complexity analysis of Markov boundary and causal discovery algo-

rithms, we measure computational complexity in terms of the number of statistical tests of condi-

tional independence.7 For completeness we also note that there exist efficient implementations of

the G2 test for discrete variables that can take only time nlog(n) in the number of training instances

n. The time for computation of Fishers Z-test for continuous variables is also bounded by a low

order polynomial in n because this test essentially involves solution of a linear system. See the work

by Aliferis et al. (2010a) and Anderson (2003) for more details and discussion.

As with all sound and complete computational causal discovery algorithms, discovery of all

Markov boundaries (and even one Markov boundary) is worst-case intractable. However we are

interested in the average-case complexity of TIE∗ in real-life distributions that is more instructive

to consider. Complexities of Markov boundary induction algorithms IAMB and Semi-Interleaved

HITON-PC are O(|V ||M |) and O(|V |2|M |), respectively, assuming that the size of the candidate

Markov boundary M obtained in the Forward phase is close to the size of the true Markov boundary

obtained after the Backward phase (see Figures 4 and 5), which is typically the case in practice

(Aliferis et al., 2010a; Tsamardinos and Aliferis, 2003; Tsamardinos et al., 2003a). When TIE∗ is

parameterized with the IGS procedure (as the component Y) and there is only one Markov boundary

M in the distribution, TIE∗ will invoke a Markov boundary induction algorithm X, |M |+ 1 number

of times. Thus, the total computational complexity of TIE∗ in this case becomes O(|V ||M |2) if X =

IAMB and O(|V ||M | | 2|M |) if X = Semi-Interleaved HITON-PC.When N Markov boundaries with

the average size |M | are present in the distribution, TIE∗ with IGS procedure will invoke a Markov

boundary induction algorithm no more than O(N2|M |) times. Therefore, the total complexity of

TIE∗ with the IGS procedure is O(N2|M ||V ||M |) ) when X = IAMB and O(N|V |22|M |) when X =

Semi-Interleaved HITON-PC.

In practical applications of TIE∗ with Semi-Interleaved HITON-PC, we use an additional caching

mechanism for conditional independence decisions, which alleviates the need to repeatedly conduct

the same conditional independence tests during Markov boundary induction when we have only

slightly altered the data set by removing a subset of variables G. In this case, induction of the first

Markov boundary still takes O(|V |2|M |) independence tests, but all consecutive Markov bound-

aries typically require less than O(|V |) conditional independence tests. Thus, the overall complex-

7. Since we use negative p-values from a conditional independence test as the measure of association in IAMB and

Semi-Interleaved HITON-PC (see Appendix D), we assume that complexity of computing an association is equal to

the complexity of conditional independence testing.
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Algorithm iTIE* 

 

Input: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 

 

1. Run steps 1-13 of Semi-Interleaved HITON-PC algorithm (Figure 5) with the following steps 

instead of steps 6 and 7: 
 

(a) If there is no subset Z Í M such that Z|YT ^  
then 

(b) M ß M È {Y} 

(c) Else if Z exists and the following relations hold: YT /̂ , Z/̂T , YT |Z^  

(d) Record in Q that Y and Z contain equivalent information with respect to T 
 

2. Compute the Cartesian product of information equivalence relations for subsets of M that are 

stored in Q to construct multiple Markov boundaries of T 

3. Output multiple Markov boundaries of T 
 

Figure 12: iTIE∗ algorithm, presented as a modification of Semi-Interleaved HITON-PC. Similar

algorithms may be obtained by modification of other members of the GLL-PC algorith-

mic family (Aliferis et al., 2010a).

ity of TIE∗ with the IGS procedure and Semi-Interleaved HITON-PC becomes O(|V |2|M |+(N−
1)|V |2|M |), or equivalently O(N|V |2|M |).

Finally, in practice we use parameters max-card for IGS procedure in TIE∗ and max-k for Semi-

Interleaved HITON-PC to limit the number of conditional independence tests (see Appendix D).

Thus, complexity of TIE∗ with the IGS procedure becomes O(N|V ||M |max-card+1) when X= IAMB

and O(|V ||M |max-k +(N−1)|V ||M |max-card) when X = Semi-Interleaved HITON-PC.

4.5 A Simple and Fast Algorithm for Special Distributions

The TIE∗ algorithm allows to find all Markov boundaries when there are information equivalence

relations between arbitrary sets of variables. A simpler and faster algorithm can be obtained by

restricting consideration to distributions where all information equivalence relations follow from

context-independent information equivalence relations between individual variables. The resulting

algorithm is termed iTIE∗(which is an acronym for “Individual Target Information Equivalence”)

and is described in Figure 12. As can be seen, iTIE∗ can be described as a modification to Semi-

Interleaved HITON-PC (or GLL-PC in general).

Consider running the iTIE∗ algorithm on data D generated from the example causal Bayesian

network shown in Figure 13. The response variable T is directly caused by C, D, F. The underlying

distribution is such that variables A and C contain equivalent information about T; likewise variables

B and D contain equivalent information about T. iTIE∗ starts by executing Semi-Interleaved HITON-

PC with the modified steps 6 and 7. Assume that we are running the loop in steps 3-8 of Semi-

Interleaved HITON-PC and currently E = {C,D} and M = {A,B,F}; variables E and J were

eliminated conditioned on F in previous iterations of the loop. In step 4 of Semi-Interleaved HITON-

PC, the algorithm may select Y = C. Next the modified steps 6 and 7 of Semi-Interleaved HITON-PC

proceed as described in Figure 12, namely: 1(a) we find that a subset Z={A} renders T independent
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T 

F 

A 

C 

B 

D 

J 

E 

Figure 13: Graph of a causal Bayesian network used to trace the iTIE∗ algorithm. The network

parameterization is provided in Table 7 in Appendix B. The response variable is T . All

variables take values {0,1}. Variables A and C contain equivalent information about T

and are highlighted with the same color. Likewise, variables B and D contain equivalent

information about T and thus are also highlighted with the same color.

of Y = C; 1(c) T is marginally dependent on Y = C,T is marginally dependent on Z = {A}, and

Y = C renders T independent of Z = {A}, thus 1(d) we record in Θ that Y = C and Z = {A}
contain equivalent information with respect to T . In the next iteration of the loop in steps 3- 8 of the

modified Semi-Interleaved HITON-PC, we record in Θ that Y = D and Z = {B} contain equivalent

information with respect to T . The Backward phase in steps 9-13 of Semi-Interleaved HITON-PC

does not result in variable eliminations in this example, thus we have M = {A,B,F}. Finally, we

build Cartesian product of information equivalence relations for subsets of M that are stored in Θ

and obtain 4 Markov boundaries of T : {A,B,F},{A,D,F},{C,B,F}, and {C,D,F}.

The iTIE∗ algorithm correctly identifies all Markov boundaries under the following sufficient as-

sumptions: (a) all equivalence relations in the underlying distribution follow from context-independent

equivalence relations of individual variables, and (b) the assumptions of Theorem 12 hold. The

proof of correctness of iTIE∗ can be obtained from the proofs of Theorems 9 and 12 and Lemma

1.

It is also important to notice that in some cases iTIE∗ can identify all Markov boundaries even if

the above stated sufficient assumption (a) is violated; that is why we do not exclude the possibility

that Z can be a set of variables in steps 1(c,d) of iTIE∗. Consider a Bayesian network with the

graph C
ր A ց
ց B ր

T that is parameterized such that a variable C and the set of variables {A,B}

jointly contain context-independent equivalent information about T , and T is marginally dependent

on A,B,C. Thus, there are two Markov boundaries of T in the joint probability distribution: {C}
and {A,B}. Now consider a situation when iTIE∗ first admits {A,B} to M during execution of

the modified Semi-Interleaved HITON-PC or another instance of GLL-PC. Then the step 1(c) of

iTIE∗ will reveal that while T ⊥ C | {A,B}, the following relations hold T 6⊥ C, T 6⊥ {A,B}, and

T ⊥ {A,B} |C. Thus, the algorithm will identify that C and {A,B} contain equivalent information

about T and will correctly find all Markov boundaries in the distribution. However, if iTIE∗ first

admits C to M , then the algorithm will output only one Markov boundary of T that consists of
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a single variable C, because variables A and B, when considered separately, will be eliminated by

conditioning on C and no equivalence relations will be found.

Notice that unlike TIE∗, iTIE∗ does not rely on repeated invocation of a Markov boundary in-

duction algorithm and instead extends Semi-Interleaved HITON-PC by potentially performing at

most one additional independence test for each variable in V during the Forward phase, as shown

in Figure 12.8 This allows iTIE∗ to maintain computational complexity of the same order as Semi-

Interleaved HITON-PC, namely, O(|V |2|M |) conditional independence tests. As before, |M | de-

notes the average size of a Markov boundary and the above complexity bound assumes that the

size of a candidate Markov boundary obtained in the Forward phase is close to the size of a true

Markov boundary obtained at the end of the Backward phase (see Figure 5). In practical applica-

tions of iTIE∗, we also use parameter max-k that limits the maximum size of a conditioning test,

which brings complexity of iTIE∗ to O(|V ||M |max-k). Interestingly, iTIE∗ can efficiently identify

all Markov boundaries in the distribution shown in Figure 2. This is due to the fact that the distribu-

tion in Figure 2 satisfies the assumption underlying iTIE∗ (i.e., that all information equivalences in

a distribution follow from context-independent equivalences between individual variables) and thus

allows it to capture all equivalence relationships between variables within groups in a single run

of the Forward phase of the modified Semi-Interleaved HITON-PC. All Markov boundaries in the

example in Figure 2 can then be reconstructed by taking the Cartesian product over sets of variables

found to be equivalent with respect to T in step 2 of iTIE∗ (Figure 12).

For experiments reported in this work, we implemented and ran iTIE∗ based on the Causal

Explorer code of Semi-Interleaved HITON-PC (Aliferis et al., 2003b; Statnikov et al., 2010) with

values of parameters and statistical tests of independence that are described in Appendix D.

5. Empirical Experiments

In this section, we present experimental results obtained by applying methods for learning multiple

Markov boundaries and variable sets on simulated and real data. The evaluated methods and their

parameterizations are shown in Table 9 in Appendix E. These methods were chosen for our evalua-

tion as they are the current state-of-the-art techniques for discovery of multiple Markov boundaries

and variable sets. In order to study the behavior of these methods as a function of parameter set-

tings, we considered several distinct parameterizations of each algorithm. In cases when parameter

settings have been recommended by the authors of a method, we included these settings in our

evaluation. A detailed description of parameters of prior methods for induction of multiple Markov

boundaries and variable sets is provided in Appendix C.

All experiments involving assessment of classification performance were executed by hold-

out validation or cross-validation (see below), whereby Markov boundaries and variable sets are

discovered in a training subset of data samples (training set), classification models based on the

above variables are also developed in the training set, and the reported performance of classifica-

tion models is estimated in an independent testing set. Assessment of classification performance

of the extracted Markov boundaries and variable sets was done using Support Vector Machines

(SVMs) (Vapnik, 1998). We chose to use SVMs due to their excellent empirical performance across

a wide range of application domains (especially with high-dimensional data and relatively small

sample sizes), regularization capabilities, ability to learn both simple and complex classification

8. This is a test T ⊥ Z | Y . Other necessary tests T 6⊥ Y and T 6⊥ Z have been previously computed in step 4 of

Semi-Interleaved HITON-PC algorithm, and their results can be retrieved from the cache.

523



STATNIKOV, LYTKIN, LEMEIRE AND ALIFERIS

functions, and tractable computational time (Cristianini and Shawe-Taylor, 2000; Schölkopf et al.,

1999; Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). When the response variable was multi-

class, we applied SVMs in one-versus-rest fashion (Schölkopf et al., 1999). We used libSVM v.2.9.1

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm/) implementation of SVMs in all experiments

(Fan et al., 2005). Polynomial kernels were used in SVMs as they have shown good classification

performance across the data domains considered in this study. The degree d of the polynomial ker-

nel and the penalty parameter C of SVM were optimized by cross-validation on the training data.

Each variable in a data set was scaled to [0,1] range to facilitate SVM training. The scaling constants

were computed on the training set of samples and then applied to the entire data set.

All experiments presented in this section were run on the Asclepius Compute Cluster at the Cen-

ter for Health Informatics and Bioinformatics (CHIBI) at New York University Langone Medical

Center (http://www.nyuinformatics.org) and the Advanced Computing Center for Research

and Education (ACCRE) at Vanderbilt University (http://www.accre.vanderbilt.edu/). For

comparative purposes all experiments used exclusively the latest generation of Intel Xeon Nehalem

(x86) processors. Overall, it took >50 years of single CPU time to complete all reported experi-

ments.

5.1 Experiments with Simulated Data

Below we present an evaluation of methods for extraction of multiple Markov boundaries and vari-

able sets in simulated data. Simulated data allows us to evaluate methods in a controlled setting

where the underlying causal process and all Markov boundaries of the response variable T are

known exactly. Two data sets were used in this evaluation. One of these data sets, referred to as

T IED, was previously used in an international causality challenge (Statnikov and Aliferis, 2010b).

T IED contains 30 variables, including the response variable T. The underlying causal graph and

its parameterization are given in the work by Statnikov and Aliferis (2010b). There are 72 distinct

Markov boundaries of T . Each Markov boundary contains 5 variables: variable X10 and one vari-

able from each of the four subsets {X1,X2,X3,X11}, {X5,X9}, {X12,X13,X14} and {X19,X20,X21}.
Another simulated data set, referred to as T IED1000, contains 1,000 variables in total and was

generated by the causal process of T IED augmented with an additional 970 variables that have no

association with T. T IED1000 has the same set of Markov boundaries of T as T IED. T IED1000

allows us to study the behavior of different methods for learning multiple Markov boundaries and

variable sets in an environment where the fraction of variables carrying relevant information about

T is small.

For each of the two data sets, 750 observations were used for discovery of Markov bound-

aries/variable sets and training of the SVM classification models of the response variable T (with

the goal to predict its values from the inferred Markov boundary variables), and an independent

testing set of 3,000 observations was used for evaluation of the models’ classification performance.

All methods for extracting multiple Markov boundaries and variable sets were assessed based

on the following six performance criteria:

I. The number of distinct Markov boundaries/variable sets output by the method.

II. The average size of an output Markov boundary/variable set (number of variables).
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III. The number of true Markov boundaries identified exactly, that is, without false positives and

false negatives.9

IV. The average Proportion of False Positives (PFP) in the output Markov boundaries/variable

sets.10

V. The average False Negative Rate (FNR) in the output Markov boundaries/variable sets.11

VI. The average classification performance (weighted accuracy) over all output Markov bound-

aries/variable sets.12 We also compared the average classification performance of the SVM models

with the maximum a posteriori classifier in the true Bayesian network (denoted as MAP-BN) using

the same data sample.

Technical details about computing performance criteria III-V are given in Appendix E.

