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Large-scale numerical simulations of the Hamiltonian dynamics of a Noisy Intermediate Scale
Quantum (NISQ) computer – a digital twin – could play a major role in developing efficient and
scalable strategies for tuning quantum algorithms for specific hardware. Via a two-dimensional
tensor network digital twin of a Rydberg atom quantum computer, we demonstrate the feasibil-
ity of such a program. In particular, we quantify the effects of gate crosstalks induced by the
van der Waals interaction between Rydberg atoms: according to an 8×8 digital twin simulation
based on the current state-of-the-art experimental setups, the initial state of a five-qubit repetition
code can be prepared with a high fidelity, a first indicator for a compatibility with fault-tolerant
quantum computing. The preparation of a 64-qubit Greenberger-Horne-Zeilinger (GHZ) state with
about 700 gates yields a 99.9% fidelity in a closed system while achieving a speedup of 35% via
parallelization.

The present NISQ era of quantum computing poses
extreme experimental, theoretical, and engineering chal-
lenges for all promising quantum computing platforms,
being condensed matter or atomic-molecular-optical
based ones [1–4]. Indeed, identifying the best approaches,
engineering solutions, and optimizing strategies at the
physical, logical and algorithmic levels is necessary to
maximize the capability of NISQ computers and unlock
the fault-tolerant scalable era of general-purpose quan-
tum computing [5]. In the last two decades, these chal-
lenges have been mostly attacked at the level of few
qubits, with impressive developments in, e.g., qubits and
gate qualities [6–8]. However, the years ahead require
achieving scalability and that will only be possible by
understanding and characterizing the performances and
limitations of the existing building blocks while function-
ing as one. For example, high-fidelity implementations
will require taking into account also fast-decaying long-
range interactions. Moreover, to go beyond NISQ, deco-
herence effects shall be mitigated by reducing quantum
circuits depth while quantum error-correcting codes will
come at the price of additional gates: all this confront
the software stack with further challenges, e.g., to what
degree the gates on logical qubits can run in parallel.

Here, we develop an efficient digital twin of a two-
dimensional quantum processing unit (QPU) with access
to a variety of compelling features, e.g., additional lev-
els beyond the qubit states, long-range interactions, and
decoherence effects. These features of a large-scale digi-
tal twin of the QPU will be fundamental to support the
next decades of developments, e.g., comparable to the im-
pact that optimal control simulations had on the devel-
opment of high-fidelity single and two-qubit gates [8–10].
Via tensor network methods [11–14], we perform two-
dimensional large-scale classical simulations of a quan-
tum computer running non-trivial quantum algorithms;
tensor network methods allow one to overcome the curse

of the exponentially increasing Hilbert space [15]. We
combine the digital twin with a customized compiler and
demonstrate how together they identify limiting factors
of current or future hardware. In this respect, the dif-
ferent topology and connectivity, e.g., 1-dimensional sys-
tems versus 2-dimensional ones, can lead to very distinct
results in terms of the scaling of algorithms. We thus
demonstrate how digital twins, could guide the develop-
ment of future quantum algorithm compilers and tran-
spilers [16–18], specifically analyzing a Rydberg QPU in
two dimensions.

Rydberg atoms trapped in optical tweezers represent
one promising platform for realizing a quantum com-
puter [19–25]. The Rydberg architecture has been im-
pressively improved in various aspects over the last years
and the execution of quantum algorithms of increasing
complexity and circuit depth is in sight: recent Rydberg
experiments have demonstrated two-qubit gate fidelities
beyond 98% [26–29]. A key ingredient to increasing the
final computation quality and the achievable circuit com-
plexity is evidently the ability to run gates in parallel.
Parallel gate execution requires an independent parallel
control and addressing of each qubit, which has been re-
cently demonstrated [30–35]. Understanding if and how
an algorithm can be parallelized in presence of long-range
interactions, different connectivity, and spurious qubit
crosstalks provides thus crucial insights to attack the next
quantum computing engineering challenges.

The preparation of large GHZ states is becoming a
standard benchmark of the ability to control highly non-
classical properties of quantum hardware. Since the sem-
inal demonstration of 14-qubit GHZ states in a trapped
ion quantum computer [36], other platforms have ac-
cepted the challenge as well [37–39]. Recently, six-qubit
GHZ states have been realized in a Rydberg quantum
processor [40]. Therefore, this problem serves as an ex-
ample how to use the digital twin from the problem state-
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ment to the statistics of projective measurements com-
parable to an actual experimental setup.

The digital twin allows one to establish the optimal
radius beyond which gates can run in parallel without
significant crosstalk on the 88Sr Rydberg platform [42–
44]. In particular, we characterize the trade-off be-
tween higher parallelization versus smaller errors due to
crosstalk: on the one hand, a lower circuit depth comes
with higher error rates induced by the Rydberg interac-
tion; on the other hand, we pay for higher precision gates
with larger circuit depths and an increasing vulnerability
to decoherence. As sketched in Fig. 1a), we compile the
circuit with a dedicated compiler RydberGHZ-C target-
ing the GHZ state in a two-dimensional geometry. Then,
we use realistic and conservative parameters for the sim-
ulation of an 8× 8 strontium-88 setup [44], for example,
taking into account long-range Rydberg interactions. For
a 64-qubit GHZ state, we obtain a state infidelity of a
10−2 level for the closed quantum system and control-
lable crosstalk. The circuit depth is only 15% above the
theoretical minimum for a 2d square system with nearest-
neighbor connectivity and the same gate set. Finally, we
demonstrate an application of the digital twin on paral-
lel GHZ states generation, e.g., encountered in the initial
preparation of quantum error-correcting five-qubit repe-
tition code [45–47].

The numerical workhorse behind the ab-initio
Hamiltonian-based emulation of a parallel quantum com-
putation is a tree tensor network (TTN) simulating a
square lattice of qutrits taking into account the states
|0〉, |1〉, and the Rydberg state |r〉 [48]. Within the
family of tensor network algorithms [49–52], the TTN
is a powerful ansatz for two-dimensional systems. The
simulation of the system time evolution is implemented
by exploiting recent progress in tensor network meth-
ods [11–14]: in particular, the time-dependent variational
principle which supports the long-range interactions re-
quired for picturing crosstalk and the scheduling of par-
allel gates [11, 13].

