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ABSTRACT

We study the problem of selecting a set of points of interest
(POIs) to show on a map. We begin with a formal model
of the setting, noting that the utility of a POI may be dis-
counted by (i) the presence of competing businesses nearby
as well as (ii) its position in the set of establishments ordered
by distance from the user. We present simple, approximately
optimal selection algorithms, coupled with incentive com-
patible pricing schemes in case of advertiser supplied points
of interest. Finally, we evaluate our algorithms on real data
sets and show that they outperform simple baselines.

1. INTRODUCTION

Accurate maps used to be treated as state secrets, but
high quality geographic data is now readily available at our
fingertips, and online mapping services boast a large user
base, both on mobile and desktop. Google Maps alone
claimed 150 million mobile users in 2011 [20] and more than
one billion monthly active users in total in 2012 [19].

One of the challenges in algorithmic cartography is sifting
through all of the data available and deciding what to place
on the map (at a given zoom level). One must decide which
natural features, like rivers, lakes, and mountains should be
labeled, which roads should be rendered, which political fea-
tures, such as city and neighborhood names, should appear,
and, finally, which points of interest (POIs), such as restau-
rants, schools, and museums, should be highlighted.

In addition to the organic results, one may wish to place
advertisements on the map as well. Both the quantity and
the quality of page views on online map services make them
an attractive target for advertising, since an online map user
reveals the location she is interested in, and sometimes the
type of business she is looking for. These are valuable pieces
of information that can be used to target relevant adver-
tisements. In short, many of the same dynamics that make
sponsored search advertising a lucrative business are at play
here as well. Furthermore, advertising on maps enables lo-
cal and small business advertisers that might not be able to
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compete on platforms like search advertising where larger
advertisers are present [6].

In this work we focus on the POI selection problem, tak-
ing into account both organic and sponsored POIs. We must
balance many competing objectives: the overall utility of the
map, density and diversity of results, as well as the overall
aesthetics. We will discuss the critical parameters that need
to be taken into account for this problem, propose mod-
els that capture some of these issues, give optimization al-
gorithms, and, for the case of ads, pricing mechanisms for
these models. An additional consideration that we do not
consider here is that of zoom stability, see, for example, [1§]
for complex optimizations that emerge with this constraint.

We distinguish between two distinct and important sce-
narios in our models: the location-aware case, where the
location of the user is known (e.g., when the map is used on
a mobile app with access to GPS data), and the location-
unaware case, where only the boundaries of the map view-
port are known and the POIs need to be placed without
reference to a specific user location (e.g., when the map is
used on a desktop computer with no GPS). We define these
models in the next two sections, and then study the location-
unaware problem followed by the location-aware one.

2. CONSIDERATIONS FOR POI
SELECTION ON MAPS

Map making is an ancient tradition: one of the oldest
known maps comes from Babylon, and is dated to 5th cen-
tury BC [21]; in addition, there is some indication that maps
may be even older |15]. Although maps today look nothing
like the ornate hand-drawn maps from the Middle Ages, they
are also not purely utilitarian and design continues to play
a large role in annual map making competitions [7]. Similar
design, aesthetic, and pragmatism considerations are impor-
tant factors for the placement of POIs on maps, as we will
discuss in this section.

Aesthetics. One desire that is often repeated is that of
being selective in choosing items that should appear on the
map, thereby avoiding clutter. In many cases, less is more:
for example, one need not label every business in a commer-
cial area, or every museum in a city. By discriminating, the
map maker accentuates the relevant parts of the area, and
gives the viewer the right information to make his or her
decision.



Capturing the overall aesthetics formally is a challenging
task well beyond the scope of this WOI‘kB We begin by for-
malizing what is probably the most obvious form of clutter:
placing POIs too close to each other, versus optimizing for
geographic diversity. As it turns out, this is well aligned
with another constraint motivated by negative externalities
that POIs and advertisements impose on each other.

Negative Externalities. It is well understood that con-
tent, as well as ads, delivered simultaneously to a user com-
pete for the user’s attention. Therefore, placing an addi-
tional POI on a page decreases the value of other POIs on
the same pagel‘| In economics terminology, POIs impose
negative externalities on each other. This phenomenon is
well studied in the literature for enforcing diversity among
search results |2} [10], as well as among various forms of ad-
vertising |1}, |8} 9} |11}, [12} [13].

In the specific context of advertising, externalities are
probably stronger, since a search for restaurants in down-
town Palo Alto is a strong indication that the user is look-
ing to pick one restaurant in that neighborhood to visit in a
not too distant future, and the value of ads is mostly based
on their immediate influence on this one decision. Further-
more, the externality effect for ads on a map is clearly a
location-dependent effect: both the distance between po-
tentially competing businesses, as well as the distance from
the user play a large effect in valuation of the ad.

3. MODEL

We model negative externalities differently depending on
whether the user’s location is known or not. In the location-
unaware model, we discount the utility gained from a POI
by a factor dependent on the distance to the nearest estab-
lishment (of a similar type) also placed on the map. Such
an establishment is in direct competition, and the closer it
is, the likelier that both are in the consideration set of the
user. As mentioned above, this is also well-aligned with our
aesthetic preference to avoid clutter in the map.

When the precise user location is known, which we will
refer to as the location-aware setting, previous work on geo-
graphic choice |14} 17] has shown the rank of the establish-
ment in a list ordered by distance to the user plays a large
role on the user’s final choice. That is, all else being equal,
the fact that one business is closest and the other is sec-
ond closest, leads to the former getting a larger number of
engagements than the latter. We adapt the empirical find-
ings to define an economically-grounded model for negative
externalities in this setting.

In both models, we are given a number of candidate POlIs,
A = {a1,a2,...,an}, each associated with the location where
it should be shown, if selected. Throughout this paper we
will assume that candidate POls correspond to a single point
on the map. This assumption is reasonable when they are
relatively small markers. We will use this assumption in
our algorithms, but the model is well-defined if each POI
is allowed to be a geometric shape (e.g., a rectangle) that
occupies a non-trivial area.