The results presented in Figure 14 in the manuscript, and Tables 10 and 11 and Figure 19 in

Appendix E show that only TIE∗ and iTIE∗ identified exactly all and only true Markov boundaries

of T in both simulated data sets, and their classification performance with the SVM classifier was

statistically comparable to performance of the MAP-BN classifier. None of the comparator methods,

regardless of the number of Markov boundaries/variable sets output, were able to identify exactly

any of the 72 true Markov boundaries, except for Resampling+RFE (without statistical comparison)

and IR-HITON-PC that identified exactly 1-2 out of 72 true Markov boundaries, depending on the

data set. Overall prior methods had either large proportion of false positives or large false negative

rate, and often their classification performance was significantly worse that the performance of the

MAP-BN classifier. However, in some cases the classification performance of other methods was

comparable to the MAP-BN classifier, regardless of the number of Markov boundaries identified

exactly. This can be attributed to (i) the relative insensitivity of the SVM classifiers to false positives,

(ii) connectivity in the underlying graph that compensates false negatives with other weakly relevant

variables, and (iii) differences between the employed classification performance metric (weighted

accuracy) and the metric which is maximized by the Markov boundary variables (that requires

accurate estimation of P(T |V \{T}), which is a harder task than maximizing proportions of correct

classification in the weighted accuracy metric). Thus, we remind the reader that a high classification

performance is often a necessary but not sufficient condition for correct identification of Markov

boundaries. Detailed discussion of the performance of comparator methods is given in Appendix E.

5.2 Experiments with Real Data

For evaluation of methods for learning multiple Markov boundaries and variable sets in real data, we

used 13 data sets that cover a broad range of application domains (clinical outcome prediction, gene

expression, proteomics, drug discovery, text categorization, digit recognition, ecology and finance),

dimensionalities (from 86 to over 100,000), and sample sizes (from hundreds to thousands) that are

representative of those appearing in practical applications. These data sets have recently been used

9. False positives are variables that do not belong to any true Markov boundary of T in the causal graph, but are

included in a Markov boundary/variable set extracted by some method. False negatives are variables that belong to a

true Markov boundary of T , but are absent in the extracted Markov boundary/variable set.

10. PFP is the number of false positives in an output Markov boundary/variable set divided by its size.

11. FNR is the number of false negatives in an output Markov boundary/variable set divided by the size of the true

Markov boundary.

12. Given that the response variable T had four possible values, classification performance was measured by the weighted

accuracy metric that allows to measure classification performance independent of class priors and can be applied to

multiclass responses (Guyon et al., 2006). In brief, weighted accuracy is obtained by computing proportion of correct

classifications in each class and combining these proportions by weighting using prior probabilities in each class.
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Figure 14: Results for average classification performance (weighted accuracy), average false neg-

ative rate, and average proportion of false positives that were obtained in TIED (top

figure) and TIED1000 (bottom figure) data sets. The style and color of a vertical line

connecting each point with the plane shows whether the average SVM classification

performance of a method is statistically comparable with the MAP-BN classifier in the

same data sample (red solid line) or not (black dotted line). The Pareto frontier was

constructed based on the average false negative rate and the average proportion of false

positives over the comparator methods (i.e., non-TIE∗). Results of TIE∗ and iTIE∗ were

identical in both data sets.
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in a broad benchmark (Aliferis et al., 2010a) of the current state-of-the-art single Markov boundary

induction and feature selection methods, which is another reason why we chose to use the same data

in this study. The data sets are described in detail in Table 12 in Appendix E. The data sets were

preprocessed (imputed, discretized, etc.) as described in the work by Aliferis et al. (2010a).

In data sets with relatively large sample sizes (> 600), classification performance of the output

Markov boundaries and variable sets was estimated by holdout validation with 75% of samples used

for Markov boundary/variable set induction and SVM classifier training, and the remaining 25% of

samples used for estimation of classification performance. In small-sample data sets, 10- fold cross-

validation was used instead. Markov boundary/variable set induction and classifier training were

both performed on the training sets from the 10-fold cross-validation design, with classification

performance being subsequently estimated on the respective testing sets.

Evaluation of Markov boundary/variable selection methods in real data is challenging due to the

lack of knowledge of the true Markov boundaries. In practical applications, however, the interest

typically lies in the most compact subsets of variables that give the highest classification perfor-

mance for reasonable and widely used classifiers (Guyon and Elisseeff, 2003). This consideration

motivated the following two primary evaluation criteria (with the averages taken over all Markov

boundaries/variable sets output by each method):

I. The average Proportion of Variables (PV) in the output Markov boundaries/variable sets.13

II. The average classification performance (AUC) of the output Markov boundaries/variable

sets.14

In addition to the above two primary criteria, in some problems we are also interested in ex-

tracting as many of the maximally compact and predictive variable sets (i.e., optimal solutions to

the variable selection problem) as possible. Therefore, we also considered a third criterion in our

evaluation:

III. The number of distinct Markov boundaries/variable sets output by each method (N).

We note that criterion I (PV) on its own can be optimized independently of the actual classi-

fication problem by taking small subsets of variables (e.g., 1 or 2 variables in each subset) to be

the presumed Markov boundaries of the response variable T . Criterion I may therefore be biased

towards methods that output Markov boundaries/variable sets of a user-defined size (e.g., some pa-

rameterizations of EGS-NCMIGS). Similarly, criterion III (N) can be maximized independently of

the response T by simply taking all 2|V |−1−1 non-empty subsets of the variable set V \{T} to be

the presumed Markov boundaries of T . This criterion could be potentially biased towards Markov

boundary/variable set extraction methods that output a number of Markov boundaries specified by

a user-defined parameter (e.g., EGSG) rather than by a data driven process (e.g., TIE∗). Criterion

II (AUC) served as a modulator for criteria I and III, because high performance on the latter two

criteria does not necessarily imply high classification performance.

We also ranked all methods on each of the three criteria averaged over all 13 real data sets, as

described in Appendix E. The ranks incorporated permutation-based statistical comparison of differ-

ence in the performance of algorithms, in order to ensure that methods with statistically comparable

performance receive the same rank.

13. The PV of an output Markov boundary/variable set measures its compactness and is defined as the number of variables

in the output Markov boundary/variable set divided by the total number of variables in the data set.

14. Classification performance was measured using area under ROC curve (AUC) (Fawcett, 2003), because all response

variables were binary.
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Finally, given ranks on the individual criteria I (PV) and II (AUC), we defined a combined (PV,

AUC) ranking criterion which reflects the ability of methods to find Markov boundaries in real data.

This is because Markov boundaries are expected to maximize performance of the classifiers with

universal approximation capabilities (maximize AUC of SVMs in our study) and be of minimal size

(minimize PV in our study) (Tsamardinos and Aliferis, 2003). The combined (PV, AUC) criterion

was defined as follows: First, the ranks on the individual criteria PV and AUC were normalized to

the [0,1] interval to account for varying rank ranges that resulted from ties in performance. Second,

the normalized ranks on the two criteria were averaged. Third, the resulting averages were used to

establish a new ranking of methods, aided by a permutation-based testing approach to ensure that

methods with statistically comparable performance receive the same rank (see Appendix E).

Other alternative combined (PV, AUC) ranking criteria, for example, one that performs ranking

based on some combination of raw PV and AUC scores, can also be used for performance assess-

ment in our study. We have confirmed that the best performing method remains the same when

either combining normalized ranks of PV and AUC (our criterion) or raw scores of PV and AUC

(alternative criterion) by an average function. This can be evidenced from Figure 15 and Tables 3

and 4 which are discussed below.

The results of experiments are presented in Figure 15 and Tables 3 and 4.15 Figure 15 shows a 2-

dimensional plot of PV versus AUC and a 3-dimensional plot of PV versus AUC versus the number

of extracted distinct Markov boundaries or variable sets (N). Each point in Figure 15 corresponds to

the results of one of the methods considered in this evaluation, averaged over all 13 data sets. The

Pareto frontier shown in Figure 15 was constructed based on the two primary evaluation criteria

PV and AUC over the prior methods (i.e., non-TIE∗). Methods on the Pareto frontier are such that

no other non-TIE∗ method had both lower PV and higher AUC when averaged over all data sets.

For ease of visualization, results on all variables (i.e., without variable selection) were omitted from

Figure 15. When all variables were used for classification, the average PV and AUC were 100% and

0.902, respectively. These results did not alter the Pareto set of prior methods in Figure 15 and are

reported in Table 13, 14 and 15 in Appendix E. The results averaged over all data sets are shown

in Table 3. The results for all methods in each data set individually are presented in Table 13, 14

and 15 in Appendix E. Ranks of the methods were computed as described above and are shown in

Table 4.

As can be seen in Figure 15 and Tables 3 and 4, none of the prior methods had both more com-

pact Markov boundaries or variable sets (lower PV) and better classification performance (higher

AUC) than TIE∗. This is evidenced by TIE∗s performance laying beyond the Pareto frontier con-

structed over the prior methods in Figure 15. While a few methods had comparable or slightly higher

AUC (Table 3), their Markov boundaries or variable sets were substantially larger with the average

PV reaching as high as 41% (see Resampling+UAF in Table 3). In contrast, Markov boundaries

output by TIE∗ were much more compact with an average PV of 2.3%. On the other hand, methods

that had PV lower than TIE∗ also had lower AUC. KIAMB, for example, had a PV of 1% and an

AUC of about 0.8, which was 7-8% lower than the AUC of TIE∗. Overall, TIE∗ ranked first out of

15 on the combined (PV, AUC) criterion. Please see Appendix E for a detailed discussion of the

results of prior methods.

It is worth noting that use of the AUC metric for verification of Markov boundaries in the Pre-

dictivity criterion of TIE∗ can result in some spurious multiplicity of the output Markov boundaries.

15. We did not include iTIE∗ in this comparison, because we anticipated that it will be outperformed by TIE∗ due to its

broader distributional assumptions than the ones of iTIE∗.
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Figure 15: Average performance of the evaluated methods across 13 real data sets. The Pareto

frontier was constructed based on the average proportion of variables and the average

AUC over the prior methods (i.e., non-TIE∗). Detailed results are provided in Tables 3

and 4.
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Method 
Average 

N PV AUC 

TIE* max-k = 3, a = 0.05 1993 0.023 0.872 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 1688 0.010 0.804 

Number of runs = 5000, a = 0.05, K = 0.8 1552 0.010 0.806 

Number of runs = 5000, a = 0.05, K = 0.9 1461 0.010 0.807 

EGS-NCMIGS 

l = 7, d = 0.015 6 0.007 0.783 

l = 7, K = 10 5 0.019 0.853 

l = 7, K = 50 3 0.095 0.865 

l = 5000, d = 0.015 3402 0.008 0.787 

l = 5000, K = 10 3395 0.019 0.849 

l = 5000, K = 50 3364 0.095 0.864 

EGS-CMIM 

l = 7, K = 10 4 0.019 0.852 

l = 7, K = 50 3 0.095 0.872 

l = 5000, K = 10 3394 0.019 0.847 

l = 5000, K = 50 3363 0.095 0.869 

EGSG 

Number of Markov boundaries = 30, t = 5 30 0.024 0.788 

Number of Markov boundaries = 30, t = 10 30 0.024 0.768 

Number of Markov boundaries = 30, t = 15 30 0.024 0.741 

Number of Markov boundaries = 5,000, t = 5 4634 0.024 0.785 

Number of Markov boundaries = 5,000, t = 10 4879 0.024 0.768 

Number of Markov boundaries = 5,000, t = 15 4936 0.024 0.743 

Resampling+RFE 
without statistical comparison 4896 0.168 0.892 

with statistical comparison (a = 0.05) 4371 0.047 0.868 

Resampling+UAF 
without statistical comparison 4033 0.409 0.900 

with statistical comparison (a = 0.05) 3548 0.237 0.885 

IR-HITON-PC max-k = 3, a = 0.05 5 0.023 0.865 

IR-SPLR 
without statistical comparison 7 0.149 0.881 

with statistical comparison (a = 0.05) 20 0.108 0.855 
 

Table 3: Number of distinct Markov boundaries or variable sets identified by the evaluated meth-

ods (N), proportion of variables in them (PV) and their classification performance (AUC)

averaged across all 13 real data sets for each method. The color of highlighting signifies

relative performance on each criterion with dark red corresponding to the best performance

and light yellow to the worst. See Table 4 for ranks of methods that also incorporate formal

statistical comparison of the observed differences between methods.

This can happen due to a possible mismatch between subsets of variables that lead to maximization

of the AUC metric for a given classifier and those that render the response variable T conditionally

independent of all other variables (thus effectively optimizing a metric that requires accurate estima-

tion of P(T | V \{T})). Consider an example where only a subset of variables from some Markov

boundary is sufficient to obtain the same AUC as the entire Markov boundary. Suppose there are

in total five variables {A,B,C,D,T} in the data set and M 1 = {A,B,C,D} is the only Markov

boundary of the response variable T. Suppose also that the subset M 2 = {A,B,C} yields the same

classification performance as the Markov boundary M 1 according to the AUC metric. Once TIE∗

discovers the Markov boundary M 1 = {A,B,C,D}, it will consider removing {D}, as well as other
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subsets of M 1, to discover other possible Markov boundaries. After removing subset {D} from the

data, TIE∗ would identify M 2 = {A,B,C} as a candidate Markov boundary to be verified by the

Predictivity criterion. Because M 1 and M 2 have the same classification performance (AUC), M 2

will be admitted as a Markov boundary by the Predictivity criterion. In order to control for possible

presence of such spurious Markov boundaries in the output of TIE∗, we performed an additional

analysis of its output whereby for each data set, we considered only those Markov boundaries that

were not proper subsets of any other Markov boundary extracted by TIE∗ in the same data set. We

refer to such Markov boundaries as minimal. The average number of minimal Markov boundaries

identified by TIE∗ was 1,484 (versus the average number of all Markov boundaries identified by

TIE∗ equal to 1,993). The average size (2.3% PV) and classification performance (0.872 AUC)

of the minimal Markov boundaries were statistically indistinguishable from the results obtained on

all Markov boundaries identified by TIE∗ and so were the ranks on the PV, AUC and (PV, AUC)

criteria.