The structure of the manuscript is the following: we
focus on the prospect of running quantum algorithms
in parallel on the Rydberg platform by constructing a
global GHZ state and preparing multiple GHZ states on
five qubits in Sec. I. A detailed description of the Ryd-
berg system including open quantum system effects fol-
lows in Sec. II. Afterward, we explain the technical as-
pects of the tensor network simulations in Sec. III and
the RydberGHZ-C designed for the parallel GHZ prepa-
ration in Sec. IV. We conclude with a brief summary and
outlook.

I. PARALLEL QUANTUM ALGORITHMS

The digital twin relies on an ab-initio Hamiltonian
description of the platform. The most challenging nu-
merical aspects, i.e., the two-dimensional layout of su-
perconducting hardware and the long-range interactions

of trapped ions, are combined in the Rydberg plat-
form. The two-dimensional structures in superconduct-
ing QPUs are continuously scaled up and achieve 127
qubits [53], which is already twice the size of the 64-qubit
system studied here. Although trapped ions systems are
one-dimensional, their strong long-range interactions al-
low an all-to-all connectivity [54] which can lead to a
rapid growth of entanglement and the classical resources
needed for the digital twin. For the Rydberg platform,
the physics required to understand the parallelization of
the GHZ state preparation can be summarized according
to Fig. 1. We focus on the crosstalk in a closed quan-
tum system in this section and discuss open system ef-
fects in Sec. II. Figure 1a) shows a sketch of a 4 × 4
setup of Rydberg atoms in optical tweezers; the lattice
constant of the grid a introduces a first relevant length
scale. Within the Rydberg blockade radius rB, only a
single atom can be excited to the Rydberg state due to
the van der Waals interactions. We work at a fixed Ryd-
berg blockade radius rB = 4.98µm = 1.66a in accordance
with the experimental parameters proposed in Ref. [44].
On the one hand, the van der Waals interaction is giv-
ing rise to the Rydberg blockade which is required for
implementing entangling gates; on the other hand, the
van der Waals interaction leads to possible crosstalk if
multiple entangling gates act in parallel. Our compila-
tion strategy considers this condition and allows one to
specify the minimal radius rG which the RydberGHZ-C
and scheduler enforce between any two qubits participat-
ing in different entangling gates executed in parallel. We
focus on the radius rG while the other length scales are
kept constant. Finally, we are able to identify the ra-
dius rS where the crosstalk is negligible in comparison to
other errors and where the algorithm is safely executed
in parallel, i.e., we establish a criterion on the fidelity
of our state preparation. Figure 1b) presents the GHZ
preparation for rG = 2a on a 4 × 4 square lattice for a
subset of native gates of the Rydberg platform which are
implemented for the digital twin. The radius rG changes
the circuit depth D and the fidelity via crosstalk, while
we keep the lattice constant a and the Rydberg blockade
radius rB fixed. In the following paragraphs, we analyze
these effects in detail.

Figure 1c) showcases a typical result enabled by the
digital twin simulation: the effects of crosstalk errors as
they become visible in projective measurements analog
to an experimental setup. The fact of simulating qutrits
allows one to explore different readout schemes either
with a readout of both qubit states, see i) in Fig. 1c),
or a single-state readout scheme where we choose the |0〉
state, see ii). For each measurement of the |0〉 or |1〉
state, one needs to transfer the corresponding state to
an additional state for readout, e.g., to the ground state
of the optical qubit. A single-state readout scheme, e.g.,
of state |0〉, avoids the additional overhead of transfer-
ring the second state |1〉 also to state for the readout and
measuring it. The sum along the axis «Count |1〉» of the
histogram iii) for the two-state readout leads to the his-
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FIG. 1. a) Rydberg quantum computer setup: We simulate a square grid of 88Sr Rydberg atoms trapped in optical tweezers. In
each step, a layer of parallel gates is applied: the controlled phase gates involve the strongly interacting Rydberg state |r〉, thus
two of them applied simultaneously in close proximity introduce crosstalk errors. A tree tensor network (TTN) simulates the
Rydberg atoms as qutrits (states |0〉, |1〉, and |r〉). The lasers, individually addressing the atoms, implement the single-qubit
and two-qubit gates (inset). b) Parallelization: Selected quantum algorithm layers of the GHZ state preparation in terms of
selected gates native to the Rydberg platform. Each square contains gates that are executed in parallel for a minimal distance
between CZ gates rG ≥ 2a, where a is the lattice spacing. c) Experimental measurement schemes: Projective measurements
for a perfect GHZ state yield a 50% probability of counting either exactly 64 qubits in the |0〉 or |1〉 state for an 8×8 closed
quantum system. We can choose between a two-state readout scheme in i) or a single-state readout scheme in ii), which both
use an additional state. For rG =

√
10, we compare the measurement statistics of readout scheme i) in iii) to readout scheme

ii) in iv). We identify the states attributed to the GHZ state (in green) versus states introduced due to crosstalk (see color
bar). As a consequence of a remaining population in the Rydberg state, the sum of qubits measured in |0〉 and |1〉 does not
necessarily add up to one, showing the effect of the remaining population in the Rydberg state |r〉. In comparison, rG =

√
16a

limits the crosstalk to an acceptable amount as shown for the single-state readout scheme (see v) and is defined as the safe
radius rS to run gates in parallel.

togram iv) of the single-state readout. The sum of the
probabilities along one axis underlines how the readout
schemes differ in information: counting only the number
of qubits in |0〉, the state |11 . . . 11〉 originating in the
GHZ state is indistinguishable from the state |11 . . . 11r〉,
which has an error due to a remaining population in the
|r〉 state. In the example of Fig. 1c), this fraction is below
10−5. Also, the effect of crosstalk is clearly visible com-
paring the projective measurements of rG =

√
10a and

rG =
√

16a. The probabilities for this set of states shown
in the histogram are extracted directly from the TTN by
sampling 1,000,000 projective measurements. For both
rG =

√
10 and rG =

√
16, the samples cover at least

99.945% of the probability, i.e., a single measurement
appears with at most 0.055% probability not in the data
shown; these statistics can be directly compared to ex-
periments. Although simulations of projective measure-
ments are possible as shown in Fig. 1c), we concentrate in
the remainder on the infidelity which is more accessible
in its interpretation as a single number.