Each POI a; has a standalone value v;. For organic re-
sults this is the predicted utility of the POI to the user.

1See Section|8|for a discussion of various aspects of aesthetics
not covered here.

2Other models, where different POIs might complement
each other, are not considered in the present work.
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For ads, this represents the value of the ad to the adver-
tiser, if this were the only ad being shown. This value takes
into account all of the features associated with the user ses-
sion, such as the POI’s relevance, quality, and the distance
between the location of the POI and the “focal area” of the
map (e.g., points closer to the user’s location in the location-
aware model have higher value, or when the user has asked
for a route between two points on the map, points that are
closer to this route have higher value, everything else being
the same).

The final value of placing a POI a; is the product of v;
and a discount term §;(.5) that depends on the set S of other
POIs that are displayed and captures the effect of negative
externalities. This part is modeled differently depending on
whether the location of the user is known or not, as described
below. In either case, the final objective of the optimization
problem is to select a set S of POIs with the maximum total
value.

We now state the problem formally:

DEFINITION 1 (POI SELECTION PROBLEM). Given a set
of POIs A = {ai1,az,...,an}, where each POI a; has an
associated value v;; and a discount function 6;, find a set
S C A that mazimizes the total utility:

a; €S

3.1 Location-unaware model

In this model, we focus on a discount function defined as
the minimum of pairwise discount factors between a; and
other POIs in S, i.e., §;(S) = ming;es\{a;3{di;} where for
a; € S\ {a;}, d;; is the pairwise discount factor between a;
and a;

The pairwise discount factors are, in general, functions of
the similarity of the two POIs as well as the distance between
their corresponding locations, i.e.,

bij = flwiz, diz),

where w;; is the relative similarity of POIs a; and a; (e.g.,
it has a high value if both a; and a; are sushi places, mod-
erately high value if one is a sushi place and the other is a
burger joint, and low value if one is a sushi place and the
other is a car mechanic), and d;; is the distance between
the locations associated with a; and a;. The discount func-
tion, f(w,d), is a decreasing function of w and an increasing
function of d, and is always between 0 and 1. In this work,
we first focus on the uniform-relevance case, where w;;’s are
all the same and d;; = f(ds;;) for an increasing function f.
This is a reasonable assumption in cases where the candi-
dates considered are similar, for example, when we want to
only display restaurant markers. We will then turn to the
more complex case of general similarity functions.

Well-behaved discount functions. Not all discount
functions are appropriate for modeling the map POI selec-
tion problem: as we show below, under some functions the
optimal solution may get arbitrarily dense.

3We also considered a number of alternative discount func-
tions, e.g., Hj d:5, but settled on the minimum function be-

cause of its simplicity as well as a number of desirable prop-
erties it exhibits. For example, the minimum function is
local, and therefore is not affected by factors such as the
screen size that affect the total number of POIs that can be
displayed.



Consider an instance of the POI selection problem with
infinitely many candidates, one at each position in the unit
square [0,1]?, and each having a value of 1. We call the
discount function f a bounded-solution function, if the POI
selection problem on this instance, using f as the discount
function, has an optimal solution of bounded value.

For example, for f(xz) = 1—e™ ", the solution that consists
of (k+1)? points {i/k : 0 < i < k}* has a value of

1 k
2% T
which is unbounded. Such functions are obviously undesir-
able for modeling the POI selection problem.

To exclude these functions, we introduce the notion of
planar-density of f, denoted by A(f), and show that bounded

planar density implies that f is bounded solution.

(k+1)% (1—e "> (k+1)?

LEmMmA 1. Call

the planar-density of f. For every bounded-solution function
f, the planar-density, \(f), is finite.

PROOF. Assume this is not the case. This means that
for every constant B, there is a value of x such that % >
B. Using this, we construct a solution for an instance in
[0,1]? as follows: the solution selects POIs at locations {ix :
0 <4 < 1/z}? This is a collection of precisely [1/2]>
points, with the distance between each points and its near-
est neighbor exactly x. Therefore, the value of this solu-
tion is [1/2]%f(x) > % > B. Since B can be arbitrarily
large, this contradicts the assumption that f is bounded-
solution. [

3.2 Location-aware model.

To model the discounts in the location-aware setting, we
adapt the findings in [14} [17] which showed, that, given a set
of choices to a user, the probability that a user chooses an
establishment can be explained by the rank of the establish-
ment among the alternatives (controlling for other factors
that depend on the individual establishment and not the set
of alternatives, like the quality of the establishment or its
distance to the user). For example, the attractiveness of
a cafe decreases if there is a different cafe that is strictly
closer. To formalize the model, let m denote a permutation
of all candidates in increasing order of their distance to the
user. In this model, we assume the location of the user is
known, either deterministically, or as a distribution. If the
location of the user is known as a distribution, = will be
a random variable selected from a distribution P over the
set of permutations. Let m(¢,.S) denote the rank of a; in S
under m, i.e., 7(¢,5) = 1 if a; is the element of S that is
closest to the user. The rank discounts are specified by a
non-increasing sequence 71,7z, ... of discount values. The
discount of POI a; in the set of displayed ads S is given by
3:i(S) = Yn(i,5)- We assume without loss of generality that
Y1 = 1.

In the case that the user location and therefore the or-
dering 7 is uncertain, we can represent the location infor-
mation as a distribution over a set of permutations II
{m1,72,..., 7}, with permutation m; occurring p; fraction
of the time. It is easy to show that the total number of pos-
sible orderings of a set of n points in R? in increasing order
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of their distance to a reference point is bounded by n*, and
therefore a compact representation of the input in the above
form always exists. The aim in the non-deterministic case is
to select a set S that maximizes the expected (over 7 drawn
from P) value of the objective function.