In summary, TIE∗ extracted multiple compact Markov boundaries with high classification per-

formance and surpassed all other methods on the combined (PV, AUC) criterion. Since the data-

generative process in experiments with real data sets is unknown, a question that arises is: do

multiple Markov boundaries exist in real data? Prior work using the same data has established

that performance patterns of single Markov boundaries identified by Semi-Interleaved HITON-PC

(an instantiation of the GLL framework) are highly consistent with the Markov boundary induc-

tion theory and that GLL algorithms dominated an extensive panel of prior state-of-the-art Markov

boundary and variable selection methods in terms of compactness and classification performance

(Aliferis et al., 2010a). In this paper, we showed that TIE∗ parameterized with Semi-Interleaved

HITON-PC as the base Markov boundary induction algorithm was able to identify multiple com-

pact Markov boundaries with consistently high classification performance in real data. For example,

in the ACPJ Etiology data set, TIE∗ identified 5,330 distinct Markov boundaries (and 4,263 mini-

mal ones) that on average contained 18 variables out of 28,228 and had an AUC of 0.91. Out of all

prior methods for learning multiple Markov boundaries and variable sets applied to the same data

set, Resampling+UAF had the highest classification performance with an AUC of 0.93, which was

statistically non-distinguishable from TIE∗, while variable sets extracted by Resampling+UAF, on

average, were more than two orders of magnitude larger and contained 3,883 variables. A similar

pattern can be observed in the Dexter data set where TIE∗ identified 4,791 distinct Markov bound-

aries (and 3,498 minimal ones) with an average size of 17 variables out of 19,999 and an AUC of

0.96. The best performer among prior methods in the same data was EGS-CMIM with Markov

boundaries containing 50 variables each and an average AUC of 0.98, the latter being statistically

non-distinguishable from TIE∗. The compactness of Markov boundaries extracted by TIE∗ coupled

with their high classification performance provides strong evidence that there are indeed multiple

Markov boundaries in many real-life problem domains.

6. Discussion

This section summarizes main findings, reiterates key principles of TIE∗ efficiency, demonstrates

how the generative algorithm TIE∗ can be configured for optimal results, presents limitations of this

study, and outlines directions for future research.
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Method 
Rank 

N PV AUC (PV, AUC) 

TIE* max-k = 3, a = 0.05 4 5 2 1 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 4 2 4 5 

Number of runs = 5000, a = 0.05, K = 0.8 4 2 4 5 

Number of runs = 5000, a = 0.05, K = 0.9 4 2 4 5 

EGS-NCMIGS 

l = 7, d = 0.015 6 1 4 3 

l = 7, K = 10 6 5 3 6 

l = 7, K = 50 6 9 3 11 

l = 5000, d = 0.015 3 2 4 5 

l = 5000, K = 10 3 4 3 4 

l = 5000, K = 50 3 9 3 11 

EGS-CMIM 

l = 7, K = 10 6 5 3 6 

l = 7, K = 50 6 9 2 8 

l = 5000, K = 10 3 3 3 2 

l = 5000, K = 50 3 9 2 8 

EGSG 

Number of Markov boundaries = 30, t = 5 5 6 4 10 

Number of Markov boundaries = 30, t = 10 5 6 4 10 

Number of Markov boundaries = 30, t = 15 5 6 5 13 

Number of Markov boundaries = 5,000, t = 5 2 9 4 14 

Number of Markov boundaries = 5,000, t = 10 2 8 4 12 

Number of Markov boundaries = 5,000, t = 15 1 7 5 15 

Resampling+RFE 
without statistical comparison 2 10 2 9 

with statistical comparison (a = 0.05) 2 9 3 11 

Resampling+UAF 
without statistical comparison 3 11 1 7 

with statistical comparison (a = 0.05) 3 10 2 9 

IR-HITON-PC max-k = 3, a = 0.05 6 5 3 6 

IR-SPLR 
without statistical comparison 6 10 2 9 

with statistical comparison (a = 0.05) 5 9 3 11 
 

Table 4: Ranks of methods based on individual and combined criteria. Smaller ranks correspond

to better methods according to each criterion. As described in text, ranks were obtained

using formal statistical comparison of the observed differences between methods; that is

why they do not necessarily range between 1 and 27 (total number of tested methods).

6.1 Main Findings

There are two major contribution of this study. First, we presented TIE∗, a generative anytime al-

gorithm for discovery of multiple Markov boundaries. TIE∗ is sound under well-defined sufficient

conditions and can be practically applied to high-dimensional data sets with relatively small sample.

We performed a theoretical analysis of the algorithm correctness and derived estimates of its com-

putational complexity. To make our paper valuable for practitioners, we provided several specific

instantiations of the generative algorithm TIE∗ and described their implementation details.

Second, we conducted an empirical comparison of TIE∗ with 26 state-of-the-art methods for

discovery of multiple Markov boundaries and variable sets. The empirical study was performed on

2 simulated data sets with exactly known Markov boundaries and 13 real data sets from a diversity

532



DISCOVERY OF MULTIPLE MARKOV BOUNDARIES

of application domains. We found that unlike prior methods, TIE∗ identifies exactly all true Markov

boundaries in simulated data, and in real data it yields Markov boundaries with simultaneously

better classification performance and smaller number of variables compared to prior methods.

Other notable contributions of this work include: (i) developing a deeper theoretical understand-

ing of distributions with multiple Markov boundaries of the same variable (Sections 2.2-2.4), (ii)

theoretical analysis of prior state-of-the-art algorithms for discovery of multiple Markov boundaries

and variable sets (Appendix C), (iii) a novel simple and fast algorithm iTIE∗ for learning multiple

Markov boundaries in special distributions (Section 4.5), and (iv) evidence that multiple Markov

boundaries exist in real data (Section 5.2).

6.2 Key Principles of TIE∗ Efficiency

We will illustrate key principles of TIE* efficiency using a simple example. Consider a distri-

bution that spans over variables M = {T,X1,X2,X3,X4,X5,Y1,Y2,Z1, . . . ,Z1000} and contains two

Markov boundaries of T : M 1 = {X1,X2,X3,X4,X5} and M 2 = {X1,X2,X3, X4,Y1,Y2}, because X5

and {Y1,Y2} contain context-independent equivalent information about T . Assuming that we can

apply a standard single Markov boundary induction algorithm to identify M 1, one naive approach

to discover multiple Markov boundaries in this distribution is to exhaustively consider whether a

variable subset in M 1 can be substituted with a variable subset in V \M 1 \ {T} to obtain a new

Markov boundary. In this example we will have to substitute 31 non-empty subsets in M 1 with

approximately 21002− 1 non-empty subsets of V \M 1 \ {T} (the latter number being orders of

magnitude larger than the number of atoms in the universe). This approach is clearly computation-

ally prohibitive in high-dimensional data sets. The first core efficiency principle in TIE∗ is to avoid

explicit search of all possible subsets of V \M 1 \ {T} and repeatedly run a fast Markov boundary

induction algorithm on the data for variables in V \G, where G is a subset of the previously found

Markov boundaries. In the example stated above, this would lead to running a Markov bound-

ary induction algorithm 27 = 128 times (because there are 7 members in the union of all Markov

boundaries) to find all Markov boundaries that exist in the distribution. The second core efficiency

principle in TIE∗ dictates to consider removing from V only certain subsets G of the previously

found Markov boundaries. Specifically, we consider only subsets G that do not include a subset

of variables G∗ (i.e., G∗ 6⊂ G) that did not result in discovery of a Markov boundary when the

Markov boundary induction algorithm has been previously run on the data for variables in V \G∗.
Coupled with the heuristic to first generate subsets G of the smallest size, this principle can signif-

icantly decrease the number of runs of the Markov boundary induction algorithm. In the example

stated above, this principle as exemplified in IGS procedure would lead to running a single Markov

boundary induction algorithm only 8 times in order to find all Markov boundaries that exist in the

distribution. Specifically, we will have to consider G = ⊘,{X1},{X2},{X3},{X4},{X5},{X5,Y1},
and {X5,Y2}. We would not need to consider G = {X1,X2} because its subset (G∗ = {X1} or {X2})
did not lead to discovery of any Markov boundary when the algorithm was run on the data for vari-

ables in V \ G∗ . Finally, since very fast single Markov boundary induction algorithms have been

recently introduced (Aliferis et al., 2010a, 2003a; Peña et al., 2007; Tsamardinos et al., 2003a,b),

the overall TIE∗ operation is very fast.
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Figure 16: Graph of a causal Bayesian network used to trace the TIE∗ algorithm. The network

parameterization is provided in Table 8 in Appendix B. The response variable is T . All

variables take values {0,1}. Variables that contain equivalent information about T are

highlighted with the same color, for example, variables X1 and X5 provide equivalent

information about T ; variable X9 and each of the four variable sets {X5,X6}, {X1,X2},
{X1,X6}, {X5,X2} provide equivalent information about T .

6.3 The Generative Nature of TIE∗ Allows to Configure the Algorithm for Optimal Results

TIE∗ is a generative algorithm that can be instantiated differently for different distributions. For

example, distributions that violate the local composition property with respect to T for members

of Markov boundaries (e.g., when T is defined as a parity function of its Markov boundary mem-

bers that are unrelated and have balanced priors) are incompatible with the assumptions of Markov

boundary induction algorithms IAMB and Semi-Interleaved HITON-PC that were considered in

this work. The generative nature of TIE∗ suggests to use an admissible Markov boundary induction

algorithm that is suitable for the distribution at hand.

Consider running TIE∗ algorithm on data D generated from the example causal Bayesian net-

work shown in Figure 16. There are 25 distinct Markov boundaries of T in this distribution. Each

of these Markov boundaries contains 3 or 5 variables: (i) X9 or {X5,X6} or {X1,X2} or {X1,X6} or

{X5,X2}, (ii) X10, and (iii) X11 or {X7,X8} or {X3,X4} or {X3,X8} or {X7,X4}. The local composition

property with respect to T is violated here because T = XOR(X9,X10,X11). To illustrate applica-

bility to such distributions, we ran TIE∗ with a Markov boundary induction algorithm SVM-FSMB

(Brown et al., 2012; Tsamardinos and Brown, 2008) as input component X and Y = IGS-Lex, Z =

Predictivity. In brief, SVM-FSMB works by first extracting features from the polynomial SVM fea-

ture space that have largest SVM weights and then running a Markov boundary induction algorithm

Semi-Interleaved HITON-MB in the SVM feature space on the constructed features. This allows

SVM-FSMB to circumvent the requirement for the local composition property. We found that in a

sufficiently large sample size (≥ 2,000), TIE∗ can discover all 25 true Markov boundaries with only

1 false positive in each extracted Markov boundary. This showcases how the generative nature of

TIE∗ allows to optimally configure the algorithm for the distribution at hand.
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6.4 Limitations and Open Problems

The empirical evaluation of TIE∗ performed in this study used 13 real data sets from a diversity

of application domains and provided evidence about existence of multiple Markov boundaries in

real-life data, primarily based on compactness of output variable sets and high classification perfor-

mance. The absence of knowledge about the true Markov boundaries in real data sets is a limitation

of the study, which is in our opinion mitigated by strong empirical evidence for existence of multiple

Markov boundaries.

Related to the above, the present work does not address the source of multiplicity of Markov

boundaries induced in real data. In other words, we do not separate intrinsic multiplicity of Markov

boundaries (that exists in the underlying probability distribution) from apparent multiplicity due to

various factors including (but not limited to) small sample size, hidden variables, correlated mea-

surement noise, and artifacts of normalization and/or data pre-processing (Statnikov and Aliferis,

2010a).

Also, as we have pointed out, the use of the AUC metric for verification of Markov boundaries

in the Predictivity criterion of TIE∗ can result in a small percentage of spurious Markov boundaries

in the output of the algorithm. This can happen due to a possible mismatch between subsets of

variables that lead to maximization of the AUC metric for a given classifier and those that render

the response variable T conditionally independent of all other variables (thus effectively optimizing

a metric that requires accurate estimation of P(T | V \{T})). In this paper we experimented with

one approach to reduce spurious multiplicity of TIE∗ by filtering extracted Markov boundaries to the

minimal ones. A more conventional approach to this problem is to augment the Markov boundary

induction method with an additional backward wrapping step (Aliferis et al., 2010a; Kohavi and

John, 1997). However, backward wrappers are prone to overfitting because they evaluate a large

number of classifier models with various variable subsets (Aliferis et al., 2010a), thus negatively

affecting generalizability of TIE∗. We have conducted preliminary experiments with a backward

wrapping method applied on 13 real data sets, and indeed the results revealed a significant reduction

in classification performance, as theoretically expected. We believe that it is still worthwhile to

explore more sophisticated wrapping strategies (especially ones that guard against overfitting) in

order to optimize the output of a Markov boundary inducer for a specific performance metric and

classifier.

Finally, another limitation of this study is that we included in empirical experiments both al-

gorithms for discovery of multiple Markov boundaries and algorithms for discovery of multiple

variable sets. Even though the latter family of algorithms are not theoretically designed for Markov

boundary induction, many researchers use them (Pellet and Elisseeff, 2008). This motivated us to

include in our study methods for selection of multiple variable sets.

6.5 Directions for Future Research

In addition to addressing open problems outlined in the previous subsection, there are several

promising directions for future research.

First, it is interesting to routinely apply TIE∗ to discover multiple Markov boundaries in various

application domains. This would allow one to learn whether some problem domains are more prone

to multiplicity of Markov boundaries than others. These results would instruct data-analysts about

potential existence of many more solutions and can form guidelines for performing analysis in such

data.
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Second, it is important to extend existing causal graph discovery methods to take into account

violations of the intersection property that lead to multiple Markov boundaries. For example, recent

work was able to modify the PC algorithm to account for information equivalence relations between

variables (Lemeire et al., 2010). However, many more algorithms remain to be improved upon.

Third, a useful direction for future research is to improve computational efficiency and run time

of TIE∗ by using high-performance computers with parallel and/or distributed architectures. We

have previously designed parallel versions of Markov boundary induction algorithms (Aliferis et al.,

2010b, 2002) and in some cases were able to achieve more than linear increase of computational

efficiency. At face value, this suggests that modifications of TIE∗ that run on parallel/distributed

architectures can discover multiple Markov boundaries in domains where TIE∗’s run time was pro-

hibitive.
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Appendix A. Proofs of Theorems and Lemmas

Proof Lemma 1 : Assume that M ∩M new = N . Then it follows that M=N ∪ Y and M new =

N∪Z. Since M is a Markov blanket, T ⊥ (V \{T}\(N ∪Y )) | (N ∪Y ). By the self-conditioning

property, it follows that T ⊥ (V \{T}) | (N ∪Y ). The previous independence relation is equiv-

alent to T ⊥ ((V \{T}\Z)∪Z) | (N ∪Y ). By the weak union property, T ⊥ (V \{T}\Z) |
(N ∪Y ∪Z). By the self-conditioning property, T ⊥ (V \{T}) | (N ∪Y ∪Z). Equivalently,

we can rewrite the previous relation as T ⊥ (V \{T}) | ((N ∪Y )∪ (N ∪Z)). Since Z and Y

provide context independent equivalent information about T and by the self-conditioning property

T ⊥ (N ∪Y ) | (N ∪Z). By the contraction property, T ⊥ (V \{T}) | ((N ∪Y )∪ (N ∪Z)) and

T ⊥ (N ∪Y ) | (N ∪Z) imply that T ⊥ ((V \{T})∪ (N ∪Y )) | (N ∪Z). This is equivalent to

T ⊥ (V \{T}) | (N ∪Z). By the decomposition property this implies that M new =N ∪Z is also

a Markov blanket of T . (Q.E.D.)