Figure 2 shows the change in the circuit depth D
and the infidelity I of the algorithm for preparing a
global GHZ state as a function of the radius rG. The
fidelity of the algorithm F is defined as the state fidelity
F = |〈ψ(τ)|ψGHZ〉|2 at the end of the algorithm at time
τ ; the infidelity is I = 1 − F . The circuit is generated
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FIG. 2. Measuring the effect of controlled phase gates executed
in parallel. The infidelity I decreases towards larger circuit
depth D for the GHZ state preparation. a) For the 4×4 grid,
we identify a clear jump for distances r ≥ 2, which allows
reducing the circuit depth by more than six percent allowing
an infidelity of a 10−3 level. b) For the 8 × 8 grid, larger
distances have to be considered to go to a fidelity of the 10−2

level at rG ≥ 4a. A gain in circuit depth of 35% is possible in
comparison to a circuit without parallel CZ gates.

with the RydberGHZ-C compiler targeting directly the
Rydberg platform. On the one hand, the circuit depth
drops, e.g., from over 51 to 46 while decreasing the dis-
tance rG from

√
25a to

√
2a for the 8× 8 square lattice.

On the other hand, we observe that the infidelity changes
by more than two orders of magnitude while changing rG.
This change in infidelity is due to the Rydberg interac-
tion decaying with a power of six, especially for the 8×8
grid where we have the bigger number of CZ gates n. The
overall fidelity F depends on the number of CZ gates n,
therefore we define the average as F� = F 1/n. For the
largest values of rG shown in Fig. 2, the error is driven
by small numerical artifacts always remaining in an op-
timized pulse sequence, i.e., the value of F� is in good
agreement with the average gate fidelity for a single gate
of the protocol for the closed system from Ref. [44].

We now choose the radius rG = rS for a safely executed
algorithm as rS(L = 4) =

√
8a and rS =

√
16a. In Sec. II

on the Rydberg model, we show that the infidelity of the
order of 10−3 introduced in this scenario for a 4× 4 grid
is below the largest errors of the order of 10−2 introduced
by decay from the Rydberg state. The same argument

holds for an infidelity of the 10−2 level for an 8×8 system.
In summary, Fig. 2 demonstrates that we identify the
errors originating from parallel CZ gates on a Rydberg
quantum computer; the ideal setting for the system is
rS(L = 4) =

√
8a and rS(L = 8) =

√
16a, which leads to

a tolerable loss in fidelity in comparison to a circuit serial
in the CZ gates. We point out the reduction of the circuit
depth by 35% for the 8×8 system, while the effect in the
4× 4 system is almost negligible and reduces the circuit
depth from 30 to 28 or about 7%, showing as expected
a favorable scaling with the system size. In Sec. II, we
prove that reducing the circuit depth and running gates
in parallel allows one to minimize the overall error from
crosstalk and open system effects caused by imperfections
in the trapping of the atoms.

We now move on to the second example, which gives
an outlook of parallel circuits beyond the NISQ applica-
tions: to the implementation of quantum error-correcting
codes [47, 55]. We construct a five-qubit repetition code
encoding one logical qubit into five physical qubits on a
square lattice, which allows one to detect bit-flip errors.
Each logical qubit can be implemented with one phys-
ical qubit and its four nearest neighbors. A repetition
code needs to prepare the initial state |ψ〉 = α |0〉+ β |1〉
of each qubit in the algorithm into the logical qubit
|Ψ〉 = α |00000〉 + β |11111〉. Without loss of generality,
we assume α = β = 1/

√
2 and a product state between

the logical qubits. The preparation of the logical qubits
can be parallelized to a greater extent than the prepara-
tion of the global GHZ state on the complete lattice: the
first CZ gate of the global GHZ state has always to run in
serial, i.e., there is only one option for the control qubit
of the first CZ gate; in contrast, this preparation of mul-
tiple local GHZ states can have parallel gates from the
first CZ gate on. We have the option of a dense filling in
the two-dimensional geometry or leaving additional phys-
ical qubits unused, i.e., auxiliary qubits in applications,
between the logical qubits. We choose the first option as
the denser the packing is the more difficult the handling
of crosstalk is.

Figure 3a) presents an example of the circuit for three
logical qubits in the dense filling scheme; three logical
qubits fit on a 16-site TTN. Each TTN site is still mod-
eled as a qutrit. The setup allows one to repeat the anal-
ysis of the final fidelity as a function of rG in this scenario,
see Fig. 3b). We want to ensure that one can reach the
same level of fidelity as in the global GHZ state, which is
chosen with regard to error sources from open quantum
systems; ideally, we can use the same distance rS than be-
fore to reach the same or a better infidelity. We confirm
the radius rS(L = 4) =

√
8a for a safe execution for the

15-qubit simulation of three logical qubits, which reaches
an infidelity of 10−3, which can be improved further by
one order of magnitude when increasing the radius fur-
ther. Similarly, we observe rS(L = 8) =

√
16a for the

60-qubit simulation with twelve logical qubits reaching
an infidelity of a 10−2 level.
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FIG. 3. Parallel initialization for quantum error-correcting
codes. a) Parallel example algorithm for preparing three log-
ical qubits of a five-qubit repetition code; links of the same
color refer to CZ gates executed in parallel in the same layer.
The underlying TTN has sixteen sites. The preparation re-
quires 24 layers in total. The steps indicated by the color
map depend on rG, which is set to rG = 2a for this circuit.
b) The infidelity I of GHZ state preparation for each logical
qubit improves for larger radii rG and circuits depths D.

II. MODELING 88SR QUANTUM COMPUTERS
ON TWO-DIMENSIONAL GRIDS

The Rydberg quantum processor analyzed here as-
sumes the following characteristics: the atoms are
trapped by optical tweezers in a two-dimensional grid;
it is possible to individually address the neutral atoms,
e.g., to drive the transition for the implementation of
single-qubit rotation gate RX or the transition to the
Rydberg state for entangling two-qubit gates. The in-
dividual addressing of atoms allows one to group sev-
eral single-qubit gates and two-qubit gates together into
groups, where each group of gates can be executed at the
same time. The strong interaction between the atoms
within the Rydberg blockade radius affects the fidelity of
executing controlled-phase gates in parallel.