4. LOCATION-UNAWARE SELECTION
4.1 The Optimization Problem

Below we give an algorithm for the optimization problem
for location-unaware POI selection. At a high level we show
that a large family of discount functions can be approxi-
mated by a parametrized step function that jumps from 0
(full discount) to 1 (no discount) at a specific distance R.
Using this simpler discount function, we compute an alloca-
tion that approximately maximizes the social welfare (for a
judicious choice of R), but is much easier to optimize. In
fact, with this choice of discount function, the maximization
problem is equivalent to finding a maximum weight indepen-
dent set in unit disk graphsEI This means that the objective
is to select a set of points with the maximum total weight
subject to the constraint that no two selected points are
within distance R of each other. A simple approximation
algorithm for this problem is the greedy algorithm that it-
eratively picks the point of maximum weight and eliminates
all of the candidates within distance R of the selected point.
We call the algorithm PICKANDREMOVE and show its pseu-
docode in Algorithm [T]

Algorithm 1 Map POI Selection Algorithm

1: function PICKANDREMOVE(R)
2: C <+ Set of candidate POlIs, A
: S+ 0
while C # 0 do
Let a; +— argmaxa,ec s
S+ SuU {al}
C(—C\{a]-:dij<R}
end while
return set S of
end function

3
4
5
6:
7:
8.
9
10:

To analyze the algorithm, we define the following function
for a set S of points on the plane:

h(S)= 3 f(, min {di}).

a; €S
Here, if S\ {a;} is empty, f(ming,es\i3{di;}) is defined
as 1. The core of our proof is the next lemma, which gives
an upper bound on the value of h(S) for any set of points
contained in a ball of given radius. To state the lemma, we

need to restrict f to a class of “well-behaved” functions as
defined below.

DEFINITION 2. We say the function f is well-behaved if:

) =

e f is an increasing function with f(0) =0 and f(oco
1.

4This also places the problem in the realm of geometric set
packing, e.g. [4]. We express the approximation with respect
to the original discount function differentiating it from tra-
ditional set packing problems.



e f has a bounded planar density, A(f).

e There is a threshold value 6y > 0 such that f(y/x) is a
convez function of x for x < 0y and a concave function
of © for x > 0y.

The last requirement intuitively states that the discount
function is S-shaped, with the value of § rising slowly at first,
then sharply, and then slowly again. One example of such
function is the double logistic function, f(z) = 1—exp(—2z?).

For every well-behaved function we can bound the value
of h(S) for any set S of points in a ball of radius R.

LEMMA 2. Assume f is a well-behaved function. For ev-
ery set S contained in a ball of radius R, h(S) < 16R*\(f)+
1.

Given the above lemma, the approximation factor of the
algorithm can be bounded as follows:

THEOREM 1. Assume f is a well-behaved function. Then,
the approzimation ratio of PICKANDREMOVE(R) is at most
(16R*A(f) + 1)/ f(R) = O(1).

Proor. Fix an instance of the problem and an optimal
solution OPT for this instance. We use a charging argument
to show that the value of OPT is at most ¢ times the value
of the solution ALG produced by PICKANDREMOVE(R).
Consider any point p in OPT. The algorithm PICKAND-
REMOVE(R) terminates when the set C' is empty, and there-
fore the point p must be removed from C' during the execu-
tion of the algorithm. Assume p is removed in an iteration
where the point a; is added to ALG. We charge p to a;. By
definition of the algorithm, it is clear that v, < v;.

We now argue that for every a; € ALG, the total value
that OPT gets from the points charged to a; is at most
(1 + 16R*A(f))/f(R) times the value that ALG gets from
a;. It is clear that the value that ALG derives from a; is at
least v; - f(R). Since v, < v; for every point p charged to
a;, the total value that OPT derives from such points is at
most v; - h(S), where S is the set of points in OPT charged
to a;. Since every such point is within distance R of a;, by
Lemmal[2} h(S) < 16R?A(f) + 1.

Moreover, since f is well behaved, there is a finite value
of R such that f(R) > 1/2, which implies that the approxi-
mation ratio is always bounded by a constant. []

All that remains is to prove Lemma

PROOF OF LEMMA 2l Assume S is a set of points con-
tained in a ball of radius R that maximizes the value of h(S).
If S is a singleton, then h(S) = 1 and we are done. So, as-
sume |S| > 2. For every a; € S, ri := ming;es\{a;}{dij} is
well-defined and finite. For each a; € S, consider a ball B;
of radius r;/2 around a;. These balls are all disjoint, since
if two balls B; and Bj; intersect, the distance between ¢ and
j must be less than 7;/2+r;/2 < max(r;,r;), which contra-
dicts the definition of r;’s. Furthermore, since r; < 2R for all
i, all B;’s are contained in a ball of radius 2R. This means
that the total volume of B;’s cannot exceed the volume of a
ball of radius 2R. In other words,

Z m(ri/2)® < 7(2R)?

or >, 77 < 16R*>. On the other hand, h(S) = >, f(r:).
Therefore, h(S) is bounded from above by the maximum of
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> f(ri) subject to Y, r? < 16R%. Denoting z; := rZ, this
reduces to the maximum of 3, f(\/z:) subject to Y, z; <
16R?. Consider the optimal solution of this maximization
program. For any two ¢ and j where x;,x; > 0, x; and z;
must be equal, since otherwise we can increase the objective
function by increasing the smaller one and decreasing the
larger one (due to the concavity of f in this range). There-
fore, all x;’s such that z; > 67 are equal. Similarly, there
can be at most one z; in (0,0y), since if there are two, the
objective function can be increased by increasing the larger
one and decreasing the smaller one (due to the convexity of
f in this range). Let k denote the number of z;’s that are
non-zero and at least 6¢. The total value of these x;’s is at
most 16R?/k. The value of the z; that is less than 0y (if
any) is also bounded by the same value. Therefore, the total

value >, f(y/Z;) is at most
(k+1)f(AR/Vk) = kf(4R/VE)+f(4R/VEk) < 16R*X(f)+1.
O

Theorem [I] implies that the approximation factor of the
algorithm depends on the function f. As an example, we
compute this approximation factor with the discount func-
tion f(zx) = 1 — e’
function.