Proof Lemma 2 : By definition of the Markov blanket, T ⊥ (V \M\{T}) |M . By the self-

conditioning property, it follows that T ⊥ (V \{T}) |M . Since (V \{T}) = (V \{T})∪M new

and according to the weak union property, T ⊥ (V \{T}\M new) | (M ∪M new). By the self-

conditioning property, it follows that T ⊥ (V \{T}) | (M ∪M new). Since T ⊥M |M new and

T ⊥ (V \{T}) | (M ∪M new), the contraction property implies that T ⊥ ((V \{T})∪M) |M new.

Next, since (V \{T}) = (V \{T})∪M , it follows that T ⊥ (V \{T}) |M new. By the decomposi-

tion property this implies that M new is a Markov blanket of T . (Q.E.D.)
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Proof Theorem 6 : Given an ancestral graph G = < V ,E >, let M denote the set containing all

parents and children of T and every variable X connected to T by a path from T to X in G such that:

(i) the first edge on the path is either bi-directed or away from T , (ii) all other edges except the last

are bi-directed, and (iii) the last edge is either bi-directed or is away from X . Note that spouses of

T satisfy the above conditions and are therefore included in M .

We first show that set M m-separates T and every other variable Y ∈ V \M\{T}. To see this,

suppose that M does not m-separate T from some variable Y ∈V \M\{T}. Then, there must exist

a path p connecting Y and T that is not blocked by M . By definition of M , Y cannot be directly

connected to T and not be in M . Additionally, path p cannot be through parents of T , its spouses,

or parents of variables connected to T or its children by bi-directed paths, because any such variable

would act as a non-collider that is in M and would therefore block the path p. The only remaining

possibility is for path p to contain a variable X ∈V \M\{T} that is a child of a variable Z ∈M that

is either (i) a child of T , or (ii) connected to T by a bi-directed path, or (iii) connected to a child of T

by a bi-directed path. However, in this case, variable Z would be a non-collider on path p and would

therefore block it. It follows that set M m-separates T and every other variable Y ∈ V \M\{T}.

From the definition of the global Markov condition it follows that every m-separation relation in

G implies conditional independence in every joint probability distribution P that satisfies the global

Markov condition for G. Thus, we have T ⊥ Y |M in P for every variable Y ∈ V \M\{T}, from

which it follows that M is a Markov blanket of T . (Q.E.D.)

Proof Theorem 7 : First we prove that any Markov blanket of T is an optimal predictor of T . If

M is a Markov blanket of T , then by definition it is the optimal predictor of T because P(T |M)
= P(T | V \{T}) and this distribution can be accurately approximated by L, which implies that M

will be maximized.

Now we prove that any optimal predictor of T is a Markov blanket of T . Assume that X ⊆
V \{T} is an optimal predictor of T but it is not a Markov blanket of T . This implies that,

P(T |X) 6= P(T | V \{T}). By definition, V \{T} is always a Markov blanket of T . By first

part of the theorem, V \{T} is an optimal predictor of T similarly to X . Therefore, the following

should hold: P(T |X) = P(T | V \{T}). This contradicts the assumption that X is not a Markov

blanket of T . Therefore, X is a Markov blanket of T . (Q.E.D.)

Proof Theorem 8 : First we prove that M is a Markov blanket of T at the end of Phase I. Suppose

it is not, that is, T 6⊥ (V \M\{T}) |M . By the local composition property with respect to T ,

there exists Y ∈ (V \M\{T}) such that T 6⊥ Y |M . This contradicts the exit condition from the

loop in step 9 that states that E should be empty, which can be the case if and only if for every

Y ∈ (V \M\{T}), T ⊥ Y |M . Therefore, M is a Markov blanket of T at the end of Phase I.

Next we prove that M remains a Markov blanket of T at the end of Phase II. Assume that a

variable Y ∈M can be rendered independent from T by conditioning on the remaining variables

in M , that is, T ⊥ Y | (M\{Y}). From Phase I it follows that T ⊥ (V \M\{T}) |M . The

above two independence relations by the contraction property imply that T ⊥ (V \(M\{Y})\{T}) |
(M\{Y }). Thus, M is a Markov blanket of T at the end of Phase II of the algorithm.

Finally we prove that M is a Markov boundary of T at the end of Phase II. Suppose it is not and

thus there exists N ⊂M that is a Markov blanket of T . Let Y ∈M\N and Z ⊆ (V \N\{T}\{Y}).
By definition of the Markov blanket, T ⊥ (V \N\{T}) | N . By the decomposition property,

537



STATNIKOV, LYTKIN, LEMEIRE AND ALIFERIS

T ⊥ (Z ∪{Y}) |N . The latter independence relation implies T ⊥ Y | (N ∪Z) by the weak union

property. Therefore, any variable Y ∈M\N would be removed by the algorithm in step 12 which

contradicts the assumption that the algorithm output M and N ⊂M is another Markov blanket of

T . Therefore, M is a Markov boundary of T at the end of Phase II. (Q.E.D.)

Proof Theorem 9 : First we prove that the set M is a Markov blanket of T at the end of Phase I.

Because of the assumptions of the theorem, there are only two reasons for existence of a subset Z

that renders Y independent of T : either Y is a non-Markov boundary member or there is a violation

of the intersection property that leads to context-independent information equivalence relations.

The former case does not compromise the Markov blanket property of M , thus we consider only

the latter case. For example, we can consider the following situation T ⊥ Y | Z, T ⊥ Z | Y and

T 6⊥ ({Y}∪Z) that led to removal of Y . From Lemma 1 we know that if Y is a member of some

Markov blanket M 1 =N ∪{Y}, then M 2 =N ∪Z is also a Markov blanket of T because Y and

Z contain context-independent equivalent information about T . Therefore the set M is a Markov

blanket of T at the end of Phase I.

The proofs that M remains a Markov blanket of T at the end of Phase II and that M is a Markov

boundary of T at the end of Phase II are similar to the ones in IAMB algorithm (Theorem 8) and

will not be repeated here. (Q.E.D.)

Proof Theorem 10 : TIE∗ will output only Markov boundaries of T when the inputs X and Z are

admissible (see Figure 7). Assume that there exists a Markov boundary W that is not output by

TIE∗. Because of admissibility of inputs X and Z (Figure 7), M new =W was not identified in step

5 of the algorithm. However, because of admissibility of input Y (Figure 7), in some iteration of the

algorithm in step 4 a data set De will be generated where a Markov boundary W can be discovered

by X in step 5. The admissibility of input Z implies that W will be successfully verified and output

in step 6. Therefore, a contradiction is reached, and TIE∗ would never miss Markov boundaries.

(Q.E.D.)

Proof Theorem 11 : Since (i) all variables from each embedded distribution belong to the original

distribution, and (ii) the joint probability distribution of variables in each embedded distribution is

the same as marginal in the original one, the local composition property with respect to T also holds

in each embedded distribution. Therefore according to Theorem 8, IAMB will correctly identify a

Markov boundary in every embedded distribution. Thus, IAMB is an admissible Markov boundary

induction algorithm for TIE∗. (Q.E.D.)

Proof Theorem 12 : The proof follows from fact that assumptions of Theorem 9 are satisfied in

each embedded distribution that contains a Markov boundary of T . Thus, Semi-Interleaved HITON-

PC is an admissible Markov boundary induction algorithm for TIE∗. (Q.E.D.)

Proof Theorem 13 : The procedure IGS is executed iteratively in TIE∗ and generates data sets De =
D(V \G) from the embedded distributions by removing subsets G from the full set of variables V .

Such procedure is admissible if it uses as G all possible subsets of V . This is because eventually

the procedure will generate a data set De for every Markov boundary of T such that each data set
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contains all members of only one Markov boundary and thus a single Markov boundary induction

algorithm X can discover it. By similar argument, the procedure to generate embedded distributions

is admissible if it uses as G all possible subsets of all Markov boundaries. Notice that in IGS,

G is constructed iteratively from all possible subsets of the previously found Markov boundaries

with the following modification in order to increase efficiency of TIE∗ (see Section 6.2). If we

find that for some subset G∗ a data set De = D(V \G∗) leads to a Markov boundary M new in

the embedded distribution (as determined in step 5 of TIE∗) that is not a Markov boundary in the

original distribution (as determined in step 6 of TIE∗), then IGS does not consider generating data

sets De = D(V \G) where G includes G∗. Below we prove by contradiction that this modification

does not compromise admissibility of IGS.

Assume that there is W that is a Markov boundary of T in the original distribution and it was

not output by TIE∗ because D
e = D(V \G+) for some G+ : G+ ⊃G∗ has not been generated by

IGS.

• Since W is a Markov blanket of T in the original distribution and M new is not, Theorem

7 implies that performance of a learning algorithm L (that can approximate any conditional

probability distribution) for prediction of T measured by the metric M (that is maximized

only when P(T | V \{T}) is estimated accurately) is larger for W than for M new .

• Since W satisfies T ⊥ (V \W \{T}) |W by the definition of Markov blanket, decomposition

property implies that T ⊥ (V \W \G∗\{T}) |W , that is, W similarly to M new is a Markov

blanket of T in the embedded distribution after removal of G∗ . Therefore by Theorem

7, performance of a learning algorithm L (that can approximate any conditional probability

distribution) for prediction of T measured by metric M (that is maximized only when P(T |
V \{T}) is estimated accurately) should be the same for W and M new .

The above two points are contradictory, thus W does not exist. (Q.E.D.)

Proof Theorem 14 : Consider that there exists a set of variables M new ⊆ V \ {T} such that

T ⊥M |M new . Since M is a Markov boundary of T in the original distribution, it is also a

Markov blanket of T in the original distribution. From Lemma 2 we know that M new is a Markov

blanket of T in the original distribution. Since M new is a Markov boundary of T in the embedded

distribution and it is a Markov blanket of T in the original distribution, it is also a Markov boundary

of T in the original distribution. (Q.E.D.)

Proof Theorem 15 : The proof that this criterion can identify whether M new is a Markov blanket

of T in the original distribution or not follows from Theorem 7. If M new is a Markov blanket of

T in the original distribution, it is also a Markov boundary of T in the original distribution because

M new is a Markov boundary of T in the embedded distribution. (Q.E.D.)

Appendix B. Parameterizations of Example Structures

This appendix provides parameterizations of example structures from the manuscript that are shown

in Tables 5, 6, 7, and 8.
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Conditional probability table for the response variable T: 

P(T | X1,  

Xn/m+1,…  

X(m-1)n/m+1) 

(X1= 0,  

Xn/m+1 = 0,… 

X(m-1)n/m+1 = 0) 

(X1= 0,  

Xn/m+1 = 0,…  

X(m-1)n/m+1 = 1) … 

(X1= 1,  

Xn/m+1 = 1,…  

X(m-1)n/m+1 = 1) 

T = 0 0.2 0.8 0.2 

T = 1 0.8 0.2 0.8 

Conditional probability tables for any pair of variables Xj and Xk belonging to the same group i: 

P(Xj | Xk) Xk = 0 Xk = 1 

Xj = 0 1.0 0.0 

Xj = 1 0.0 1.0 
 

  ) 

  = 0  

  = 1  

 = 2  

)    = 3  

  

  ) 

 = 0  

)   = 2   = 1  

   

   

)   = 2   

   

   

,  C=0, D=0,   

Table 5: Parameterization of the Bayesian network shown in Figure 2.

P(A)      P(B)  

A = 0 0.6     B = 0 0.3 

A = 1 0.4     B = 1 0.2 

      B = 2 0.3 

P(C | A) A = 0 A = 1    B = 3 0.2 

C = 0 0.0 1.0      

C = 1 1.0 0.0    P(F)  

      F = 0 0.3 

P(D | B) B = 0 B = 1 B = 2 B = 3  F = 1 0.7 

D = 0 1.0 1.0 0.0 0.0    

D = 1 0.0 0.0 1.0 1.0    
        

P(E | B) B = 0 B = 1 B = 2 B = 3    

E = 0 1.0 0.0 1.0 0.0    

E = 1 0.0 1.0 0.0 1.0    
 

P(T | C, D, 

E, F) 

(C=0, D=0,  

E=0, F=0) 

(C=0, D=0,  

E=0, F=1) 

(C=0, D=0,  

E=1, F=0) 
… 

(C=1, D=1, 

E=1, F=1) 

T = 0 0.9 0.1 0.9 0.1 

T = 1 0.1 0.9 0.1 0.9 

Table 6: Parameterization of the causal Bayesian network shown in Figure 8.

Appendix C. Description and Theoretical Analysis of Prior Algorithms for Learning

Multiple Markov Boundaries and Variable Sets

This appendix provides description and theoretical analysis of prior algorithms for learning multiple

Markov boundaries and variable sets.

C.1 Stochastic Markov Boundary Algorithms: KIAMB

Reference: The work by Peña et al. (2007).

Description: Recall that the IAMB algorithm (Figure 4) requires only the local composition

property for its correctness (per Theorem 8) which is compatible with the existence of multiple

Markov boundaries of the response variable T . However, due to IAMB’s reliance on a greedy

deterministic strategy for adding variables into the (candidate) Markov boundary in Phase I (For-

ward), the algorithm can identify only a single Markov boundary of T . KIAMB addresses this

540



DISCOVERY OF MULTIPLE MARKOV BOUNDARIES

P(A)     P(B)  

A = 0 0.6    B = 0 0.9 

A = 1 0.4    B = 1 0.1 
       

P(C | A) A = 0 A = 1   P(E)  

C = 0 0.0 1.0   E = 0 0.3 

C = 1 1.0 0.0   E = 1 0.7 

       

P(D | B) B = 0 B = 1     

D = 0 1.0 0.0     

D = 1 0.0 1.0     
       

P(F| E) E = 0 E = 1   P(J| F) F = 0 F = 1 

F = 0 0.8 0.3   J = 0 0.7 0.7 

F = 1 0.2 0.7   J = 1 0.3 0.3 
 

P(T | C,  

D, F) 

(C=0,  

D=0, F=0) 

(C=0,  

D=0, F=1) 

(C=0,  

D=1, F=0) 
… 

(C=1,  

D=1, F=1) 

T = 0 0.9 0.1 0.9 0.1 

T = 1 0.1 0.9 0.1 0.9 

=0) = 0.5 

Table 7: Parameterization of the causal Bayesian network shown in Figure 13.