We tailor the Hamiltonian towards an implementation
with strontium-88 atoms, where the two-qubit states are
encoded into the fine-structure qubit |0〉 =

∣∣53P0

〉
and

|1〉 =
∣∣53P2

〉
; the Rydberg state |r〉 =

∣∣603S1,mJ = 1
〉
is

required to implement the controlled-phase gate. Over-
all, the Hamiltonian HRyd and parameters follow Ref. [44]
and consists of an idealized three-level system of

HRyd =
∑
j,k

Ωxj,k(t)σxj,k + Ωzj,k(t)σzj,k

+
∑
j,k

(
ΩRj,k(t)σ+

j,k + h.c.
)

+
∑
j,k

∑
j′,k′

V (j, k, j′k′)nj,knj′,k′ , (1)

where the qubits in the two-dimensional grid are indexed
with j and k. The Hamiltonian contains both, an ef-
fective Hamiltonian for implementing single-qubit gates
and couplings to the interacting Rydberg states for the
implementation of the two-qubit CZ gates. The effec-
tive Hamiltonian for the single-qubit gates uses the Pauli
matrices σx = |0〉 〈1| + |1〉 〈0| for rotation-x gates of an
arbitrary angle and the σz = |0〉 〈0| − |1〉 〈1| for rotation-
z gates of an arbitrary angle. The single-qubit gates
are driven by the corresponding time-dependent effective
pulses Ωx and Ωz, respectively. The single-qubit gates
are executed with high fidelity with respect to other er-
ror sources and are not the leading source of error [29].
The transition between the states |1〉 and |r〉 is driven by
a single-photon transition and represented in the Hamil-
tonian by the Rabi frequency ΩR and the transition
σ+ = |r〉 〈1| and σ+ = |1〉 〈r|. The Rydberg interaction
is modeled via the interaction operator n = |r〉 〈r| and
a van der Waals interaction, where the strength depends
on the distance d as

V (j, k, j′, k′) =
−C6

d6
, (2)

where d =
√

(xj − xj′)2 + (yk − yk′)2. To allow for arbi-
trary lattice structures, the position of the qubit labeled
with the indices (j, k) is (xj , yk). The coefficient C6 de-
scribes the strength of the van der Waals interactions [44].
This decaying interaction leads to the Rydberg blockade
radius [56, 57], in which more than one excitation to the
Rydberg state is prevented: the transition from one ex-
citation to two excitation is off-resonant due to an ad-
ditional energy shift. The Rydberg state is used for the
implementation of two-qubit gates and has an immediate
effect on the crosstalk of two gates running in parallel.
The Hamiltonian of Eq. (1) is sufficient to implement a
universal gate set consisting of rotation-x, rotation-z, and
CZ gates.

Finally, we include a Lindblad description of the sys-
tem introducing a decay of the Rydberg state |r〉 for the
analysis provided later in this section; as a starting point,
we are interested in how much our fidelity decreases un-
der the assumption that all decays end up in states out-
side our computational space, i.e., the worst-case sce-
nario. Therefore, we include a non-Hermitian part to the
Hamiltonian with the Lindblad operator Ldecay = |d〉 〈r|
analog to quantum trajectories [58, 59]; we obtain for the
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open quantum system

HOQS = HRyd − iγ
∑
j,k

|r〉 〈r|j,k . (3)

From all the possible error sources, the decay from the
Rydberg state is the most important source of error for
a single CZ gate [43, 44].

In the following, we show that the remaining popu-
lation in the Rydberg state quantifies the crosstalk and
can serve as an indicator of the fidelity of the state prepa-
ration. The remaining population in the Rydberg state
is

PR =
∑
j,k

〈nj,k(t = τ)〉 , (4)

where we refer to the total time of the algorithm as τ .
The integrated time in the Rydberg state TR is of in-
terest when considering the open quantum system with
decay from the Rydberg state. If the final population
in the Rydberg state PR is small and the algorithm is
executed with high fidelity, we expect that this time TR

depends only on the number of CZ gates and, therefore,
does not offer an opportunity to improve the error in the
state preparation under the non-Hermitian Hamiltonian
of Eq. (3). We define the integrated time in the Rydberg
state as

TR =
∑
j,k

∫ τ

0

dt〈nj,k(t)〉 , (5)

where the time TR connects directly to the probability
of loss from the Rydberg state to a state outside of the
computational space; this fraction of states identified by
the lost norm is accounted for with a fidelity of zero.

With these observables, we analyze the choice of the
minimal radius of rG and to which extent we trade a
better fidelity for a larger circuit depth. The minimal
radius rG describes the minimal distance between any two
qubits of different CZ gates executed in parallel, e.g., a
distance of rG = 2a in Fig. 1a). We recall the dependency
of the fidelity and the minimal radius rG for entangling
gates running in parallel discussed in Fig. 2, and we move
towards looking at measurement specific to the Rydberg
state of our platform in the next paragraph.

We observe that the parallel execution of CZ gates
leads to a remaining population in the Rydberg state
PR as the gate is designed for serial use, i.e., the laser
pulse used to drive the gate has been engineered for
two perfectly isolated Rydberg atoms. In contrast, the
system encounters four additional two-body interactions
with interaction strengths depending on the positions
of the atoms when running two CZ gates close to each
other; then, the pulse sequence fails to perfectly repro-
duce the CZ gates. The remaining population in the
Rydberg state PR presents a path to measure the effects
of crosstalk and is shown in Fig. 4a). We employ the
fact that |r〉 is solely used for the gate implementation.

Therefore, the measurement of the population in the Ry-
dberg state is experimentally possible: after a readout of
the qubit states |0〉 and |1〉 the probability remains below
1, which is one way to estimate the population in the Ry-
dberg state |r〉 and related losses. This two-state readout
scheme can be implemented via an additional state, see
Fig. 1c)i).

The digital twin allows one to evaluate which layers
contribute the most to the final infidelity. Figure 4b) re-
fines the average infidelity per CZ gate on the level of
the ith parallel layer for a closed quantum system, i.e.,
I�(i). The underlying average gate fidelity of the CZ
gate is optimized up to FCZ = 99.99983% and represents
a meaningful reference value for 1−I�(i). Although the
error depends on the distances of parallel gates, we inter-
pret the trend to higher errors at the end of the circuit as
a sign that errors propagate, e.g., a small population in
the Rydberg state from a previous layer for the control
qubit of the CZ gate affects the next layer. A difference
between the system sizes is the number of previous errors
that can affect CZ gates at a later stage, i.e, the paths
for executing consecutive CZ gates in the 8 × 8 grid are
longer than in the 4× 4 grid, which is another reason for
smaller average fidelities F� for the 8×8 grid, in addition
to running a greater fraction of CZ gates in parallel.