, also known as the double logistic

COROLLARY 1. The map selection problem with a double
2
logistic discounting function f(x) = 1—e™ " is approzimable

within a factor of 22.35.

2
PROOF. For every z, we have e”* > 1 — z?. Therefore,

f@) 1=

72 72

Af) =

Hence, the approximation factor can be bounded as:

16R* +1
f(R)

Numerical calculation shows that the above expression
achieves its minimum at R ~ 0.578, achieving a value of
ot ~22342. [

4.2 Pricing for Ads

The optimization algorithm in the previous section is ag-
nostic to the provenance of the candidate POIs: they can
be organic results, or potential ads. In the latter case, an
important part of the overall system is the pricing scheme:
we want to set the prices such that each advertiser has an
incentive to truthfully reveal the value of the ad.

We show how the algorithm in the previous section can be
coupled with an efficient pricing scheme to obtain such an
incentive-compatible mechanism. In general, the key point
that determines if an approximation algorithm can be turned
into an incentive compatible mechanism is whether the allo-
cation function is monotone [3|. In the case of our problem,
the allocation function is the function that for a fixed set
of bids v_; of advertisers other than i, maps the bid v; of
bidder i to §;(S), where S is the solution computed with the
bid vector (v;,v—;). If this function is monotonically non-
decreasing, then there is a payment function that is incentive
compatible. In general, computing this payment function
involves integrating over the allocation function, which can

a” < min
R



be algorithmically inefficient. We show not only that the
allocation rule is monotone, but also that there is a sim-
ple algorithm for computing truthful payments that has the
same asymptotic running time as the allocation algorithm.

The pricing algorithm is presented in Algorithm [2] The
algorithm proceeds as in the last section, processing points
in decreasing order of their values, and, for each ad a;, picks
it unless another point within distance R is picked before.
In addition, whenever the latter event occurs, it attributes
the fact that ad a; is blocked to the unique picked point a;
that is within distance R of a; (if such a unique ad exists; if
it does not, the event is not attributed to any ad). The price
for a picked ad a; is set to the maximum of the values of the
ads that are blocked because of a;, times the appropriate
discounting coefficient.

Algorithm 2 Map Ad Pricing Algorithm
1: function PICKANDREMOVEANDPRICE(R)

2 Sort candidate ads so that v1 > wve > ... > v,
3 fori=1—ndo
4: Pi < 0
5: end for
6: S0
T for j=1—ndo
8: b+ 0 > number of other ads blocking a;
9: fork=1—j—1do
10: if ar € S and d; < R then
11: 1+ k
12: b—b+1
13: end if
14: end for
15: if b =0 then > a; is not blocked by any ad
16: S+ SU{a;}
17: else if b =1 then © a; is blocked by unique ad
18: pi < max{p;,v;}
19: end if
20: end for
21: return set S of winners, price p;- f(ming ;e s\a; {di; })
for 1.

22: end function

THEOREM 2. The mechanism defined by Algorithm [4 is
incentive-compatible.

PrOOF SKETCH. The main insight behind the proof is the
following: For each ad a; that is picked by the algorithm
PICKANDREMOVE(R), if we compare the execution of this
algorithm with the execution of the same algorithm when ad
a; is removed, the two executions look exactly the same up
until the point where the execution without a; picks an ad a;
that is within distance R of a;. This means that if we change
the value of ad a; to v and run the algorithm, for v > v;,
the algorithm picks the exact same set of ads (except that it
picks a; later if v is smaller), and if v < v;, it will pick the
ad a;, and after that, cannot pick a;. Therefore, the value
v; is the threshold value above which ad a; will be picked in
the solution, and the discount factor f(min,;es\a,{di;}) is
the same when a; is picked.

What remains is to prove that the threshold value v; de-
scribed above is equal to the p; computed by the algorithm.
Note that since the algorithm initially sorts ads in decreas-
ing order of values, the value p; at the end of the algorithm
is either zero (if we never reach line 18 with this value of

759

1), or is equal to the first v; for which line 18 is reached.
We argue that this j is the same as the j defined above.
To clarify the notation, let j1 denote the first value of j for
which line 18 is reached with ¢ and j, and j2 denote the
first j so that a; is within distance R of a; that is picked
by PICKANDREMOVEANDPRICE(R) on an input without a;.
By definition the condition in line 10 is satisfied for j = j2
and k = ¢. Furthermore, this condition should not be sat-
isfied for j = j2 and any other value of k, since if it is, j2
would not be picked by PICKANDREMOVEANDPRICE(R) on
the instance without a;. Thus, line 18 must be reached with
this value of ¢ and j = j2. Next, we prove that this line is
not reached for any j < jo (and the same value of 7). As-
sume, for contradiction, that it is reached for one such j.
Consider the execution of PICKANDREMOVEANDPRICE(R)
on the instance without a;. It is easy to see that in this
scenario the algorithm must pick a;, since the only selected
ad blocking it is a;, which is removed. This contradicts with
j2 being the first ad within distance R of a; picked in this
scenario. [

4.3 Non-Uniform Weights

The algorithms we presented so far work in the regime
where the discount function is indifferent to the similarity
between the POIs. This is equivalent to assuming w;; = 1
for all pairs (4,7). In this section we explore the setting
of non-homogenous weights. We show that in general the
optimization problem is NP-complete, and very hard to ap-
proximate. We then turn our attention to a more limited
setting and show that the optimization algorithm presented
before remains approximately welfare optimizing.