X1: P(X1=0) = 0.5 X8 = X4 
X15: P(X15=0|X12=0) = 0.3 

       P(X15=0|X12=1) = 0.1 

X2: P(X2=0) = 0.5 X9 = OR(X5, X6) 
X16: P(X16=0|X13=0) = 0.2 

       P(X16=0|X13=1) = 0.5 

X3: P(X3=0) = 0.5 X10: P(X10=0) = 0.5 
X17: P(X17=0|X13=0) = 0.6 

       P(X17=0|X13=1) = 0.4 

X4: P(X4=0) = 0.5 X11 = OR(X7, X8) X18: P(X18=0) = 0.5 

X5 = 1 – X1 

X12: P(X12=0|X18=0, X9=0) = 0.4 

       P(X12=0|X18=0, X9=1) = 0.5 

       P(X12=0|X18=1, X9=0) = 0.5 

       P(X12=0|X18=1, X9=1) = 0.6 

X19: P(X18=0) = 0.5 

X6 = X2 

X13: P(X13=0|X11=0, X19=0) = 0.4 

       P(X13=0|X11=0, X19=1) = 0.6 

       P(X13=0|X11=1, X19=0) = 0.5 

       P(X13=0|X11=1, X19=1) = 0.5 

X20: P(X20=0|X12=0) = 0.5 

       P(X20=0|X12=1) = 0.2 

X7 = 1 – X3 
X14: P(X14=0|X12=0) = 0.2 

       P(X14=0|X12=1) = 0.4 
Xi: P(Xi=0) = 0.5, i = 21,…,40. 

T = XOR(X9, X10, X11) 

Table 8: Parameterization of the causal Bayesian network shown in Figure 16. All variables are

binary and take values {0,1}.

limitation of IAMB by employing a stochastic search heuristic that repeatedly disrupts the order in

which variables are selected for inclusion into the Markov boundary, thereby introducing a chance

of discovering alternative Markov boundaries of T . KIAMB allows the user to control the trade-

off between stochasticity and greediness of the search by setting the value of a single parameter
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K ∈ [0,1]. Specifically, instead of picking the conditionally maximally associated variable Y from

the set E in step 4 of IAMB, in KIAMB a maximally associated variable is selected from a ran-

domly chosen subset of all the associated variables outside the current Markov boundary M . The

size of this subset relative to the size of the complete set of associated variables is determined by

parameter K. Setting K equal to 0 results in a purely stochastic search where a single randomly

chosen associated variable is added into M on each iteration in Phase I. Setting K equal to 1 results

exactly in IAMB algorithm with its greedy deterministic search.

Analysis: KIAMB correctly identifies Markov boundaries assuming the local composition prop-

erty. Theoretically, KIAMB can identify all Markov boundaries if given the chance to explore a

large enough number of different sequences of additions of associated variables into the current

Markov boundary in Phase I. However, KIAMB is computationally inefficient, because a large

fraction of its runs may yield previously identified Markov boundaries. For example, suppose the

causal graph consists of 11 variables: a response variable T and variables X1, . . . ,X10 such that

T ← X10← X9← ·· · ← X1 and each Xi(i = 1, . . . ,10) contains equivalent information about T and

is significantly associated with it. Thus, there are 10 Markov boundaries {X1}, . . . ,{X10} of T in

this distribution. Suppose also that parameter K was set equal to 0.7, which would mean that in

Phase I, KIAMB will first randomly select 7 variables out of 10 and will then select out of these

7 variables, one with the highest association with T . Because all variables in this example contain

equivalent information about T , all variables will have equal association with T (Lemeire, 2007).

Selection of a single variable for inclusion in the Markov boundary could then be done based on

lexicographic ordering. There are 120 ways to select 7 variables out of 10, but 84 (or 70%) of such

subsets of size 7 will contain variable X1 that precedes all other variables in lexicographic ordering.

Therefore, on average, we can expect 70% of the runs of KIAMB to return Markov boundary {X1}
in this example. In order for KIAMB to identify Markov boundary {X1}, variables X1,X2,X3 must

not be among the 7 randomly selected variables. On average, this would happen in only roughly

0.8% of the runs of KIAMB. Note also that in the above scenario, KIAMB will not be able to dis-

cover Markov boundaries {X5}, . . . ,{X10}, because there is no way to select 7 variables out of 10

and avoid including at least one variable from the subset {X1, . . . ,X4}. KIAMB could eventually

discover all 10 Markov boundaries if instead of lexicographic ordering, ties were broken by random

selection, or alternatively if parameter K was set equal to a smaller value. In both of these cases,

however, the probability that KIAMB will discover all 10 Markov boundaries after 10 runs is only

about 0.04%, indicating that a large number of runs may be necessary to recover all 10 Markov

boundaries. Thus, in order to produce the complete set of Markov boundaries, the value of param-

eter K and the number of runs of KIAMB must be determined based on the topology of the causal

graph and the number of Markov boundaries of T , neither of which are known in real-world causal

discovery applications. Finally, KIAMB suffers from the same sample inefficiency as IAMB, which

arises from conditioning on the entire Markov boundary when testing variables for independence

from the response variable T .

C.2 Stochastic Markov Boundary Algorithms: EGS-CMIM and EGS-NCMIGS

Reference: The work by Liu et al. (2010b).

Description: These algorithms attempt to extract multiple Markov boundaries by repeatedly in-

voking single Markov boundary extraction methods CMIM (Fleuret, 2004) and NCMIGS (Liu et al.,

2010b), respectively. Conceptually, CMIM and NCMIGS are very similar and differ primarily in the
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types of measures of association between variables. Both methods employ only a greedy forward

selection strategy similar to Phase I of IAMB and rely on mutual information-based functions for

measuring (conditional) association between variables and the response T . The algorithmic frame-

work of CMIM and NCMIGS is as follows. First, all variables are ordered by decreasing association

with the response T . A Markov boundary M is initialized to be the empty set. The t-th highest asso-

ciated variable (where t is a user-defined parameter) is then added into M and an iterative addition

of other variables begins. On each iteration, a new variable that maximizes the value of a selection

criterion J(X) (discussed below) is added to the Markov boundary M . The algorithm stops once

a termination condition is reached. CMIM terminates when the Markov boundary reaches a user-

defined size k. NCMIGS offers two different stopping criteria that the user could choose from. The

first stopping criterion is the same as in CMIM controlled by the parameter k. The other termina-

tion criterion alleviates the requirement of explicitly specifying the size of the Markov boundary

and forces iterative selection to stop if the value of the selection criterion J(X) changes from one

iteration to the next by no more than δ (a user-defined parameter), that is, if | J(Xi)− J(Xi−1) |≤ δ ,

where Xi denotes the variable selected for addition into M on the i-th iteration of NCMIGS.

CMIM employs an approximation to the conditional mutual information I(X ,T |M) as the se-

lection criterion JCMIM(X) for adding variables into the Markov boundary. The approximation is

achieved by conditioning on a single variable instead of the entire Markov boundary M (as in KI-

AMB), that is, JCMIM(X) = argmin
Y∈M I(X ,T |Y ). NCMIGS uses a very similar selection criterion

that is based on a normalized conditional mutual information JNCMIGS(X) = argmin
Y∈M I(X ,T |

Y )/H(X ,T ), where H(X ,T ) denotes the joint entropy of variable X and response T . Conditioning

on a single variable instead of the entire Markov boundary makes CMIM and NCMIGS sample effi-

cient by circumventing the problem of exponential growth in the number of parameters and sample

size required for estimating the conditional mutual information I(X ,Y |M) in discrete data as the

size of the Markov boundary M increases.

Analysis: Recall that EGS-CMIM (EGS-NCMIGS) extracts multiple Markov boundaries by

calling CMIM (NCMIGS) with different values of the input parameter t = 1, . . . , l, where l is a

user-defined parameter that bounds from above the total number of Markov boundaries that will be

output. Therefore, EGS-CMIM and EGS-NCMIGS require prior knowledge/estimate of the number

of Markov boundaries. Note that while admissible values of t (and therefore of l) are by design

bounded from above by the number of variables in the data, the actual number of true Markov

boundaries may be much higher. There is also no guarantee that different values of t will yield

different Markov boundaries, which makes these methods computationally inefficient (similarly to

KIAMB). In addition, because CMIM and NCMIGS implement only forward selection and employ

conditioning on a single variable, these methods are prone to inclusion of false positives in their

output. False positives may enter a Markov boundary for two reasons: (i) when more than one

variable from the current Markov boundary is required to establish independence of the response

T from some other variable being considered for addition into the Markov boundary, and (ii) when

some of the variables added into the Markov boundary are independent of the response T conditional

on variables that were added in later iterations. Furthermore, the stopping criteria in CMIM and

NCMIGS are heuristic, which may lead to an arbitrary number of false negatives in the output. This

may happen, for instance, if the value of parameter k (size of a Markov boundary) is set smaller

than the true size of the Markov boundary. The alternative stopping criterion of NCMIGS does not

fully solve the problem of false negatives, because the absolute difference | J(Xi)− J(Xi−1) | may

be small, while the individual values J(Xi) and J(Xi−1) of the selection criterion may still be large
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indicating that the considered variable Xi is highly associated with the response T and that it may be

too early to stop. In summary, EGS-CMIM and EGS-NCMIGS offer no formal guarantees of neither

correctness nor completeness of their output, require prior knowledge/estimate of the number of

Markov boundaries and their size, are computationally inefficient, but are sample efficient.

C.3 Variable Grouping Followed by Random Sampling of Variables from Each Group:

EGSG

Reference: The work by Liu et al. (2010).

Description: EGSG uses normalized version of mutual information JEGSG(X ,Y )= I(X ,Y )/H(X ,Y )
for measuring pair-wise association between variables and partitions them into disjoint groups. Each

group has a “centroid”, which is the first variable that formed the group. A variable X is added

into a group if (i) X has a higher association with the groups centroid C than with the response T

(i.e., if JEGSG(X ,C) ≥ JEGSG(X ,T )), and (ii) X has lower association with T than does C (i.e., if

JEGSG(C,T ) ≥ JEGSG(X ,T )). If no such group is found, then a new group is created with X as the

groups centroid. Variables within a group are implicitly assumed to carry similar information about

T . Under this assumption, it is sufficient to select one variable from each group to form a Markov

boundary of T . In EGSG, one of the top t variables most associated with the response T is sampled

at random from each group to form a single Markov boundary. Here, the value of parameter t is

given by the user. In order to extract multiple Markov boundaries, the above sampling is repeated a

number of times determined by the user.

Analysis: From the point of view of soundness and completeness, EGSG suffers from two major

drawbacks. First, the number of Markov boundaries output by EGSG is an arbitrary parameter and is

independent of the data-generating causal graph. Second, Markov boundaries output by EGSG may

contain an arbitrary number of false positives as well as false negatives. False positives may appear,

for instance, if a variable from one group is independent of the response T conditional on a variable

from another group. EGSG does not test for conditional independence and could include both

variables in a Markov boundary. Moreover, since only one variable is sampled from each group,

false negatives may appear in the output of EGSG if several variables within a group in reality belong

to the same Markov boundary. Therefore, no guarantees can be made regarding the correctness and

completeness of the output of EGSG. The method is not computationally efficient for discovery of

distinct Markov boundaries, because EGSG may produce the same Markov boundary multiple times

due to random sampling of variables from each group. However, its computationally efficiency can

be improved by constructing Markov boundaries from the Cartesian product of top-t members of

each group. EGSG is sample efficient, because it does not conduct any conditional independence

tests, but only computes pair-wise associations between variables.

C.4 Resampling-based Methods: Resampling+RFE and Resampling+UAF

Reference: The work by Ein-Dor et al. (2005), Michiels et al. (2005), Roepman et al. (2006) and

Statnikov and Aliferis (2010a).

Description: In resampling-based methods, multiple variable sets are extracted by repeatedly

applying a variable selection method to different bootstrap samples of the data (Ein-Dor et al., 2005;

Michiels et al., 2005; Roepman et al., 2006; Statnikov and Aliferis, 2010a). The two variable se-

lection methods employed in the resampling framework in this paper are Univariate Association

Filtering (UAF) (Hollander and Wolfe, 1999; Statnikov et al., 2005) and Recursive Feature Elim-
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ination (RFE) (Guyon et al., 2002). These methods implement only the backward selection akin

to Phase II of IAMB. Namely, given a bootstrap sample, all variables are first ordered by decreas-

ing association with the response T . UAF orders variables using p-values and test statistics from

Kruskal-Wallis non-parametric ANOVA (Hollander and Wolfe, 1999). RFE orders variables by de-

creasing absolute values of the SVM weights (Guyon et al., 2002). Once all variables have been

ordered, a portion of the least significant variables is removed, performance of the remaining vari-

ables for predicting the response T is evaluated, and this variable elimination process is recursively

applied to the remaining variables. The smallest nested subset of variables with the maximum pre-

dictive performance is then output. The proportion of variables to be removed on each iteration is

controlled by a user-defined parameter called “reduction coefficient”.16 Assessment of predictive

performance can be performed by training and evaluating a classifier model (e.g., SVM). One can

also use variants of UAF and RFE, where the smallest nested subset of variables with predictive

performance statistically indistinguishable from the nominally maximum predictive performance is

output. This often produces smaller variable sets than the former approach.

Analysis: Neither UAF nor RFE, which are at the core of resampling-based methods, offer for-

mal guarantees of the correctness of their output, because both methods are based on a heuristic

approach to finding the most predictive subset of variables and not the Markov boundary (Aliferis

et al., 2010b). Therefore, neither Resampling+UAF nor Resampling+RFE are sound and complete

for extraction of multiple Markov boundaries. Resampling+UAF and Resampling+RFE are also

computationally inefficient, because runs of UAF and RFE on different bootstrap samples may pro-

duce identical variable sets, especially when the sample size is large. In addition, the number of

runs is a user-defined parameter that requires prior knowledge of the number of Markov boundaries

in the data. Both resampling techniques are sample efficient, because UAF does not rely on con-

ditional independence tests and because RFE leverages SVMs regularized loss function that allows

for parameter estimation in high-dimensional data with small sample sizes.

C.5 Iterative Removal Methods: IR-HITON-PC and IR-SPLR

Reference: The work by Natsoulis et al. (2005) and Statnikov and Aliferis (2010a).

Description: Iterative removal methods identify multiple Markov boundaries (IR-HITON-PC)

or multiple variable sets (IR-SPLR) by repeatedly executing the following two steps. Step 1: Extract

a Markov boundary/variable set M from the current set W of variables (initially W = V \{T}).
Step 2: If M is the first Markov boundary/variable set extracted or if its predictive performance

is statistically indistinguishable from performance of the first Markov boundary/variable set, then

output M , remove all of its variables from further consideration (W ←W \M) and go to Step

1. Otherwise, terminate. IR-HITON-PC uses Semi-Interleaved HITON-PC as the base Markov

boundary extraction method. IR-SPLR extracts variable sets using regularized Logistic regression

with a L1 norm penalty term, which induces sparsity in the regression coefficients. All variables

with non-zero coefficients are taken to belong to an output variable set.