The accumulated infidelity I due to the crosstalk of
the parallel algorithm has to be compared to other ex-
perimentally relevant sources of error. The decay from
the Rydberg state has been identified as the major source
of error for single-qubit and two-qubit gates [43, 44]. We
assume the worst-case scenario that any decay from the
Rydberg state |r〉 leaves our computational basis of the
states |0〉, |1〉, and |r〉. The non-Hermitian version of
the Hamiltonian HOQS in Eq. (3) describes this scenario
of an open quantum system; the remaining norm N of
the state can be directly multiplied with the final fidelity
to obtain the average fidelity of any quantum algorithm.
For the square lattice with 16 qubits in total, we obtain
a loss of norm in the order of 1.4 · 10−2, i.e., a final fi-
delity of about 98.6% in the limit of large rG assuming
an otherwise perfect circuit. The lost norm is a good
approximation of the infidelity, because the decay is the
leading source of error for large radii rG. Therefore, the
error originating from crosstalk with rG(L = 4) =

√
8a

below the order of 3 · 10−3 or less is negligible. We show
the data for 64 qubits in Fig. 4c), where the fidelity drops
to about 94.4%, i.e., an infidelity on the 5.6 · 10−2 level.
We point out that increasing the radius rG(L = 8) be-
yond

√
9a in the regime of high fidelities leaves the loss

in norm unchanged. Recall that the Lindblad operator
acts on the state |r〉, which is the only state contributing
to this loss in norm and we can demonstrate this con-
nection by measuring TR, i.e., the integrated population
in the state |r〉 for all qubits during the complete evo-
lution, as shown in the right y-axis of Fig. 4c). For the
same system size, we reach infidelities below 5 · 10−3 at
rG =

√
16a and therefore we set rS =

√
16a as the er-

ror from the decay is dominating over the error from the
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FIG. 4. Rydberg measurements for algorithms executed in parallel on 8 × 8 systems. a) We consider the populations in the
Rydberg state for the final state of a closed system. Running parallel gates close to each other results in a large population
in the Rydberg state , which causes an increase of the infidelity. b) We measure the infidelity after the application of each
parallel layer and calculate the average error per CZ in one layer, i.e., I�(i) = I(i)−n for n CZ in the ith layer. Three layers
cannot be captured by the numerical precision εN of the simulation and appear on the y-axis as εN. c) The open quantum
system causes a finite loss of norm and time-integrated Rydberg population TR because the execution of CZ gates temporarily
populates the Rydberg state. But TR becomes even larger at small radii rG due to permanent Rydberg populations related to
running parallel CZ gates in proximity to each other. d) The estimate for the infidelity introduced due to dephasing shows a
jump of one order of magnitude for the serial circuit versus the parallel circuit as well as for the comparison between the two
scenarios with different layer durations τLayer.

crosstalk.

The challenge of conserving coherence in the quantum
system is not reflected in the non-Hermitian Hamilto-
nian of Eq. (3), i.e., the open system term introduced
with the decay does not favor circuits with shorter to-
tal time as one expects for the actual hardware. Af-
ter the leading contribution of decay from the Rydberg
state, the next relevant term stems from the fluctuations
around the magic trapping condition [60, 61], which lead
to decoherence, especially in the case of the GHZ state.
In principle, perfect magic trapping is designed so that
all three levels pick up the same phase and dephasing
is eliminated. However, the magic trapping condition is
never met perfectly in an experimental realization, e.g.,
because of field noise. We include this effect aposteriori
into the results and consider how the decoherence time
T2 = 10ms affects the fidelity over the time t. The fidelity
between a GHZ state of n qubits exposed to dephasing

and a perfect GHZ state is

FD(t) =
1

2
+

1

2
exp

(
−n · t
T2

)
. (6)

To include this effect in our estimate, we approximate
that this decoherence affects each qubit starting with
their first RX (φ) gate; to simplify the estimate, we ne-
glect an additional treatment of the |r〉 state as it appears
only in a limited fraction of steps while applying the CZ
gates. The pulse time for a CZ is 0.122µs and we choose
the amplitudes for the single-qubit gates to match the
time of the CZ gate. Recall that the qubit is encoded
into the fine-structure qubit and thus single-qubit gate
within 0.122µs are possible because of the strong Raman
transition. However, this duration of the pulses neglects
intermediate steps required between layers. Therefore,
we follow two scenarios: the first scenario runs one layer
every 0.2µs allowing for a gap after each pulse, and the
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FIG. 5. Hexagonal lattices with 8×8 Rydberg atoms. Infideli-
ties I for the GHZ state preparation on a hexagonal lattice of
a closed quantum system.

more conservative second scenario with one layer every
2µs, e.g., including the possibility to move the addressing
laser beams to different atoms between layers. Figure 4d)
proves the need to parallelize the circuit. For the both
serial circuit and the parallel circuits with τLayer = 2µs,
the decoherence is the leading source of error, i.e., even
more important than decay from the Rydberg state. All
of the circuits with τLayer = 0.2µs with parallel local gates
bring the decoherence error below the level of the decay
from the Rydberg state. The parallel circuits fluctuate
due to the freedom of the scheduler, but the data sug-
gests a trend towards higher errors from decoherence for
larger circuit depths D.

Rydberg atoms are able to implement other lattice lay-
outs than the square lattice, e.g., a hexagonal lattice.
Although a hexagonal lattice has advantages in terms of
connectivity, the parallelization of gates is actually more
subtle due to the denser packing of the atoms in the lat-
tice. For example, the area of a rectangle containing the
Rydberg atoms of an 8×8 hexagonal lattice is ten percent
smaller than the area of the square containing 8×8 atoms
of a square lattice. The denser packing leads to the fact
that more atoms are within the Rydberg blockade radius
and parallelization is more restricted. Figure 5 provides
an impression of the infidelity as a function of rG in the
hexagonal lattice layout. Overall, we reach similar fideli-
ties than in the square lattice; the circuit depths D tend
to be higher, while the rG has the same effect on the in-
fidelity. For example, a 10−2 fidelity is reached in both
layouts for 3a < rG < 4a.

Altogether, the combination of the parallel GHZ state
preparation with the characteristics of the specific Ryd-
berg setup allow us to obtain detailed insights, e.g., ex-
perimentally feasible measurements to characterize the
error of crosstalk or open system effects, and explore the
consequences of different lattice layouts. Although the
infidelity estimated for the decoherence fluctuates due
to different scheduling, a comparison to the serial circuit
shows the necessity to run algorithms in parallel and min-
imize the circuit depth as long as the crosstalk is control-

lable.

III. TENSOR NETWORK SIMULATIONS

The digital twin is based on the tensor network sim-
ulations: here, we employ a binary TTN based on the
software framework Quantum TEA [14, 48, 62, 63] and
account for the two-dimensional architecture of the Ry-
dberg array via the Hilbert curve mapping: the Hilbert
curve maps a square lattice into a one-dimensional sys-
tem and is in many scenarios favorable in comparison to
other schemes [64]. We display the original 4 × 4 lat-
tice before its mapping and the tree network in Fig. 1a).
The time evolution is executed via the time-dependent
variational principle [11, 13], supporting long-range inter-
actions required for the Rydberg interactions in Eq. (1).
Due to the underlying two-dimensional grid and mapping
with the Hilbert curvature, the Hamiltonian is described
via a tensor product operator, i.e., a set of two-body in-
teractions [65], and the number of two-body interaction
terms grows as we increase the radius of Rydberg inter-
actions that should be included. The translation of the
gate sequence into the time evolution is split into multi-
ple groups to simplify the control of the time-dependent
parameters.