We consider the special family of discount functions {g},
which multiply the effects of similarity and distance, namely:
flwij,dij) = g(dij/wij;). Note that just like f, g is increas-
ing in distance and decreasing in similarity. We prove that
even for this special class of discount functions, and even
fixing any set of pairwise distances d;;, the problem of find-
ing the optimal set of POIs given the weights w;; is NP-
complete.

For this result, we need the discount function g to satisfy
a mild non-triviality condition: For every n, there has to
beac > 0 and 0 < tmin < tmax such that g(z) < ¢/n
for z € (0,tmin] and g(z) > ¢ for £ € [tmax,00). Roughly
speaking the condition requires the function g to make full
use of the input range. We say a function g is non-trivial if
it satisfies the above condition.

THEOREM 3. For any non-trivial discount function g and
every set of distances {di;}, the problem of optimal POI se-
lection given the weights w;j is NP-complete.

ProOOF. We reduce from the maximum independent set
problem. Given a graph G = (V, E) with n vertices, we con-
struct a set of weights {w;;} such that the resulting instance
of the POI selection problem (with vertex 4 corresponding
to POI a;) captures the independent set problem in G.

Let n be the number of vertices in G. By non-triviality of
g, there are ¢ > 0 and 0 < fmin < tmax such that g(z) < ¢/n
for © € (0,tmin] and g(z) > c for © € [tmax,00). Associate
each node v; € V with POI a; with value 1. For any two
points a; and aj, let

| dij/tmin,
Wiy = { dij/tmaX7

if (’Ui, ’Uj) ek
otherwise.



Now consider any optimal solution to the welfare opti-
mization problem, S*. We show that the nodes of G cor-
responding to S™ must be an independent set. Assume, for
contradiction, that a node v in S* has an edge to another
node u € S*. We construct another solution by removing all
such u’s. By the definition of w;;’s, g(dij/wi;) is less than
¢/n for (i,j) € E and is greater than ¢ otherwise. There-
fore, removing all nodes u that have an edge to v removes
at most n terms of value less than ¢/n and adds a term of
value greater than c. This means that the resulting set has
higher total value than S™, contradicting the optimality of
S*. This means that solving the POI selection problem on
this instance is equivalent to solving the independent set
problem on G. [J

The lower bound presented above may seem limiting, but
the similarity weights w;; usually have additional structure.
For example, consider the following simple model, where we
partition the points into k distinct classes A = A1 U Ax U
... U Ag. In this setting, A1 may represent restaurants, As,
mechanics, As, dentists, and so on. We impose a binary
structure on the similarity weights: any two POIs in the
same class have a high similarity of wg, whereas any two
POIs in different classes have a low similarity of wr, < wg.

Now consider the intuition behind Algorithm[]] When the
weights are identical, upon selecting a POI, the algorithm
removes all of the other competing advertisers within radius
R. When the similarity weights are not uniform, we adapt
the algorithm as follows. There are two radii to consider:
Ry for points in the same cluster, and Ry, for points across
clusters. The algorithm then iteratively picks POIs of max-
imum value, and every time a POI is picked, it removes all
points in the same class within radius Ry, and all points in
other classes within radius Ry,.

PROPOSITION 1. Assume f is a well behaved function,
and wg > wr as above. Then the approximation ratio of
the modified PickAndRemove algorithm is at most twice the
ratio of the algorithm with uniform weights.

PrOOF SKETCH. We proceed as before, charging every
point a in OPT to the POI selected by the algorithm that
resulted in the removal of a from consideration. There are
now two sets of points that are removed, those from the
same class and those from a different class. By the same
logic as in Theorem [ we can bound the total value of
points in the same class to 16R%()\s) 4+ 1. Moreover, since
Rr, < Ry, the total value of points in the different class is
at most 16R% (A\f) + 1 < 16R% (\s) 4 1 and the Proposition
follows. [

S. LOCATION-AWARE SELECTION

We now turn to the POI selection problem in the location-
aware model, where we have either exact or approximate
information on the user’s location. As we observe in Sec-
tion [B-1} if the user location is known without any uncer-
tainty, corresponding to the case of a single ranking 7 of the
POIs based on their distance to the user, the problem can
be solved exactly using a dynamic programming algorithm.
The more technically challenging case is when the user loca-
tion is uncertain, requiring an optimization with respect to a
convex combination of multiple permutations. We study this
case in Section where we first give a general O(logn)-
approximation algorithm, and then improve this factor to
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O(1) for important special cases such as geometric and con-
cave discount functions.

5.1 Known User Location

When the user location is known exactly, the distances
between the user location and POI locations induce a single
ordering 7 on the items. We give a simple dynamic program
that solves the optimization problem.

Order the POIs according to 7, (i.e., a1 is the POI closest
to the user, and so on). Let Ui, 5] be the value of the optimal
solution that only picks points from among those in i,...,n
and allocates them to slots 7,...,n in the permutation (i.e.,
getting discounts 7y;, ..., 7vn). The base case has U[-,n+1] =
Uln +1,:] = 0. The recursive definition considers whether
POI a; should be allocated to slot j:

Ufi j] = max(Uli+1,3], v+ Uli+ 1,5 +1]).

The value of the optimal solution is the value in cell U[1, 1].
In case of advertisements, this algorithm yields a simple
mechanism: for the payments of each winner, we run the
dynamic program without that winner to determine their
VCG payment.

5.2 Uncertain User Location

If the location of the user is uncertain, and we are only
given a prior over possible locations, we can phrase the opti-
mization problem as that of finding the maximum expected
social welfare, where the expectation is over the prior. We
recall the notation below.