Analysis: IR-HITON-PC is correct because it uses Semi-Interleaved HITON-PC to identify

Markov boundaries (per Theorem 9). On the other hand, IR-SPLR relies on a heuristic regression-

based approach to finding the most predictive subset of variables and not the Markov boundary;

thus this method has no theoretical guarantees for correct identification of Markov boundaries. Fur-

thermore, neither iterative removal method is guaranteed to be complete, because these methods

16. Reduction coefficient = 1.2 means that every iteration retains 1/1.2 = 83% of variables from the previous iteration.
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 

D for variables V (i.e., in the original distribution P) 

2. Output M 

3. Repeat 

4. Generate a dataset D
e 
= D(V \ G) from the embedded distribution by removing from the full 

set of variables V in the original distribution the smallest subset G of the so far discovered 

Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and  

(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 

5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If the holdout validation estimate of predictivity of T for the SVM classifier model induced 

from data D using variables Mnew is not statistically worse than the respective predictivity 

estimate for variables M, then Mnew is a Markov boundary of T in the original distribution 

and it is output by the algorithm 

7. Until all datasets D
e
 generated in step 4 have been considered. 

 

Figure 17: An example of instantiated TIE∗ algorithm. This algorithm was used in experiments

with real data in Section 5.2.

output disjoint Markov boundaries or variable sets, while in general multiple Markov boundaries

may share a number of variables. IR-HITON-PC and IR-SPLR neither require prior knowledge of

the number of Markov boundaries nor their size, and these methods are computationally and sample

efficient.

Appendix D. Details about the TIE∗ Algorithm

This appendix provides details about the generative TIE∗ algorithm.

D.1 Example Instantiations of the Generative Algorithm

Example instantiations of the generative algorithm TIE∗ are given in Figures 17 and 18.

D.2 Specific Implementation Details

We proceed below with details about TIE∗ implementations. We discuss Markov boundary in-

duction algorithm (X), procedure to generate data sets from the embedded distributions (Y), and

criterion to verify Markov boundaries of T (Z).

Markov boundary induction algorithm IAMB (Figure 4): We used the Matlab implementation

of the algorithm from the Causal Explorer toolkit (Aliferis et al., 2003b; Statnikov et al., 2010).
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An example of instantiated algorithm TIE*  
 

Inputs: dataset D (a sample from distribution P) for variables V, including a response variable T. 
 

Output: all Markov boundaries of T that exist in P. 
 

1. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary M of T from the dataset 

D for variables V (i.e., in the original distribution P) 

2. Output M 

3. Repeat 

4. Generate a dataset D
e 
= D(V \ G) from the embedded distribution by removing from the full 

set of variables V in the original distribution the smallest subset G of the so far discovered 

Markov boundaries of T such that: 

(i) G was not considered in the previous iterations of this step, and 

(ii) G does not include any subset of variables that was previously removed from V to 

yield a dataset D
e
 when Mnew was found not to be a Markov boundary of T in the 

original distribution (per step 6) 

5. Use algorithm Semi-Interleaved HITON-PC to learn a Markov boundary Mnew of T from the 

dataset D
e
 (i.e., in the embedded distribution) 

6. If 
newT MM |^ , then Mnew is a Markov boundary of T in the original distribution and it is 

output by the algorithm 

7. Until all datasets D
e
 generated in step 4 have been considered. 

 

Figure 18: An example of instantiated TIE∗ algorithm. This algorithm was used in experiments

with simulated data in Section 5.1.

When the algorithm was run on discrete data, we assessed independence of variables with G2 test at

significance level α = 0.05. In our implementation of G2 test, we required at least 5 samples per cell

in the contingency tables. For continuous data, one can use Fishers Z test to assess independence

of variables. To measure association Association(T,X |M) in step 4 of the algorithm we used

negative p-values returned by the corresponding test of independence T ⊥ X |M .17 Since the

IAMB algorithm can be run multiple times in TIE∗, we programmed on top of the Causal Explorer

code a caching method to store and retrieve results of conditional independence tests.

Markov boundary induction algorithm Semi-Interleaved HITON-PC (Figure 5): We used the

Matlab implementation of the algorithm from the Causal Explorer toolkit (Aliferis et al., 2003b;

Statnikov et al., 2010). Semi-Interleaved HITON-PC was implemented without so-called “symme-

try correction” (Aliferis et al., 2010a). Similarly to IAMB, to assess independence of variables in

discrete data we used G2 test at α = 0.05, and one can use Fisher’s Z test for continuous data. To

measure Association(T,X) in step 4 of the algorithm, we used negative p-values returned by the

corresponding test of independence T ⊥ X . The parameter max-k which denotes the upper bound

on the size of the conditioning set in Semi-Interleaved HITON-PC (i.e., the maximum size of the

subset Z in steps 6 and 10 of the algorithm) was set equal to 3. The choice of this value for max-

k parameter is justified by empirical performance in a variety of data distributions, as well as by

sample size limitations in our data (Aliferis et al., 2010a,b). Since the Semi-Interleaved HITON-PC

17. For the Fishers Z test and G2 test, p-value is inversely related to the test statistic, given a fixed degree of freedom.

Thus, larger test statistics correspond to smaller p-values, and vice-versa.
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algorithm can be run multiple times in TIE∗, we programmed on top of the Causal Explorer codes a

caching method to store and retrieve results of conditional independence tests.

Procedures IGS-Lex, IGS-MinAssoc, and IGS-MaxAssoc to generate data sets from the embed-

ded distributions (Figure 9): These procedures were implemented by (i) constructing all subsets

G such that {Gi} ⊂G ⊆ {M i ∪Gi} and |G| ≤ parameter max-card, (ii) excluding subsets that

either include G∗j or coincide with Gk , (iii) considering first subsets with the smallest number of

variables, and (iv) using a subset G with the either smallest lexicographical order of variables, or

minimum association with T , or maximum association with T (depending on the employed proce-

dure). The association with T was assessed with the appropriate statistical test, as described above

for the Markov boundary induction algorithms. The parameter max-card was set equal to 4 in all

experiments except for experiments with simulated data where it was set equal to 8. The purpose of

this parameter is to trade off completeness of the TIE∗ output for execution speed. We also experi-

mented with larger values of max-card until no more new Markov boundaries can be obtained.

Criterion Independence to verify Markov boundaries (Figure 10): This criterion was imple-

mented using statistical tests that were described above for the Markov boundary induction algo-

rithms. Since the Markov boundary in the original distribution (M ) and the examined Markov

boundary in the embedded distribution (M new) are often significantly overlapping, we used a sam-

ple efficient implementation where we do not need to condition on the entire Markov bound-

ary in the embedded distribution M new. Consider that M ∩M new = W , M\M new = S1, and

M new\M = S2. Then context-independent information equivalence of S1 and S2 implies infor-

mation equivalence of M= S1 ∪W and M new = S2 ∪W . Therefore, it suffices to verify that

T ⊥ S1 | S2 and T ⊥ S2 | S1 instead of T ⊥M |M new . This was the essence of our implementa-

tion of the Independence criterion for Markov boundary verification.

Criterion Predictivity to verify Markov boundaries (Figure 11): As a learning algorithm L, we

used linear support vector machines (SVMs) with default value of the penalty parameter C = 1 (Fan

et al., 2005; Vapnik, 1998). As a performance metric M, we used area under ROC curve (AUC)

(Fawcett, 2003) and weighted accuracy (Guyon et al., 2006) for binary and multiclass responses,

respectively. We estimated classification performance (using either AUC or weighted accuracy)

by holdout validation (Weiss and Kulikowski, 1991), whereby 2/3 of data samples were used for

Markov boundary induction and classifier training and remaining 1/3 for classifier testing. Statisti-

cal comparison of AUC estimates was performed using DeLong’s test at α = 0.05 (DeLong et al.,

1988) and comparison of weighted accuracy estimates was performed by permutation-based testing

with 10,000 permutations of the vectors of classifier predictions (Good, 2000). We also experi-

mented with other SVM kernels and parameters in the criterion Predictivity, but the final results

were similar because SVMs are used here only for relative assessment of the classifier performance

(i.e., to compare performance of the Markov boundary M from the original distribution with per-

formance of the new Markov boundary M new from the embedded distribution). Final assessment

of the classifier performance for induced Markov boundary variables was carried out using SVMs

with polynomial kernel and parameters C and degree d optimized by holdout validation or cross-

validation, as described in Section 5.

Appendix E. Additional Information about Empirical Experiments

This appendix provides additional information about empirical experiments.
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E.1 Parameterizations of Methods in Empirical Experiments

Parameterizations of methods in empirical experiments are given in Table 9.

E.2 On Computation of Performance Criteria in Experiments with Simulated Data

Since the number of distinct Markov boundaries/variable sets extracted by a given method in our

evaluation may differ from the number of true Markov boundaries in the causal graph, it is neces-

sary to establish a matching between the true Markov boundaries and the extracted Markov bound-

aries/variable sets before computing values of criteria III-V. This matching was performed by finding

a minimum-weight matching in a complete bipartite graph G =< V 1∪V 2,E >, where vertices in

V 1 corresponded to the true Markov boundaries and vertices in V 2 corresponded to the extracted

Markov boundaries/variable sets. The weight of an edge (u,v) ∈E,u ∈ V 1,v ∈ V 2, was set equal

to the sum of PFP and FNR that would have resulted from matching the true Markov boundary

u with the extracted Markov boundary/variable set v. The extracted Markov boundaries/variable

sets that were not matched to any true Markov boundary did not participate in the computation

of criteria III-V. A limitation of this approach to evaluation of different methods is that methods

that are parameterized to produce a number of Markov boundaries/variable sets that is much larger

than the number of true Markov boundaries could potentially show better performance on criteria

III-V than methods/parameterizations that output only a few Markov boundaries/variable sets. In

order to control for this effect, whenever a method allowed it, some of its parameterizations were

targeted towards producing the same “large” number of Markov boundaries/variable sets (5,000 in

our case). In addition, since the true Markov boundaries are unknown in practical applications, the

average classification performance (criterion VI) was computed over all distinct Markov bound-

aries/variable sets extracted by a method. This way of computing the average classification per-

formance, in a sense, counteracts the potential bias in criteria III-V towards methods that produce

large numbers of Markov boundaries/variable sets, since if many of the extracted Markov bound-

aries/variable sets do not contain the variables truly relevant to prediction of T (i.e., members of its

true Markov boundaries), the classification performance may suffer.

E.3 Additional Discussion of the Results of Experiments with Simulated Data

KIAMB did not identify any true Markov boundaries exactly due to this method’s sample ineffi-

ciency arising from conditioning on the entire (candidate) Markov boundary. The average classifi-

cation performance of Markov boundaries extracted by KIAMB was about 20% lower than of the

MAP-BN classifier in both data sets.

Performance of EGS-NCMIGS and EGS-CMIM was very similar and varied widely depending

on parameterization, with the average PFP ranging from 29% to 76% and average FNR ranging

from 0% to 27% in T IED. The high ends (i.e., worse results) of these measures increased to 95%

PFP and 51% FNR in T IED1000 demonstrating the sensitivity of these methods to the presence of

irrelevant variables in the data. The alternative stopping criterion of EGS-NCMIGS helped reduce

the PFP relative to other parameterizations, but failed to reduce the FNR. The other stopping crite-

rion that requires the size K of Markov boundaries to be specified, was able to achieve 0% FNR in

T IED (for large enough K; see Table 10). This suggests that, even though the alternative stopping

criterion has the advantage of not requiring prior knowledge of the size of Markov boundaries, it

makes EGS-NCMIGS susceptible to premature termination as discussed in Appendix C. The aver-
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age classification performance of Markov boundaries extracted by EGS-NCMIGS and EGS-CMIM

was statistically comparable to the MAP-BN classification performance for all parameterizations

except those with K = 50 in both data sets and also for (l = 7,δ = 0.015) in T IED1000. The re-

duction in classification performance relative to MAP-BN reached as high as 10% and was due to

presence of false positives and false negatives in the extracted Markov boundaries.

EGSG proved to be extremely sensitive to the presence of irrelevant variables with PFP and FNR

increasing across all parameterizations from highs of 55% PFP and 37% FNR in T IED to uniformly

above 93% PFP and high of 78% FNR in T IED1000. In addition, the average size of Markov bound-

aries extracted by EGSG increased almost 10-fold, from 7 in T IED to 67 in T IED1000, while the

number of variables conditionally dependent on T in the underlying network remained unchanged.

Consistent with the theoretical analysis in Appendix C, these results demonstrate the lack of control

for false positives as well as false negatives in the output of EGSG. Classification performance was

sensitive to the values of parameter t, with increasing values resulting in degradation of classifica-

tion performance in both data sets, which is due to the fact that as t increases, Markov boundaries

extracted by EGSG increasingly resemble subsets of randomly selected variables from the complete

set of variables. Classification performance of Markov boundaries extracted by EGSG was lower

than performance of the MAP-BN classifier by 9-23% (depending on parameter settings) in T IED

and by 27-55% in T IED1000. In addition, classification performance in T IED1000 was lower than

in T IED uniformly across all parameterizations of EGSG.

Variable sets extracted by Resampling+UAF were 24-50% larger than those found by

Resampling+RFE, which helped Resampling+UAF reach slightly lower FNR (by 3-6% in T IED

and by 2-4% in T IED1000), but also resulted in significantly higher PFP (by about 42-46% in

T IED and by 30-35% in T IED1000). The larger size of the extracted variable sets and higher

PFP are likely due to UAF’s ranking of variables based solely on univariate association with the re-

sponse T , whereas RFE’s ranking is “multivariate” in a sense that it takes into account not only each

variable’s individual classification performance, but also the information that other variables in the

current nested subset carry about T (Guyon et al., 2002). In fact, Resampling+RFE produced more

compact variable sets than Resampling+UAF in every simulated and real data set considered in this

study. In simulated data, parameterizations of Resampling+RFE and Resampling+UAF with statis-

tical comparison of classification performance estimates produced variable sets that were on average

60-70% smaller than those found by parameterizations without statistical comparison, resulting in

about 20% decreases in PFP, but causing roughly 30-36% increases in FNR. The average classifica-

tion performance of variable sets extracted by Resampling+RFE in simulated data was statistically

indistinguishable from Resampling+UAF with similar parameterizations. The average classifica-

tion performance of both methods parameterized without statistical comparison was comparable

with performance of the MAP-BN classifier in T IED and was slightly lower (by about 1-2%) in

T IED1000. Parameterizations with statistical comparison underperformed the MAP-BN classifier

by about 2-3% in both data sets. The results in both simulated data sets also show that the number of

distinct variable sets out of the 5,000 extracted by each parameterization of Resampling+RFE and

Resampling+UAF ranged from 0.24% to 50%, and hence roughly 99% to 50% of computational

resources were spent retrieving the same variable sets multiple times.

IR-HITON-PC was able to identify exactly only a single true Markov boundary in both data sets.