Tensor network simulation presents a classical path
toward many-body quantum simulations due to an
entanglement-driven approximation: the simulation can
become exact at a certain bond dimension χ controlling
the maximal amount of bipartite entanglement given by
the Hilbert space or if the relevant quantum state does
not exceed the entanglement that can be described with
χ. The GHZ state of our algorithm represents such a
state with a low bond dimension, i.e., the state can be
written with χ = 2. Although we pick up additional en-
tanglement due to imperfections of the gates, the target
state represents the ideal playground to exploit tensor
network in this scenario of providing results of a quan-
tum computer up to the pulse level. We recall that even
the 4 × 4 grid of the three-level system corresponds to
an equivalent of simulating about 25 qubits. The square
lattice of 8 × 8 qutrits is equivalent to about 101 qubits
and beyond the reach of exact methods and their upper
limit of around 45 qubits [15, 66].

The long-range interactions of the Rydberg atoms play
a crucial role. Therefore, we include more than the
nearest-neighbor interactions at distances a, which are
required for the CZ gate in x- and y-direction. We incor-
porate additional interactions depending on the radius
rG for running two CZ gates in parallel: interactions up
to rH = rG + doffset are included. Therefore, the compu-
tational effort increases for large rG with respect to the
number of terms in the Hamiltonian and the total num-
ber of time steps. The latter is induced by larger circuit
depths. Due to the possibility of the remaining popula-
tion in the Rydberg state |r〉, we are required to keep all
interactions up to the radius rH. This required range of
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interaction in the Hamiltonian is a direct consequence of
Eq. (2) and the Rydberg blockade radius.

In summary, there are three crucial parameters for the
convergence study presented in Tab. I, i.e., the bond di-
mension χ, the time step dt of the evolution, and the
range of interactions rH included in the Hamiltonian,
where rH = rG + doffset is tuned via doffset. To prove con-
vergence, we validate the infidelity of the final states ob-
tained by two different parameters p1 and p2 for either
χ, dt, or doffset and their effect on the fidelity with the
perfect GHZ state, i.e.,

C(p1, p2) = 1− |〈ψ(τ, p1)|ψ(τ, p2〉|2 , (7)
∆F (p1, p2) = F(p1)−F(p2) . (8)

The intermediate regime with a limited amount of
crosstalk is the most meaningful for the convergence
study. In the limit of small rG, we are far away from
a working algorithm. The circuit in the limit of large rG
has no crosstalk and matches the GHZ state up to the
accumulated errors of a CZ; this scenario does not chal-
lenge the convergence with regard to the bond dimension
nor the radius rH. Therefore, we check convergence for
the 8× 8 grid for rG =

√
10a as well as rG = rS =

√
16a,

where both C(p1, p2) and ∆F (p1, p2) stay below a 10−3

level for increasing the bond dimension χ by fifty per-
cent, decreasing the time step by a factor of 10, and
increasing rH by four lattice spacings a, except for one
data point for rG =

√
10a. One additional intermedi-

ate data point is shown for comparison. If we compare
C(p1, p2) and ∆F (p1, p2) to the infidelities of Fig. 2b),
the numerical error stays about one order of magnitude
below the corresponding infidelities for rG =

√
10a and

rG =
√

16a, respectively. Hence, we consider the results
converged on the relevant order of magnitude and use
χ = 12, dt = 0.001µs, and doffset = 2a for all simulations.

IV. COMPILER FOR GLOBAL GHZ STATES

The compiler RydberGHZ-C compiles the algorithm
for the global GHZ state preparation for the given con-
straints: the connectivity preventing gates within the ra-
dius rG, the available gate set consisting of single-qubit
rotations around the x-axis and the z-axis, and the CZ
gate. We choose to implement a compiler from scratch
due to the very specific target state and the parameters
we need to tune, i.e., the distance rG for parallel gates.
Our compiler has two modes: the first mode outputs an
algorithm with one initial Hadamard gate and a sequence
of CNOT gates; the second mode targets directly a sub-
set of native gates available on the digital twin of the
Rydberg platform. We focus on the latter in the fol-
lowing, because the first mode is a special case of the
second mode which is explained after the details of the
algorithm.

The CNOT gate on a Rydberg platform can be exe-
cuted as H2CZ1,2H2 where the Hadamard gate H acts

TABLE I. Convergence study for tensor networks. We eval-
uate the convergence of the tensor network simulations as a
function of the bond dimension χ, the time step dt, and the
radius rH of the interactions included in the Hamiltonian. We
focus on the overlap of the final states of simulations with re-
spect to the parameters pi that we check in convergence, i.e.,
C(p1, p2) = 1−|〈ψ(τ, p1)|ψ(τ, p2〉|2, and the induced change in
the fidelity to the GHZ state, i.e., ∆F (p1, p2) = F(p1)−F(p2).
Distances are implicitly given in terms of the lattice spacing
a and the time in µs.

Convergence χ rG =
√

10a rG =
√

16a

C(χ = 12, χ = 18) 0.43 · 10−3 0.13 · 10−3

C(χ = 15, χ = 18) 0.48 · 10−3 0.10 · 10−3

∆F (χ = 12, χ = 18) −0.05 · 10−3 −0.01 · 10−3

∆F (χ = 15, χ = 18) 0.26 · 10−3 −0.01 · 10−3

Convergence dt rG =
√

10a rG =
√

16a

C(dt = 0.001, dt = 0.0001) 0.78 · 10−3 0.24 · 10−3

C(dt = 0.005, dt = 0.0001) 0.80 · 10−3 0.23 · 10−3

∆F (dt = 0.001, dt = 0.0001) 0.20 · 10−3 0.12 · 10−3

∆F (dt = 0.005, dt = 0.0001) 0.31 · 10−3 0.08 · 10−3

Convergence rH = rG + doffset rG =
√

10a rG =
√

16a

C(doffset = 2, doffset = 6) 0.36 · 10−3 0.13 · 10−3

C(doffset = 4, doffset = 6) 0.54 · 10−3 0.13 · 10−3

∆F (doffset = 2, doffset = 6) 1.5 · 10−3 0.25 · 10−3

∆F (doffset = 4, doffset = 6) 0.32 · 10−3 0.02 · 10−3

on the target atom [67]. We instead use the following de-
compositions for the Hadamard and CZ(φ) gate obtained
by a derivate of the open-source qoqo compiler adapted
for the Rydberg platform [68]