Each possible user location induces a permutation 7w over
the points of interest ordered by distance to the user. Let
I = {m1,72,...,m} be the set of possible permutations,
with permutation 7; occurring p; fraction of the time. For
a set of selected POIs S, and a set of permutations II, let
U(I1, S) denote the expected social welfare,

k
U(TLS) = pi Y 0¥m,(.5)-
=1 jeSs

We first give a simple greedy algorithm that achieves an
O(logn) approximation to the optimum solution for general
non-increasing discounts . We show in Section [5.4] that the
same algorithm gives a constant approximation ratio when
the discounts are linear, concave, or geometric.

5.2.1 The LARGESTVALUEPREFIX Algorithm

Algorithm LARGESTVALUEPREFIX first orders the POIs
in order of decreasing value v1 > vy > ... > v,. Let a;
be the POI corresponding to the value v;. Define the pre-
fix sets, X1 = {a1},X2 = {a1,a2}, and generally X; =
{a1,a2,...,a;}. The algorithm returns the best set among
all of these, S = argmaxy, U(I, X;).

LEMMA 3. LARGESTVALUEPREFIX gives an H, = O(logn)
approximation to the optimal solution.

PrOOF. Let ALG be the value returned by the algorithm,
and OPT be the value of the optimal solution. We first show
a simple upper bound on OPT, denoted by OPT. When
the POIs are ordered in order of non-increasing values, v >
v > ... > vUp, a simple swapping argument shows that:

n
OPT <uvimvi+vey2a+ ...+ UnYn = Zvi% = OPT

=1



The value of the set selected by the algorithm can be lower
bounded as follows:

ALG > 71w
ALG > v - (v1 +v2) > 2792 - v2

ALG > - (V14 ...+ vn) 20 - Un.
So for every i: v;y; < ALG/i. Therefore:

OPT<OPT =) wmi<)y, %ALG =M, - ALG
i=1 i=1

O

where H,, = O(logn) is the n™ harmonic number.

The analysis presented above is almost tight.

LEMMA 4. There exist instances where the solution re-
turned by LARGESTVALUEPREFIX is an Q(log’lgo o) approxi-
mation to the optimum.

Proor. The hard instance applies even when there is a
single permutation 7. Let k be a constant that we fix later.
For a schematic depiction of the following description, refer
to Figure [l The POIs come in a set of 2k blocks. Block 2i
has M; POls, each of value v;. Block 2i — 1 has M; — M;_1
POIs, each with value v;” = v; + 7 for some small value of
7n. Finally, we fix an €, and set values with v; = ¢~', and
the block size My =0, M1 =1, and M; = €201 for 4 > 1.

To set the discounts, let v1 = 1, v; = € for i € (M1, M1 +
Mosl, v = e forie (M1 + My, My + M2 + Ms], and more
generally v; = € for i € (Zﬁ:l M;, Zfii M;).

One solution is to pick the blocks of value v;, and leave
all of the blocks with value v;". This solution has value:

k
Z M;yiv;
i=1

The LARGESTVALUEPREFIX algorithm takes all of the ele-
ments. For the sake of analysis, we can increase all discounts
to be at least €*!. Then the utility achieved by the algo-
rithm is at most:

k
:Zl:kgOPT.

i=1

k
ww; + Z [Mi—l'U?—_in + (M; — Mi—l)%‘%-«-l] + Miyivk
=2
<(A+n)(e+(k—1)-2¢)+1
<3ke+1

Therefore, the approximation ratio is at least ﬁ We

set € = 1/k, therefore the numerator is exactly 4. To com-
pute the total number of POls,

k k—1
n= ZMi = Z K.
=1 =0

Therefore we have that k¥ < n < k?*. Then, %10gn <

klogk <logn and k > ;?f;k. Combining that, we have
1 -k>1- logn logn
3ke+1 — 4 2logk — 8loglogn

Therefore, the LARGESTVALUEPREFIX algorithm will give

logn . . . .
an Q(log logn) approximation ratio on the instance. [J
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Figure 1: The lower bound example for LARGESTVAL-
UEPREFIX. We have v; = ¢ ~! and M; = 1/207V, v is
just barely larger than v; and therefore LARGESTVAL-
UEPREFIX will pick it earlier. At each discount level

v; there can be M; POlIs.

5.3 Pricing

Again, for the case of advertisement selection, we give a
pricing scheme that leads to an incentive compatible mech-
anism. While the welfare-maximizing allocation is always
monotone, this is not generally true for approximately max-
imizing allocation rules. However, the following Lemma
shows that in the case of the LARGESTVALUEPREFIX al-
gorithm, the monotonicity property holds. (Due to space
constraints, we defer the proof to the full version of the pa-

per.)

LEMMA 5. LARGESTVALUEPREFIX s a monotone alloca-
tion rule.

For mechanisms with a monotone allocation rule, there is
a unique payment rule (where losers pay nothing) that makes
the mechanism dominant-strategy incentive compatible [3|
16]. The payment is in terms of critical values z; where the
allocation jumps (as the value of the bidder changes), and
the magnitude of those jumps. It is easy to see that there
are polynomially many such critical points and they can be
computed in polynomial time. This gives us a polynomial-
time dominant-strategy incentive compatible mechanism.

5.4 Better Bounds for Special Discount Func-
tions

We now consider some important special cases of discount
functions for which LARGESTVALUEPREFIX is a constant-
factor approximation. The general proof structure is as fol-
lows: for the special discount functions we focus on a par-
ticular set X; that the algorithm will consider. By using
information on the discount function, we show that picking
X gives a constant-factor approximation to the optimal so-
cial welfare. Since LARGESTVALUEPREFIX yields an solution
that is at least as good as X, this shows that LARGESTVAL-
UEPREFIX performs well for these discount functions. Note
that we do not need to change the algorithm; the same algo-
rithm will provably perform better through a better analysis.
Geometric Discounts. We define geometric discounts to
be those of the form v; = o'~ with o € (0,1).

LEMMA 6. Let v be a geometric discount function, and
let j be the largest index such that v; > % Then X; is a
3-approzimation to OPT.