This was a direct consequence of a violation of the iterative removal’s underlying assumption that

the true Markov boundaries are disjoint sets of variables. All true Markov boundaries in T IED and

T IED1000 share variable X10. However, once that variable was found to be in a Markov boundary
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by an iterative removal method, it was then removed from further consideration thus preventing all

other extracted Markov boundaries from containing this variable. Markov boundaries extracted by

IR-HITON-PC had 8-10% PFP (depending on the data set) and 10-20% FNR. The low PFP was due

to Semi-Interleaved HITON-PC’s built-in control for the false discovery rate (Aliferis et al., 2010b),

while the high FNR was a consequence of the iterative removal scheme. As a result of high FNR

in T IED, the average classification performance of Markov boundaries extracted by IR-HITON-

PC was about 2% lower than of the MAP-BN classifier in the same data set. The FNR was lower

in T IED1000 than in T IED, which resulted in classification performance becoming statistically

comparable with the MAP-BN performance.

IR-SPLR was not able to identify any true Markov boundaries exactly in neither T IED or

T IED1000. Each parameterization of IR-SPLR extracted only one variable set in both simulated

data sets. Variable sets extracted by IR-SPLR in simulated data were 4-6 times larger than those

found by IR-HITON-PC, which resulted in about 60-70% increase in PFP (depending on the data

set), but zero FNR. The PFP of IR-SPLR did not increase significantly in T IED1000 relative to

T IED, which demonstrates the often-cited benefit of the L1-norm regularization, that is, its ability

to exclude irrelevant variables from the model. Classification performance of the extracted variable

sets was statistically comparable to the MAP-BN performance in T IED and was about 2% lower in

T IED1000 due to an increase in PFP.

E.4 Real Data sets Used in the Experiments

The list of real data sets used in the experiments is given in Table 12.
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Method Parameterizations References

NOVEL

TIE∗ • Semi-Interleaved HITON-PC (without symmetry correction) with α = 0.05 and max-k = 3

was used for identification of Markov boundaries. Procedure IGS-Lex was used for generat-

ing data sets from the embedded distributions. Criteria Independence and Predictivity were

used for verifying Markov boundaries in simulated and real data, respectively. See Appendix

D for details.

Extended from

Statnikov and

Aliferis (2010a)

iTIE∗ • α = 0.05, max-k = 3. Novel method

STOCHASTIC MARKOV BOUNDARY DISCOVERY

KIAMB

• ♯ of runs = 5,000,α = 0.05,K = 0.7
Peña et al. (2007)• ♯ of runs = 5,000,α = 0.05,K = 0.8

• ♯ of runs = 5,000,α = 0.05,K = 0.9

EGS-CMIM

• l = 7,K = 10 • l = 5,000,K = 10

Liu et al. (2010b)

• l = 7,K = 50 • l = 5,000,K = 50

EGS-NCMIGS

• l = 7,δ = 0.015 • l = 5000,δ = 0.015

• l = 7,K = 10 • l = 5000,K = 10

• l = 7,K = 50 • l = 5000,K = 50

VARIABLE GROUPING-BASED MARKOV BOUNDARY DISCOVERY

EGSG

• ♯ of Markov boundaries = 30, t = 15 • ♯ of Markov boundaries = 5000, t = 15

Liu et al. (2010)• ♯ of Markov boundaries = 30, t = 10 • ♯ of Markov boundaries = 5000, t = 10

• ♯ of Markov boundaries = 30, t = 5 • ♯ of Markov boundaries = 5000, t = 5

RESAMPLING-BASED VARIABLE SELECTION

Resampling+

RFE

• w/o statistical comparison of classification performance estimates Ein-Dor et al.

(2005); Michiels

et al. (2005);

Roepman et al.

(2006); Statnikov

and Aliferis

(2010a)

• with statistical comparison at significance level = 0.05

All configurations used 5,000 bootstrap samples and a reduction coefficient of 1.2. Statistical

comparison of classification performance estimates was performed using permutation-based

testing (with 10,000 permutations) for weighted accuracy (Good, 2000) and DeLong’s test

(DeLong et al., 1988) for AUC.

Resampling+

UAF

• w/o statistical comparison of classification performance estimates

• with statistical comparison at significance level α = 0.05

All configurations used 5,000 bootstrap samples and a reduction coefficient of 1.2. The same

tests as in Resampling+RFE were used for statistical comparisons.

ITERATIVE REMOVAL FOR VARIABLE SELECTION AND MARKOV BOUNDARY DISCOVERY

IR-HITON-PC
• max-k = 3,α = 0.05

Natsoulis et al.

(2005); Statnikov

and Aliferis

(2010a)

This method runs Semi-Interleaved HITON-PC without symmetry correction. The same tests

as in Resampling+RFE were used for statistical comparisons.

IR-SPLR

• w/o statistical comparison of classification performance estimates

• with statistical comparison at significance level α = 0.05

The regularization coefficient λ for each SPLR model was determined by holdout validation

in training data. The same tests as in Resampling+RFE were used for statistical comparisons.

Table 9: Parameterizations of methods for discovery of multiple Markov boundaries and variable

sets. Parameter settings that have been recommended by the authors of prior methods are

underlined.
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III. 
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of true 

MBs 
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IV. 

Average 

proportion 

of false 

positives 

V. 

Average 

false 

negative rate 

VI.  

Weighted accuracy over 

all extracted MBs or VSs 

Average 95% Interval 

TIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965 

iTIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.951 0.938 0.965 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

Number of runs = 5000, a = 0.05, K = 0.8 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

Number of runs = 5000, a = 0.05, K = 0.9 377 2.8 0 0.000 0.400 0.727 0.479 0.946 

EGS-NCMIGS 

l = 7, d = 0.015 6 7.0 0 0.286 0.000 0.964 0.963 0.965 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.964 0.963 0.965 

l = 7, K = 50 6 21.0 0 0.762 0.000 0.941 0.937 0.943 

l = 5000, d = 0.015 24 7.3 0 0.469 0.267 0.954 0.843 0.967 

l = 5000, K = 10 20 10.0 0 0.610 0.220 0.964 0.954 0.970 

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.944 0.937 0.954 

EGS-CMIM 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.963 0.963 0.965 

l = 7, K = 50 6 21.0 0 0.762 0.000 0.939 0.937 0.942 

l = 5000, K = 10 20 10.0 0 0.595 0.190 0.963 0.951 0.969 

l = 5000, K = 50 9 21.0 0 0.762 0.000 0.943 0.937 0.954 

EGSG 

Number of Markov boundaries = 30, t = 5 30 7.0 0 0.476 0.267 0.840 0.605 0.968 

Number of Markov boundaries = 30, t = 10 30 7.0 0 0.548 0.367 0.722 0.379 0.962 

Number of Markov boundaries = 30, t = 15 30 7.0 0 0.548 0.367 0.722 0.379 0.962 

Number of Markov boundaries = 5,000, t = 5 1,997 7.0 0 0.286 0.000 0.863 0.620 0.965 

Number of Markov boundaries = 5,000, t = 10 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965 

Number of Markov boundaries = 5,000, t = 15 3,027 7.0 0 0.286 0.000 0.774 0.500 0.965 

Resampling+RFE 
without statistical comparison 1,374 14.9 1 0.397 0.058 0.955 0.932 0.979 

with statistical comparison (a = 0.05) 188 4.9 0 0.171 0.378 0.930 0.917 0.967 

Resampling+UAF 
without statistical comparison 184 20.8 0 0.752 0.000 0.953 0.934 0.966 

with statistical comparison (a = 0.05) 19 8.4 0 0.592 0.347 0.930 0.917 0.938 

IR-HITON-PC max-k = 3, a = 0.05 3 4.3 1 0.083 0.200 0.946 0.936 0.965 

IR-SPLR 
without statistical comparison 1 26.0 0 0.808 0.000 0.958 0.958 0.958 

with statistical comparison (a = 0.05) 1 17.0 0 0.706 0.000 0.959 0.959 0.959 
 

Table 10: Results obtained in simulated data set T IED. “MB” stands for “Markov boundary”, and “VS” stands for “variable set”. The 95%

interval for weighted accuracy denotes the range in which weighted accuracies of 95% of the extracted Markov boundaries/variable

sets fell. Classification performance of the MAP-BN classifier in the same data sample was 0.966 weighted accuracy. Highlighted

in bold are results that are statistically comparable to the MAP-BN classification performance.
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all extracted MBs or VSs 
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TIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960 

iTIE* max-k = 3, a = 0.05 72 5.0 72 0.000 0.000 0.957 0.952 0.960 

KIAMB 

 

 

Number of runs = 5000, a = 0.05, K = 0.7 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

Number of runs = 5000, a = 0.05, K = 0.8 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

Number of runs = 5000, a = 0.05, K = 0.9 349 2.8 0 0.000 0.400 0.722 0.450 0.959 

EGS-NCMIGS 

 

 

l = 7, d = 0.015 6 7.0 0 0.286 0.000 0.953 0.952 0.956 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.968 0.967 0.969 

l = 7, K = 50 6 50.0 0 0.900 0.000 0.877 0.866 0.887 

l = 5000, d = 0.015 995 8.0 0 0.648 0.508 0.960 0.950 0.968 

l = 5000, K = 10 990 10.0 0 0.747 0.494 0.961 0.952 0.968 

l = 5000, K = 50 950 50.0 0 0.949 0.494 0.868 0.857 0.882 

EGS-CMIM 

 

 

l = 7, K = 10 6 10.0 0 0.500 0.000 0.967 0.965 0.968 

l = 7, K = 50 6 50.0 0 0.900 0.000 0.904 0.895 0.915 

l = 5000, K = 10 990 10.0 0 0.676 0.353 0.961 0.953 0.967 

l = 5000, K = 50 950 50.0 0 0.935 0.353 0.897 0.885 0.910 

 

EGSG 

Number of Markov boundaries = 30, t = 5 30 67.0 0 0.958 0.440 0.688 0.383 0.850 

Number of Markov boundaries = 30, t = 10 30 67.0 0 0.977 0.693 0.485 0.253 0.769 

Number of Markov boundaries = 30, t = 15 30 67.0 0 0.984 0.780 0.422 0.246 0.739 

Number of Markov boundaries = 5,000, t = 5 5,000 67.0 0 0.927 0.028 0.662 0.441 0.850 

Number of Markov boundaries = 5,000, t = 10 5,000 67.0 0 0.944 0.250 0.476 0.248 0.780 

Number of Markov boundaries = 5,000, t = 15 5,000 67.0 0 0.953 0.369 0.406 0.247 0.710 

Resampling+RFE 
without statistical comparison 2,492 16.7 2 0.434 0.039 0.951 0.931 0.968 

with statistical comparison (a = 0.05) 214 6.0 0 0.225 0.336 0.947 0.917 0.964 

Resampling+UAF 
without statistical comparison 1,207 28.7 0 0.721 0.000 0.952 0.935 0.964 

with statistical comparison (a = 0.05) 12 7.8 0 0.577 0.367 0.949 0.931 0.959 

IR-HITON-PC max-k = 3, a = 0.05 2 5.0 1 0.100 0.100 0.958 0.958 0.959 

IR-SPLR 
without statistical comparison 1 30.0 0 0.833 0.000 0.949 0.949 0.949 

with statistical comparison (a = 0.05) 1 30.0 0 0.833 0.000 0.949 0.949 0.949 
 

Table 11: Results obtained in simulated data set T IED1000. “MB” stands for “Markov boundary”, and “VS” stands for “variable set”.

The 95% interval for weighted accuracy denotes the range in which weighted accuracies of 95% of the extracted Markov bound-

aries/variable sets fell. Classification performance of the MAP-BN classifier in the same data sample was 0.972 weighted accuracy.

Highlighted in bold are results that are statistically comparable to the MAP-BN classification performance.
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Figure 19: Results for average false negative rate and average proportion of false positives obtained

in T IED (left) and T IED1000 (right) data sets. Results of TIE∗ and iTIE∗ were identi-

cal.
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Name Domain ♯ of samples ♯ of variables Response type Data type CV de-

sign

References

Infant Mortality clinical 5,337 86 Death within the

first year

Discrete Holdout Mani and Cooper

(1999)

Ohsumed Text 5,000 14,373 Relevant to

neonatal diseases

Continuous Holdout Joachims (2002)

ACPJ Etiology Text 15,779 28,228 Relevant to etiol-

ogy

Continuous Holdout Aphinyanaphongs

et al. (2006)

Lymphoma Gene Expression 227 7,399 3-year sur-

vival:dead vs.

alive

Continuous 10-fold Rosenwald et al.

(2002)

Gisette Digit recognition 7,000 5,000 4 vs. 9 Continuous Holdout NIPS 2003 Feature

Selection Challenge

Guyon et al. (2006)

Dexter Text 600 19,999 Relevant to

corporate acquisi-

tions

Continuous 10-fold NIPS 2003 Feature

Selection Challenge

Guyon et al. (2006)

Sylva Ecology 14,394 216 Ponderosa vs.

rest

Continuous Holdout WCCI 2006 Perf. Pre-

diction Challenge

Ovarian Cancer Proteomics 216 2,190 Cancer vs. nor-

mal

Continuous 10-fold Conrads et al. (2004)

Thrombin Drug discovery 2,543 139,351 Binding to throm-

bin

Discrete Holdout KDD Cup 2001

Breast Cancer Gene Expression 286 17,816 ER+vs. ER- Continuous 10-fold Wang et al. (2005)

Hiva Drug discovery 4,229 1,617 Activity to HIV

AIDS infection

Discrete Holdout WCCI 2006

Perf.Prediction Chal-

lenge

Nova Text 1,929 16,969 Political topics

vs. religious

Discrete Holdout WCCI 2006 Perf. Pre-

diction Chanllenge

Bankruptcy Financial 7,063 147 Personal

bankruptcy

Continuous Holdout Foster and Stine

(2004)

Table 12: Real data sets used in the experiments.
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E.5 On Computation of Performance Criteria in Experiments with Real Data

In order to rank all methods based on a given performance criterion, the average value of this crite-

rion was first computed over all evaluation data sets for each method. The methods were then or-

dered from best to worst performing according to these averages. The best performer was assigned

rank 1 and designated as the current “reference method”. Performance of the next unranked method

in the ordered list was compared to performance of the reference method using permutation-based

testing at significance level 5% and with 10,000 permutations of the vectors of criterion values com-

puted on each data set. If performance of the two methods was found to be statistically comparable,

the unranked method received the same rank as the reference method. Otherwise, the next lowest

rank was assigned to the unranked method and this method was designated as the new reference

method. This process was repeated until each method was assigned a rank.

E.6 Additional Discussion of the Results of Experiments with Real Data

KIAMB produced some of the more compact Markov boundaries with the average PV of 1% and

ranked second out of 11 by that criterion. Small sizes of the extracted Markov boundaries were,

to a large extent, due to KIAMB’s sample inefficiency resulting in inability to perform some of the

required tests of independence as discussed in Appendix C. As a result, classification performance

of Markov boundaries extracted by KIAMB was lower than of most other methods with KIAMB

ranking 4 out of 5 by AUC. Consequently, KIAMB ranked 5 out of 15 on the (PV, AUC) criterion.

Although, KIAMB was parameterized to produce 5,000 Markov boundaries, only about 30% of

them were distinct, which means that 70% of computational time was spent on repeated retrieval of

the same Markov boundaries.