H =RZ

(π
2

)
RX

(π
2

)
RZ

(π
2

)
, (9)

CZ(φ) =RC

X (π)RT

X

(π
2

)
RT

Z

(
−π

2

)
RT

X

(π
2

)
CZ(φ)

RC

Z

(
φ− 3π

2

)
RC

X (π)RC

Z

(
3π

2

)
RT

Z

(
−φ− 3π

2

)
RT

X

(π
2

)
RT

Z

(
3π

2

)
. (10)

In practice, the experimental implementation of a CZ(φ)
gate represents the CZ gate up to single-qubit rota-
tions [42]. The controlled-phase gate CZ(φ) has therefore
more gates in comparison to the previously mentioned de-
composition of Ref. [67]. We distinguish the control qubit
and the target qubit by a superscript «C» and «T», re-
spectively.

Our approach to compiling the algorithm relies on the
fact that all qubits are initially in the state |0〉; moreover,
any qubit already part of the GHZ state can act as a con-
trol qubit in an entangling gate to add qubits to the GHZ
state multiple times. Figure 6a) summarizes the idea of
how to parallelize the algorithm in a one-dimensional sys-
tem reducing the circuit depth D to (L/2 + 1) for even
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L; the benefit can be even larger in a two-dimensional
square system where the circuit depth of L2 in the serial
execution can be reduced to (L+ 1) for even L. In both
examples, we consider the Hadamard gate combined with
CNOTs and no restriction on the number of parallel gates
executed at the same time with a nearest-neighbor con-
nectivity. The Rydberg platform has the lower bound of
Dmin = (3 + 5L) for even L and rG = a; due to rG = a,
this remains a theoretical lower bound without an ac-
ceptable fidelity [69]. The meaningful upper bound is
an algorithm without any parallel CZ gates, while par-
allel local gates are allowed: DCZ−serial = L2 + 14. This
upper bound is 30 and 78 for a 4 × 4 and 8 × 8 grid,
respectively. The completely serial execution of all gates
is Dserial = 11(L2 − 1) + 3.

Our compiler lists all the possible intermediate config-
urations of a GHZ circuit up to a 4× 4 grid in a reason-
able time. The number of intermediate configurations
grows rapidly with growing system sizes, which forces us
to truncate the least promising configurations based on
metrics defined in the following. The compiler without
truncation contains the following steps:

1. Fix minimal distance rG, i.e., the minimal distance
between any two atoms participating in different
CZ gates at the same time.

2. A set of unique sites is selected as initial starting
points for the Hadamard gate and store them as a
list of configurations Cγ . No unique site inside the
set maps via rotations or reflections of the grid to
another site within the set.

3. List all possible pairs Pα of control and target sites
for the configurations Cγ .

4. List all sets Sβ of pairs Pα which can run in parallel
while obeying the minimal distance rG. Subsets are
not included, e.g., if Sβ = (PA,PB ,PD) is included,
we omit Sβ′ = (PA,PB).

5. Create a new configuration C′γ for each Sβ . Check
if the new configuration C′γ is a solution.

6. Block the qubits involved in a CZ gate for the next
four iterations to allow the application of the local
gates for the Rydberg platform. Reduce iterations
blocked for local operations by one for all qubits
not involved in a CZ gate.

7. Continue with step 3) using the new configurations
C′γ as Cγ .

The scaling of the number of intermediate configurations
is kept to a minimum due to the exploitation of symme-
tries, e.g., step 2) generates only three unique configura-
tions for a 4× 4 square lattice. The other configurations
are rotations and reflections of those three configurations.
Despite this effort throughout the algorithm, we require
the truncation of configurations for larger system sizes.

The most convenient place for the truncation of con-
figurations is step 7) before starting the next iteration.
We assign each configuration to a bin according to the
number of already entangled qubits and use it as the first
criterion: we keep truncating the bin with the smallest
number of qubits and the configurations therein as long
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FIG. 6. Circuit depth of a GHZ state preparation. a) The
upper circuit shows the serial preparation of the GHZ state
in a one-dimensional geometry. The lower half sketches the
parallel approach for the preparation of a one-dimensional
system with nearest-neighbor connectivity and the algorithm
follows a light cone starting in the middle and moving out-
wards. b) Example for a parallel preparation of the GHZ
state in a 4 × 4 hexagonal grid where the minimal distance
between sites of two CZ gates is set to rG = 2a. Links of the
same color are CZ gates executed in parallel; the total circuit
depth for the Rydberg platform is D = 27. The positions of
the atoms are shown in terms of the lattice spacing a. c) Se-
lecting a minimal distance rG between the sites of two CZ
gates to avoid the crosstalk of the Rydberg blockade leads to
different circuit depths; truncations of intermediate states are
set for all system sizes. We point out that the speed-up from
a parallel execution grows with increasing system sizes.

as we keep a given percentage of configurations defined
as a parameter. The second metric takes into account
the geometry of the intermediate configuration. We con-
sider a center-of-mass close to the center of the grid as
favorable because all corners can be reached in an equal
number of steps. Moreover, a configuration with a large
average distance from its own center of mass is closer to
the corners of the system and comes with a higher chance
to run gates in parallel in the next step. The fraction of
configurations resulting in the largest intermediate GHZ
state is at least kept with respect to the previous configu-
ration. An option for a more aggressive truncation keeps
only the largest sets Sβ in step 4), which stays disabled
for the Rydberg system.
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Considering the compiler for the subset of native Ry-
dberg gates, we point out how the first compiler mode in
terms of a Hadamard gate and CNOT gates is working:
consecutive CNOT gates can run without intermediate
single-qubit gates, which results in setting the blocked
cycles in step 6) to zero for RydberGHZ-C.

Figure 6c) compares the circuit depth as a function of
the distance rG for different system sizes. The truncation
of states during the search does not necessarily converge
to the global minima. The compiler settings allow one to
truncate up to fifty percent of the configurations if they
have two or more qubits less in the GHZ state than the
best configuration. Afterward, we keep 300 geometries
with the best metrics. An example of the 4× 4 grid with
minimal distance rG = 2a is shown for the hexagonal
lattice layout in Fig. 6b). The possible reduction of the
circuit depth increases with the system size. For the cir-
cuits of Figs. 1, 2, and 4, we keep up to 600 geometries
during compiling the algorithm.