PRrROOF. Recall that OPT > OPT selects all POIs A for
an optimal value of Zai cAViYi where v; is in decreasing
order. We split up the value of OPT into that which is



gained from POIs in X, and that which is gained from the
remaining POIs A\ X;. Let ALG denote the value of picking
X as solution.

Let U*(X) be the contribution of elements in X; to OPT
For the elements that are in X, their discount is at least 1/2
hence their contribution to ALG is at least half of that in
OPT: U*(X;) <2- ALG.

For the remaining elements we show that U*(A\X;) <
ALG. In the following let v; be the value of the smallest
element of Xj. Recall that for any a € (0,1): Zl o’

1-o) and > 2 at = 704. Using this and v; > 1,

we have:

-«

o] J
U (A\X;) v % <o > % < ALG
i=j+1 i=1
where the first inequality comes from v; being a lower bound
on values of POIs in A\ Xj, the second inequality from the
bounds on geometric sequences and v; > 1/2, and the last
inequality because v; is a lower bound on all values of POIs
in ALG. Combining this we get:

OPT < OPT = U*(X,) + U*(A\X;)
<2.ALG + ALG
=3 ALG.

Since LARGESTVALUEPREFIX performs at least as well as
picking X, this completes the proof. [

Linear and Concave Discounts. We define concave dis-
count functions as follows: for a number 0 < k < n a con-
cave discount function satisfies: v,—1 + vi+1 — 2y < 0, for
alli € [2,k—1] and 7; =0 for 7 > k.

When the above inequality is tight, the function is linear
and has v; = ’;1. We will prove the bound for linear
discounts first, and then extend it to all concave discounts.
We defer both proofs to the full version of the paper.

LEMMA 7. Let v be a linear discount function, and let j
be [(k +1)/2] such that j is the largest index with v; > 3
Xj isa %—approximation to OPT

This result holds more generally for concave discount func-
tions (of which linear discounts are a special case).

LEMMA 8. Lety be a concave discount function, and let j
be the largest index withv; > .
to OPT

6. COMBINATION OF THE TWO MODELS

In this section we give a natural algorithm for the model
which combines the pairwise discounts described in Section[d]
and the rank based discounts described in Section Bl This
captures the situation where we know the location of the
user, but would still like to spread out markers for aesthetic
reasons. In the combined model the discount function is the
product of the discounts in the two models. More specifi-
cally, for an POI a; in a set S of displayed establishments,
we have

6Z(S): min {62]} Vr(i,8)s (1)

jeS\a

where 0;; = f(wij,d;;) is a function of the relevance w;; of
POIs a; and a; and their distance d;;, and 7(7,S) is the

Then Xj is a g—approm'mation
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ranking of a; in the ordering of S according to the distance
to the user location. The goal is again to pick the set S that
maximizes the total discounted value.

6.1 Algorithm

To select such a set S, we first run PICKANDREMOVE
without the rank discounts. Intuitively, the resulting set is
“well-separated” in that any two POIs are far apart from
each other. We then run the LARGESTVALUEPREFIX algo-
rithm on this set of POIs, further pruning down the list of
POIs to show on the map. Call this algorithm LARGEST-
PRUNEDPREFIX.

For the setting of the problem let a be the approximation
ratio of the PICKANDREMOVE algorithm, recall that this ra-
tio depends on the planar density A of the pairwise discount
function f, as well as the choice of R used by the algorithm.
Similarly, let 8 be the approximation ratio of LARGESTVAL-
UEPREFIX. The value of 8 depends on the shape of the rank
discount function 7, and ranges from constant to O(logn).

THEOREM 4. LARGESTPRUNEDPREFIX has an approxima-
tion ratio of a - B, for a, 8 as defined above. For pairwise
discount functions f with bounded planar density, and geo-
metric or concave rank discount functions v, this is a con-
stant competitive algorithm.

PROOF. Let A be the full set of POIs, T' be the set of
POIs that are returned by the call to PICKANDREMOVE,
and let S be the set that is returned by calling LARGEST-
VALUEPREFIX on T. Order the POIs in descending order
of value, v;. Let OPT; be the set of elements in OPT
that are charged to a;, as in the proof of Theorem [I] Let
(4, 8) = ming es\q; {dij} the discount due to competition
in S. Let cf(R) = 16R*A\(f)+1 from the proof of Theorem
Then:

OPT=> > v

a; €T a;€OPT;

J7 OPT) Y= (5,0PT)

S Z Z V5 * 6(]7 OPT) renoax ’YTI'(] OPT)
a; €T \a;E€EOPT;
< XE:T ¢s(R)-vi- max YugoPm) (2)
< cs(R) ‘GZE:T v, MAX Yn(.0PT)
<c R)‘Zvi'%" (3)
a; €T
<cp(R)-B- ) i Ye(is) (4)
a; €ES
S ﬂ Z (U ’Vﬂ(z S) (5)
a; ES
=a-p-ALG.

Here follows from the proof of Theorem For , let
i’ be the rank of a; in T in descending order by values, the
statement then follows because the sum is maximized when
the i*" highest POI in T has the i*® largest discount. Line
. 4) follows from the analysis of LARGESTVALUEPREFIX; and
finally (5)) follows from all POIs being spaced at least R from
each other. [



LEMMA 9. LARGESTPRUNEPREFIX yields a monotone al-
location rule.

PrOOF SKETCH. The proof relies on two main ideas: first,
if a POI is selected by PICKANDREMOVE, it will always
be selected as part of the same set T, hence the input to
LARGESTVALUEPREFIX is always the same. We can then ex-
tend the monotonicity proof of LARGESTVALUEPREFIX with
respect to . We defer the formal proof to the full version
of the paper. [

COROLLARY 2. LARGESTPRUNEDPREFIX is a dominant-
strategy incentive compatible mechanism that obtains an a3
approximation of the social welfare, with o the approrima-
tion ratio of PICKANDREMOVE and 8 the approximation
ratio of LARGESTVALUEPREFIX.