EGS-NCMIGS with the alternative stopping criterion produced the smallest Markov boundaries

at the expense of a significant reduction in AUC (∼ 9% below TIE∗). Parameterizations of EGS-

NCMIGS with the alternative stopping criterion ranked first and second out of 11 by PV and fourth

out of 5 by AUC. Overall, performance of EGS-NCMIGS and EGS-CMIM varied widely depending

on parameterization. Ranks of these methods ranged from 2 to 11 out of 15 on the (PV, AUC)

criterion.

EGSG showed an overall poor performance, ranking between 10 and 15 out of 15 on (PV,

AUC). Markov boundaries extracted by EGSG were larger than Markov boundaries identified by

many other methods and had the lowest average classification performance.

Resampling+RFE and Resampling+UAF extracted variable sets that were the largest in com-

parison with other methods, but that also had highest classification performance. Resampling+RFE

and Resampling+UAF ranked between 9 and 11 out of 11 by PV and between 1 and 3 by AUC. No-

tably, variable sets extracted by Resampling+UAF had an average PV between 24% and 41%, de-

pending on parameterization. Resampling+RFE extracted more compact variable sets than

Resampling+UAF in every data set, with the average PV between 5% and 17%. Due to poor

performance on the PV criterion, Resampling+RFE and Resampling+UAF ranked in the mid to

poor range on the combined (PV, AUC) criterion, scoring between 7 and 11 out of 15.

Iterative removal methods IR-HITON-PC and IR-SPLR extracted small numbers of Markov

boundaries/variable sets and ranked between 5 and 6 out of 6 by that criterion. IR-HITON-PC

produced more compact Markov boundaries than the variable sets of IR-SPLR. Markov boundaries

extracted by IR-HITON-PC had an average PV of 2.3%, which was significantly smaller than the

11%-15% average PV of IR-SPLR. IR-HITON-PC method ranked 5 out of 11 by PV while IR-SPLR
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methods ranked 9 and 10 by the same criterion. Despite the smaller average size of the extracted

Markov boundaries, IR-HITON-PC ranked on par with IR-SPLR (parameterized with statistical

comparison) by AUC, scoring third out of 5. Among all parameterizations of iterative removal

methods, IR-SPLR without statistical comparison produced the largest variable sets, which helped

this method reach a higher average classification performance and rank second out of 5 by AUC.

Higher average PV of variable sets extracted by IR-SPLR caused these methods to rank 9 and 11

out of 15 on the combined (PV, AUC) criterion. IR-HITON-PC ranked sixth on the same criterion

as a result of moderate ranks on PV and AUC.
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Method 
Infant_ Mortality Ohsumed ACPJ_ Etiology Lymphoma Gisette 

N S AUC N S AUC N S AUC N S AUC N S AUC 

All variables 1 86 0.821 1 14,373 0.857 1 28,228 0.938 1 7,399 0.659 1 5,000 0.997 

TIE* max-k = 3, a = 0.05 41 4 0.825 2,497 37 0.776 5,330 18 0.908 4,533 16 0.635 227 54 0.990 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 67 4 0.753 250 7 0.651 1,354 9 0.884 88 3 0.562 5,000 8 0.871 

Number of runs = 5000, a = 0.05, K = 0.8 39 4 0.752 133 7 0.650 830 9 0.883 50 3 0.561 5,000 8 0.871 

Number of runs = 5000, a = 0.05, K = 0.9 17 4 0.752 58 7 0.648 414 9 0.884 23 3 0.561 5,000 8 0.871 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.809 6 4 0.584 6 3 0.743 7 3 0.591 7 3 0.913 

l = 7, K = 10 3 10 0.874 1 10 0.691 3 10 0.780 5 10 0.615 7 10 0.952 

l = 7, K = 50 1 50 0.821 1 50 0.828 3 35 0.842 3 50 0.662 5 50 0.986 

l = 5000, d = 0.015 84 4 0.806 4,999 4 0.564 4,999 4 0.770 4,992 3 0.574 4,999 5 0.920 

l = 5000, K = 10 77 10 0.862 4,991 10 0.693 4,991 10 0.785 4,981 10 0.600 4,994 10 0.953 

l = 5000, K = 50 39 50 0.822 4,951 50 0.830 4,981 31 0.843 4,947 50 0.653 4,957 50 0.987 

EGS-CMIM 

l = 7, K = 10 2 10 0.865 1 10 0.696 2 10 0.915 6 10 0.577 7 10 0.956 

l = 7, K = 50 1 50 0.829 1 50 0.843 1 32 0.917 4 50 0.608 5 50 0.987 

l = 5000, K = 10 77 10 0.863 4,991 10 0.687 4,991 10 0.842 4,970 10 0.581 4,992 10 0.963 

l = 5000, K = 50 38 50 0.827 4,951 50 0.841 4,982 31 0.857 4,942 50 0.613 4,957 50 0.987 

EGSG 

Number of Markov boundaries = 30, t = 5 30 12 0.634 30 70 0.653 30 84 0.840 30 58 0.600 30 35 0.959 

Number of Markov boundaries = 30, t = 10 30 12 0.568 30 70 0.634 30 84 0.835 30 58 0.616 30 35 0.946 

Number of Markov boundaries = 30, t = 15 30 12 0.552 30 70 0.602 30 84 0.792 30 58 0.607 30 35 0.936 

Number of Markov boundaries = 5,000, t = 5 991 12 0.631 5,000 70 0.649 5,000 84 0.837 5,000 58 0.604 5,000 35 0.961 

Number of Markov boundaries = 5,000, t = 10 3,576 12 0.587 5,000 70 0.624 5,000 84 0.822 5,000 58 0.617 5,000 35 0.950 

Number of Markov boundaries = 5,000, t = 15 4,272 12 0.556 5,000 70 0.606 5,000 84 0.780 5,000 58 0.609 5,000 35 0.941 

Resampling+RFE 
without statistical comparison 4,230 17 0.825 4,942 3,889 0.846 5,000 2,441 0.924 4,919 1,293 0.634 4,948 697 0.997 

with statistical comparison (a = 0.05) 3,222 9 0.814 5,000 914 0.836 5,000 308 0.864 4,962 45 0.587 5,000 134 0.995 

Resampling+UAF 
without statistical comparison 4,868 26 0.859 2,533 10,722 0.855 4,963 3,883 0.929 4,215 2,546 0.647 5,000 1,673 0.999 

with statistical comparison (a = 0.05) 3,141 15 0.777 4,925 7,690 0.864 5,000 1,600 0.918 4,895 195 0.600 5,000 1,088 0.998 

IR-HITON-PC max-k = 3, a = 0.05 1 5 0.857 2 40 0.778 4 22 0.875 12 10 0.593 3 64 0.990 

IR-SPLR 
without statistical comparison 1 8 0.835 1 176 0.829 4 123 0.885 16 456 0.577 1 466 0.996 

with statistical comparison (a = 0.05) 1 2 0.828 3 122 0.728 5 26 0.844 139 47 0.572 1 261 0.996 

 

(Continued on the next page) 

 

Table 13: Results showing the number of distinct Markov boundaries or variable sets (N) extracted by each method, their average size in

terms of the number of variables (S) and average classification performance (AUC) in each of 13 real data sets. The row labeled

“All variables” shows performance of the entire set of variables available in each data set.
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(Continued from the previous page) 
 

Method 
Dexter Sylva Ovarian_ Cancer Thrombin 

N S AUC N S AUC N S AUC N S AUC 

All variables 1 19,999 0.979 1 216 0.998 1 2,190 0.998 1 139,351 0.927 

TIE* max-k = 3, a = 0.05 4,791 17 0.959 1,483 27 0.996 223 7 0.973 298 11 0.813 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 299 5 0.882 4,429 8 0.949 285 4 0.925 4,936 6 0.771 

Number of runs = 5000, a = 0.05, K = 0.8 193 5 0.884 4,384 8 0.948 180 4 0.927 4,900 6 0.774 

Number of runs = 5000, a = 0.05, K = 0.9 120 5 0.887 4,385 8 0.947 106 4 0.928 4,854 6 0.774 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.839 4 5 0.960 6 5 0.951 7 3 0.781 

l = 7, K = 10 5 10 0.927 2 10 0.988 6 10 0.974 7 10 0.854 

l = 7, K = 50 4 50 0.971 1 50 0.998 3 50 0.986 7 12 0.760 

l = 5000, d = 0.015 4,998 5 0.840 213 5 0.954 2,188 6 0.956 4,999 4 0.779 

l = 5000, K = 10 4,991 10 0.927 207 10 0.987 2,183 10 0.971 4,996 10 0.858 

l = 5000, K = 50 4,951 50 0.970 167 50 0.998 2,144 50 0.988 4,997 14 0.764 

EGS-CMIM 

l = 7, K = 10 5 10 0.942 2 10 0.991 5 10 0.976 7 10 0.799 

l = 7, K = 50 3 50 0.979 1 50 0.997 3 50 0.991 7 12 0.711 

l = 5000, K = 10 4,991 10 0.943 207 10 0.992 2,182 10 0.973 4,999 10 0.856 

l = 5000, K = 50 4,951 50 0.979 167 50 0.998 2,144 50 0.992 5,000 14 0.720 

EGSG 

Number of Markov boundaries = 30, t = 5 30 76 0.857 30 12 0.803 30 12 0.953 30 29 0.776 

Number of Markov boundaries = 30, t = 10 30 76 0.791 30 12 0.810 30 12 0.940 30 29 0.817 

Number of Markov boundaries = 30, t = 15 30 76 0.749 30 12 0.744 30 12 0.930 30 29 0.757 

Number of Markov boundaries = 5,000, t = 5 5,000 76 0.854 4,997 12 0.792 4,878 12 0.951 5,000 29 0.758 

Number of Markov boundaries = 5,000, t = 10 5,000 76 0.787 5,000 12 0.803 4,990 12 0.936 5,000 29 0.815 

Number of Markov boundaries = 5,000, t = 15 5,000 76 0.746 5,000 12 0.752 4,996 12 0.927 5,000 29 0.749 

Resampling+RFE 
without statistical comparison 5,000 2,097 0.976 4,976 19 0.998 4,951 142 0.983 5,000 14,996 0.912 

with statistical comparison (a = 0.05) 4,998 96 0.956 3,549 12 0.998 2,601 5 0.926 5,000 216 0.861 

Resampling+UAF 
without statistical comparison 3,561 15,491 0.976 3,944 44 0.998 4,372 424 0.980 4,998 74,521 0.933 

with statistical comparison (a = 0.05) 4,992 14,064 0.972 2,842 23 0.998 972 13 0.955 5,000 25,217 0.916 

IR-HITON-PC max-k = 3, a = 0.05 1 20 0.958 1 24 0.997 2 7 0.962 1 13 0.844 

IR-SPLR 
without statistical comparison 1 425 0.974 1 36 0.999 2 709 0.986 4 245 0.876 

with statistical comparison (a = 0.05) 3 149 0.940 1 36 0.999 11 115 0.943 28 144 0.749 
 

(Continued on the next page) 

Table 14:
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Method 
Breast_ Cancer Hiva Nova Bankruptcy 

N S AUC N S AUC N S AUC N S AUC 

All variables 1 17,816 0.914 1 1,617 0.716 1 16,969 0.981 1 147 0.940 

TIE* max-k = 3, a = 0.05 1,011 10 0.906 246 8 0.712 3,751 41 0.922 1,478 14 0.923 

KIAMB 

Number of runs = 5000, a = 0.05, K = 0.7 418 4 0.873 876 7 0.735 130 6 0.759 3,810 6 0.839 

Number of runs = 5000, a = 0.05, K = 0.8 255 4 0.874 439 7 0.754 57 6 0.764 3,713 5 0.836 

Number of runs = 5000, a = 0.05, K = 0.9 136 4 0.879 172 7 0.755 23 6 0.771 3,681 5 0.838 

EGS-NCMIGS 

l = 7, d = 0.015 6 4 0.922 7 3 0.661 5 4 0.730 7 4 0.698 

l = 7, K = 10 6 10 0.926 7 10 0.750 2 10 0.815 6 10 0.936 

l = 7, K = 50 6 50 0.928 7 50 0.668 1 50 0.849 3 50 0.953 

l = 5000, d = 0.015 4,994 4 0.911 1,616 4 0.696 4,998 5 0.735 145 4 0.721 

l = 5000, K = 10 4,985 10 0.926 1,610 10 0.760 4,991 10 0.780 139 10 0.936 

l = 5000, K = 50 4,973 50 0.927 1,570 50 0.658 4,951 50 0.846 101 50 0.953 

EGS-CMIM 

l = 7, K = 10 7 10 0.914 5 10 0.713 3 10 0.818 3 10 0.913 

l = 7, K = 50 6 50 0.902 5 50 0.727 1 50 0.886 1 50 0.954 

l = 5000, K = 10 4,978 10 0.906 1,608 10 0.724 4,992 10 0.780 139 10 0.901 

l = 5000, K = 50 4,966 50 0.907 1,577 50 0.729 4,951 50 0.897 99 50 0.954 

EGSG 

Number of Markov boundaries = 30, t = 5 30 205 0.893 30 17 0.705 30 89 0.751 30 9 0.815 

Number of Markov boundaries = 30, t = 10 30 205 0.886 30 17 0.660 30 89 0.722 30 9 0.754 

Number of Markov boundaries = 30, t = 15 30 205 0.890 30 17 0.633 30 89 0.687 30 9 0.752 

Number of Markov boundaries = 5,000, t = 5 5,000 205 0.892 5,000 17 0.701 5,000 89 0.751 4,373 9 0.819 

Number of Markov boundaries = 5,000, t = 10 5,000 205 0.888 5,000 17 0.652 5,000 89 0.720 4,856 9 0.786 

Number of Markov boundaries = 5,000, t = 15 5,000 205 0.889 5,000 17 0.638 5,000 89 0.682 4,905 9 0.787 

Resampling+RFE 
without statistical comparison 4,848 1,067 0.901 4,938 220 0.679 4,948 5,305 0.982 4,949 66 0.940 

with statistical comparison (a = 0.05) 2,922 10 0.894 4,598 13 0.646 5,000 1,261 0.966 4,972 38 0.946 

Resampling+UAF 
without statistical comparison 4,365 3,359 0.905 4,587 309 0.685 645 13,950 0.981 4,379 79 0.952 

with statistical comparison (a = 0.05) 1,295 42 0.917 4,250 36 0.663 3,185 12,503 0.978 628 47 0.946 

IR-HITON-PC max-k = 3, a = 0.05 12 9 0.890 23 6 0.673 2 49 0.920 3 15 0.910 

IR-SPLR 
without statistical comparison 47 159 0.892 10 129 0.661 1 10,289 0.981 1 69 0.956 

with statistical comparison (a = 0.05) 54 27 0.880 7 22 0.694 1 10,289 0.981 1 69 0.956 
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