The front end of the tensor network software takes care
of scheduling the parallel pulses according to the dis-
tance rG. The pulses for the Rabi frequency ΩR driving
the transition |1〉 ↔ |r〉 and the corresponding detuning
are specified in Ref. [44], where the detuning follows a
Gaussian shape and the Rabi frequency is 10MHz. The
total duration of a single CZ is 0.122µs and we choose
the amplitudes for the single-qubit gates to match this
duration of the CZ gate. The TTN simulation uses this
a duration of 0.122µs independent from the scenarios for
decoherence, i.e., the theoretical estimate for decoherence
according to Eq. (6) with τLayer = 0.2µs and τLayer = 2µs
is calculated in a post-processing step without access-
ing TTN results. However, the time τLayer becomes a
relevant variable of the platform in the next step. We
report selected key statistics of the circuits in Tab. II.
Especially the 8×8 grid demonstrates how larger system
sizes profit from the parallelization with 35% speedup in
comparison to a circuit serial in CZ gates as well as 92%
speedup compared to a completely serial circuit. In con-
trast, we are only 15% above the theoretical minimum
shown in Tab. II. The maximal number of local gates
and CZ gates further gives an estimate of which laser
power is required to execute gates in parallel. For cross-
platform comparisons, the level of parallelization is only
one aspect, but the gates executed per time unit are more
meaningful. Hence, we also list the number of Quantum
Gates per Second (QGS) for the two scenarios, e.g., the
preparation of the global GHZ state on an 8 × 8 grid in
the more conservative scenario still runs approximately
7 · 106 gates per second.

V. CONCLUSION

We have analyzed the parallel execution of a quantum
algorithm on the digital twin of a quantum computer.
The simulation of an algorithm on the pulse level involv-
ing the Hamiltonian leads to valuable insights into the

TABLE II. Statistics for GHZ circuit. Given a safe distance
rS = rG to run CZ gates in parallel, we evaluate the circuit
depth and number of single-qubit and two-qubit gates. In
detail, we show the lower bound of the circuit depth Dmin

at rG = a for a nearest-neighbor connectivity, the actual cir-
cuit depth D(rS), the circuit depth with all CZ gates in se-
rial DCZ−serial, and the circuit depth with all gates in serial
Dserial, i.e., the number of gates. Furthermore, we provide the
average number O1 and O2 as well as the maximal number
MAX1 and MAX2 per layer of one-qubit and two-qubit gates,
respectively. These numbers for the choice of rS give an es-
timate of the hardware requirements, e.g., in terms of laser
power. Finally, the Quantum Gates per Second (QGS) enable
a comparison across different platforms, where we present two
scenarios with τLayer = 200ns per layer and τLayer = 2µs.

Circuit property 4× 4 (16) 6× 6 (36) 8× 8 (64)

rS
√

8a 4a 4a
Dmin 23 33 43
D(rS) 28 39 50

DCZ−serial 30 50 78
Dserial 168 388 696
O1(rS) 5.5 9.1 12.7
O2(rS) 0.5 0.9 1.3

MAX1(rS) 10 12 16
MAX2(rS) 2 3 4
QGS(0.2µs) 30 · 106 50 · 106 70 · 106

QGS(2µs) 3 · 106 5 · 106 7 · 106

quantum hardware, e.g., in terms of qubit crosstalk. In
detail, the numerical simulations analyze the influence
of the Rydberg interactions on the parallel execution of
controlled-phase gates. We have simulated the qutrits
physics in systems of up to a size of 8 × 8 sites with a
tree tensor network. The simulations cover a variety of
effects, including decay effects modeled by a Lindblad
channel and the remaining population in the Rydberg
state, where the latter would require non-Markovian ef-
fects in a two-level open system description.

The focus on the preparation of a GHZ state explores
one of the first standard demonstrations of control and
stability of new quantum processors. We have shown
that the circuit depth for the preparation of a GHZ state
with almost 700 gates for an 8×8 grid can be reduced by
more than 35% percent under the constraint of avoiding
parallel gates for a radius smaller than rS =

√
16a. Sat-

isfying this condition, the infidelity per single CZ gate in
the closed Rydberg quantum system increases by one or
two orders of magnitude in comparison to the infinite-rG
limit. However, the final infidelity stays a factor of 5 to
10 below the major source of errors introduced by the
decay from the Rydberg state. Furthermore, we have
shown that the infidelity due to decay from the Ryd-
berg state stays constant beyond a certain circuit depth.
Dephasing, i.e., the next most important open quantum
system effect, represents the incentive to minimize the
circuit depth as long as the crosstalk is under control.
Due to the speedup of 92% and the inherent reduction



12

in decoherence revealed by the digital twin in compari-
son to a completely serial circuit, we identify quantum
gate parallelism as a necessary pathway to maximize the
performance of NISQ devices.

Building on this initial investigation, we foresee a num-
ber of important questions that now can and shall be ad-
dressed to support future NISQ development, along the
lines of the three challenges for future quantum hard-
ware outlined in the white paper [70]. For example, the
development – also via optimal control methods [8, 71]
– of a four-qubit gate performing two CZ gates with
suppression of crosstalk could highly improve the sys-
tem performance for Rydberg systems. Questions re-
lated to the green quantum advantage and how paral-
lel execution can be leveraged to shift the boundary for
energy-efficient computing more toward QPUs shall be
addressed [72]. Moreover, Rydberg platforms offer two
pathways to modify the connectivity. On the one hand,
the Rydberg blockade radius can be modified which af-
fects the range at which two-qubit gates are possible [73].
On the other hand, shift operations offer another degree
of freedom: the Rydberg atoms trapped in the optical
tweezers can be shifted during an algorithm as demon-
strated in [32]. This additional degree of freedom can
possibly be exploited to further improve algorithm effi-
ciency.

The digital twin introduced here can be straightfor-
wardly applied to different quantum computing hard-
ware, such as superconducting or ion platforms. Sev-

eral questions remain open on the theory side, such as
gaining a better understanding of the running details of
other algorithms and platforms. For example, a detailed
comparison of the highly parallelized GHZ state prepa-
ration in Ref. [74] is another intriguing direction, where
the protocol uses auxiliary qubits and measurements. Fi-
nally, different improvements on the software and hard-
ware aspects of the digital twin, e.g., via parallelization
on classical computers [75], will enable in the near future
exploring higher entangling algorithms and larger system
sizes.
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