7. EXPERIMENTAL EVALUATION

In this section, we present experimental evaluation of the
algorithms presented and analyzed theoretically in previous
sections, and show that they also perform well on real data.
We start by describing the data sets we use to evaluate the
algorithms.

7.1 Data

We use a dataset of restaurants publicly available from
the crawl done by [5]. From this dataset, we have extracted
the list of restaurants in six cities, ranging from large to sub-
urban: Berkeley, Brooklyn, Chicago, Mountain View, Palo
Alto, and San Francisco. The number of restaurants in these
data sets are 340, 1894, 3047, 304, 171, and 2705. These
restaurants will be our POIs. We take the value of each POI
to be its rating, which is a number between 1 and 10. To
avoid ranking restaurants with a single good review higher
than the ones with many reviews, we calculate the rating of
each restaurant as (avg. rating - num. reviews + 10) divided
by (number of reviews + 2). This corresponds to assuming
prior with a beta distribution with parameters o = § = 10.

7.2 Location-unaware model
For the discount function, we use the double logistic func-

tion f(z) =1— e~ discussed in Corollary |1} This func-
tion discounts a POI at distance 0.8km from another by
roughly a factor of 1. As a baseline, we run two simple
algorithms that keep a subset of POIs of a certain tar-
get size, either uniformly at random (RANDOMTHINNING)
or with probabilities proportional to the value of the POI
(PROPRANDOMTHINNING). The algorithms we intend to
evaluate are PICKANDREMOVE(R) for R ranging from 0.1 to
2 Km, and a greedy algorithm (GREEDY) that sorts POIs in
decreasing order of their values, and iteratively picks points
from this list if the marginal value of the point is posi-
tive. While the GREEDY algorithm may seem appealing,
it is possible to construct examples that show that in the
worst case its approximation ratio is unbounded. Moreover,
while GREEDY performs comparably to PICKANDREMOVE,
our approach is more efficient as GREEDY requires updating
all of the marginal values at every iteration.

The value of the objective function on the solution given
by PICKANDREMOVE(R) is plotted as a function of R in
Figure [2] (all values are scaled to fit on the same plot). As
can be seen in this figure, the optimal value of R ranges from
0.6 to 1.05. Curiously, this is not far from the value of R
that optimizes the worst-case performance (0.578).
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Value of PickAndRemove(R)

R (Km)

Figure 2: PICKANDREMOVE(R) as a function of R

City PickRem | Greedy | Rand Prop
Berkeley 77.52 71.08 23.39 23.62
Brooklyn 272.83 | 271.19 | 90.84 | 92.53
Chicago 244.96 239.31 | 70.22 73.29

Mountain View 73.62 64.72 23.55 23.04
Palo Alto 62.38 60.72 20.12 22.57
San Francisco 372.58 370.26 | 111.22 | 109.04

Table 1: Value in the location-unaware model

Table [I] shows the value of the solutions computed by
various algorithms on the different data sets. For PiCK-
ANDREMOVE, RANDOMTHINNING, and PROPRANDOMTHIN-
NING, the values shown correspond to the value obtained
from the best choice of R or the target size. As can be
seen in this table, PICKANDREMOVE is the winner in all
cases, and GREEDY is a close second. The value achieved
by these algorithms is close to 3 times higher than the base-
lines. Interestingly, PROPRANDOMTHINNING does not per-
form significantly better than RANDOMTHINNING and some-
times even performs worse. We believe the reason for this
effect is that good restaurants tend to be located close to
each other, and therefore PROPRANDOMTHINNING is more
likely to pick POlIs that are close to each other.

7.3 Location-aware model

For the discount function in this model, we use exponen-
tial discounts -, = 0.8"~'. For the user location, we pick a
random location in the corresponding city and add a num-
ber of random perturbations of this point to model uncer-
tainty. We use the same baselines, RANDOMTHINNING and
PROPRANDOMTHINNING, and the algorithm we evaluate is
LARGESTVALUEPREFIX.

The results are presented in Table[2] As can be seen in this
table, LARGESTVALUEPREFIX performs significantly better
than both baselines, although the margin is not as large as
it was in the case of the location-unaware model. The size
of the solutions picked by LARGESTVALUEPREFIX for these
data sets are 18, 30, 35, 20, 24, and 35, respectively.



City LargestValuePrefix | Rand | Prop
Berkeley 46.12 34.92 | 36.04
Brooklyn 48.35 35.27 | 36.73
Chicago 97.83 70.12 | 74.11

Mountain View 45.68 35.83 | 37.02
Palo Alto 43.64 34.78 | 36.02
San Francisco 49.18 35.97 | 37.15

Table 2: Value in the location-aware model

8. CONCLUSION AND OPEN PROBLEMS

In this paper, we initiated the study of the problem of se-
lecting the set of points of interest to place on the map, and
finding incentive compatible mechanisms in the case some of
these are advertisements. We studied two scenarios, those
where the user location is unknown, with a focus on ex-
ternalities due to competing POIs, and those with known
user location, with a focus on rank based externalities. For
both problems, as well as the combination of the two infor-
mation models, we give simple greedy approximation algo-
rithms coupled with incentive-compatible pricing schemes.

There are still many open questions remaining. In particu-
lar, it would be useful to be able to accommodate additional
constraints, such as explicit density restrictions (i.e., upper
bound on the number of POIs that can be placed on each
tile of the map), consistency constraint on the set of selected
POIs at different zoom levels (see [18] for a treatment of this
constraint), or POIs that have positive externalities on each
other. Finally, improving the approximation ratio of our al-
gorithms (or coming up with other practical algorithms with
better ratios) is an interesting open problem.
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