A User's Guide to Measure Theoretic Probability

DAVID POLLARD Yale University

Preface	xi
CHAPTER 1:	MOTIVATION
§ 1	Why bother with measure theory? 1
§2	The cost and benefit of rigor 3
§3	Where to start: probabilities or expectations? 5
§4	The de Finetti notation 7
*§5	Fair prices 11
§6	Problems 13
§7	Notes 14
CHAPTER 2:	A modicum of measure theory
§ 1	Measures and sigma-fields 17
§ 2	Measurable functions 22
§3	Integrals 26
*§4	Construction of integrals from measures 29
§5	Limit theorems 31
§6	Negligible sets 33
*§7	L^p spaces 36
*§8	Uniform integrability 37
§9	Image measures and distributions 39
§10	Generating classes of sets 41
*§11	Generating classes of functions 43
§12	Problems 45
§13	Notes 51 .
CHAPTER 3:	DENSITIES AND DERIVATIVES
§1	Densities and absolute continuity 53
*§2	The Lebesgue decomposition 58
§3	Distances and affinities between measures 59
§4	The classical concept of absolute continuity 65
*§5	Vitali covering lemma 68
*§6	Densities as almost sure derivatives 70
§7	Problems 71
§8	Notes 75
CHAPTER 4:	PRODUCT SPACES AND INDEPENDENCE
§ 1	Independence 77
§2	Independence of sigma-fields 80
§3	Construction of measures on a product space 83
§4	Product measures 88
*§5	Beyond sigma-finiteness 93
§6	SLLN via blocking 95
*§7	SLLN for identically distributed summands 97
*§8	Infinite product spaces 99

J

•

)

176

<u>89</u> Problems 102 **§10** Notes 108 CHAPTER 5: CONDITIONING **§**1 · · . Conditional distributions: the elementary case 111 <u></u>§2 Conditional distributions: the general case 113 Integration and disintegration **§**3 116 <u></u>§4 Conditional densities 118 *§5 Invariance 121 §6 Kolgomorov's abstract conditional expectation 123 *§7 Sufficiency 128 Problems **§**8 131 89 135 Notes CHAPTER 6: MARTINGALE ET AL. §1 What are they? 138 <u></u>§2 Stopping times 142 **§**3 Convergence of positive supermartingales 147 <u></u>§4 Convergence of submartingales 151 *§5 Proof of the Krickeberg decomposition 152 Uniform integrability *§6 153 **Reversed** martingales *87 155 *§8 Symmetry and exchangeability 159 Problems §9 162 **§10** Notes 166 CHAPTER 7: CONVERGENCE IN DISTRIBUTION Definition and consequences **§**1 169 **§**2 Lindeberg's method for the central limit theorem **§**3 Multivariate limit theorems 181 -84 Stochastic order symbols 182 *§5 Weakly convergent subsequences 184 §6 Problems 186 **§**7 190 Notes CHAPTER 8: FOURIER TRANSFORMS §1 Definitions and basic properties 193 <u></u>§2 Inversion formula 195 **§**3 A mystery? 198 84 Convergence in distribution 198 *§5 A martingale central limit theorem 200 Multivariate Fourier transforms §6 202 *§7 Cramér-Wold without Fourier transforms 203 *§8 The Lévy-Cramér theorem 205 §9 Problems 206 §10 Notes 208

viii

CHAPTER 9: BROWNIAN MOTION §1 Prerequisites 211 <u></u>§2 Brownian motion and Wiener measure 213 Existence of Brownian motion **215** §3 *§4 Finer properties of sample paths 217 Strong Markov property §5 219 *§6 Martingale characterizations of Brownian motion 222 *§7 Functionals of Brownian motion 226 *§8 Option pricing 228 <u>§</u>9 Problems 230 Notes **§10** 234 CHAPTER 10: REPRESENTATIONS AND COUPLINGS **§**1 What is coupling? 237 <u>§</u>2 Almost sure representations 239 *§3 Strassen's Theorem 242 *§4 The Yurinskii coupling 244 Quantile coupling of Binomial with normal **§**5 248 §6 Haar coupling-the Hungarian construction 249 §7 The Komlós-Major-Tusnády coupling 252 <u>§</u>8 Problems 256 **§**9 Notes 258 CHAPTER 11: EXPONENTIAL TAILS AND THE LAW OF THE ITERATED LOGARITHM **§**1 LIL for normal summands 261 §2 LIL for bounded summands 264 Kolmogorov's exponential lower bound *§3 266 *84 Identically distributed summands 268 Problems 271 §5 **§6** Notes 272 CHAPTER 12: MULTIVARIATE NORMAL DISTRIBUTIONS Introduction 274 **§**1 *§2 Fernique's inequality 275 *§3 Proof of Fernique's inequality 276 Gaussian isoperimetric inequality <u></u>§4 278 *§5 Proof of the isoperimetric inequality 280 §6⁻⁻ Problems 285 Notes 287 §7 APPENDIX A: MEASURES AND INTEGRALS Measures and inner measure §1 289 <u></u>§2 Tightness 291 Countable additivity §3 292 <u></u>§4 Extension to the $\cap c$ -closure 294 **§**5 Lebesgue measure 295 Integral representations 296 §6 **§**7 Problems 300 §8 Notes 300

ix

332

APPENDIX B: HILBERT SPACES

х

- §1 Definitions 301
- §2 Orthogonal projections 302
- §3 Orthonormal bases 303
- §4 Series expansions of random processes 305
- §5 Problems 306
- §6 Notes 306

Appendix C: Convexity

- §1 Convex sets and functions 307
- §2 One-sided derivatives 308
- §3 Integral representations 310
- §4 Relative interior of a convex set 312
- §5 Separation of convex sets by linear functionals 313
- §6 Problems 315
- §7 Notes 316

APPENDIX D: BINOMIAL AND NORMAL DISTRIBUTIONS

- §1 Tails of the normal distributions 317
- §2 Quantile coupling of Binomial with normal 320
- §3 Proof of the approximation theorem 324
- §4 Notes 328
- APPENDIX E: MARTINGALES IN CONTINUOUS TIME
 - §1 Filtrations, sample paths, and stopping times 329
 - §2 Preservation of martingale properties at stopping times
 - §3 Supermartingales from their rational skeletons 334
 - §4 The Brownian filtration 336
 - §5 Problems 338
 - §6 Notes 338

APPENDIX F: DISINTEGRATION OF MEASURES

- §1 Representation of measures on product spaces 339
- §2 Disintegrations with respect to a measurable map 342
- §3 Problems 343
- §4 Notes 345

INDEX 347