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SUMMARY

A simulation smoother in state space time series analysis is a procedure for drawing samples

from the conditional distribution of state or disturbance vectors given the observations� We

present a new technique for this which is both simple and computationally e�cient� The

treatment includes models with di�use initial conditions and regression e�ects� Computational

comparisons are made with the previous standard method� Two illustrations are provided using

real data�

Some key words� Di�use initialisation� Disturbance smoothing� Gibbs sampling� Importance
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�� INTRODUCTION

State space models may be formulated in a variety of ways� In this paper we consider �rst

the linear Gaussian form

yt � Zt�t � �t� �t � N�	� Ht
�

�t�� � Tt�t �Rt�t� �t � N�	� Qt
� t � �� � � � � n�
��


where yt is a p� � vector of observations� �t is an m� � state vector and �t and �t are vectors

of disturbances� Matrices Zt� Tt� Rt� Ht and Qt are assumed to be known� To begin with

we assume that �� � N�a�� P�
 where a� and P� are known� later we will investigate the case

where elements of a� and P� are unknown� We will then consider the addition of a regression

component of the form Xt� to the �rst equation of ��
�

We shall examine the problem of drawing samples from the conditional distributions of

� � ����� � � � � �
�

n

�� � � ����� � � � � �

�

n

� and � � ����� � � � � �

�

n

� given y � �y��� � � � � y

�

n

�� Such samples

are needed for simulation studies of the properties of estimates arising in the analysis of model

��
 and for the analysis of non�Gaussian and nonlinear variants of it from both classical and

Bayesian inference perspectives�

Fruhwirth�Schnatter ��

�b
 and Carter and Kohn ��

�
 independently developed methods

of drawing samples of �jy using a recursive technique consisting of �rst sampling �njy� then

sampling �n��j�n� y� then �n��j�n��� �n� y� and so on� A signi�cant advance was made by

de Jong and Shephard ��

�
 for a model which is a generalisation of ��
� They �rst considered

recursive sampling of the disturbances and subsequently sampling of the states� this is generally

more e�cient than sampling the states directly when the dimension of � is smaller than the

dimension of �� Their paper reviews previous work and describes the application of their

simulation smoother to Bayesian Markov chain Monte Carlo �MCMC
 analysis of Gaussian

and non�Gaussian time series�

In this paper we present a new simulation smoother which is simple and is computationally

e�cient relative to that of de Jong and Shephard ��

�
� We achieve the improvements by

avoiding generating random vectors recursively and employing instead a direct approach in

which only mean corrections for unconditional vectors are required� The new simulation method

can be adjusted straightforwardly to allow for di�use initial conditions of the state vector and

for the inclusion of a regression component in ��
� To illustrate the use of the new method

�



we apply it to classical and Bayesian analyses of structural time series models� Real data

illustrations include monthly time series of number of car drivers killed or seriously injured in

road accidents in Great Britain�

The next section presents the main result together with modi�cations for sampling state

vectors� allowing for di�use initial conditions and also for the inclusion of regression components�

Section � discusses two applications which concern a Gaussian model and a Poisson model for

counts� Our conclusions are presented in x�� The extension of our approach to the more general

model employed by de Jong and Shephard ��

�
 is discussed in the Appendix�

�� THE NEW SIMULATION SMOOTHER

��� Main result

We �rst consider the construction of a simulation smoother for the disturbances � and ��

Let w � ���� ��
� and let �w � E�wjy
� W � var�wjy
� Since the model is linear and Gaussian�

the density of wjy is p�wjy
 � N� �w�W 
� The calculation of �w is performed by means of the

disturbance smoother as developed by Koopman ��

�
 based on work by de Jong ��
��


and Kohn and Ansley ��
�

� for an elementary treatment see Durbin and Koopman ��		��

x�����
� The matrixW has the important property that it does not depend upon y� this follows

immediately from the general result that in a multivariate normal distribution the conditional

variance matrix of a vector given that a second vector is �xed does not depend on the second

vector� see� for example� Anderson ��
��� Theorem �����
� Since y is an exact linear function

of the elements of w� the matrix W is singular� however� it turns out that this singularity has

no e�ect on our calculations�

Our task is to draw random vectors �w from p�wjy
� We do this by drawing vectors from

N�	�W 
 independently of y and adding these to the known vector �w� This is easily accomplished

in the following way� The density of w is

p�w
 � N�	��
� � � diag�H�� � � � � Hn� Q�� � � � � Qn
� ��


Let w� be a random vector drawn from p�w
� The process of drawing w� is straightforward�

particularly since in most cases in practice the matrices Ht and Qt� for t � �� � � � � n� are scalars

or diagonal� Denote by y� the stacked vector of values of yt generated by drawing a vector

�



��
� from p���
 and replacing �� and w in ��
 by �

�
� and w

�� Compute �w� � E�w�jy�
 using

the disturbance smoother given in ��
 below� Since W is independent of y� var�w�jy�
 � W �

Consequently� w� � �w� is the desired draw from N�	�W 
� Let �w � �w � w� � �w�� It follows

that �w is a draw from density p�wjy
� In particular� we have

E� �wjy
 � E� �w � w� � �w�jy
 � E�w
� � �w�jy
 � �w � �w�

and

var� �wjy
 � E
�
�w� � �w�
�w� � �w�
�jy

�
� W�

since w� � �w� is independent of y�

This result implies the validity of the following algorithm for selecting a draw �w from density

p�wjy
�

Algorithm ��

�� Draw a random vector w� from density p�w
 and use it to generate y� by means of

recursion ��
 with w replaced by w�� where the recursion is initialised by the draw ��
� �

N�a�� P�
�

�� Compute �w � E�wjy
 and �w� � E�w�jy�
 by means of standard Kalman �ltering and

disturbance smoothing using ��
 and ��
 below�

�� Take �w � �w � �w� � w��

The algorithm is applied as many times as is needed to obtain the desired sample of independent

values of �w� When a single draw �w is required� the amount of computing can be reduced by

de�ning y�t � yt� y�t and putting y
�

t through the Kalman �lter and disturbance smoother once

instead of putting yt and y
�
t separately through the �lter and smoother�

This algorithm for generating �w only requires standard Kalman �ltering and disturbance

smoothing applied to the constructed series y� and is therefore easy to incorporate in new

software� special algorithms for simulation smoothing such as the ones developed by Fruhwirth�

Schnatter ��

�b
� Carter and Kohn ��

�
 and de Jong and Shephard ��

�
 are not required�

We do not regard the generation of y� by ��
 as an algorithm since we are merely making

�



straightforward use of the basic model� Thus� the result is not only mathematically simple� it

is also computationally simple�

In x��� we present formulae for the Kalman �lter and disturbance smoother that are needed

for the implementation of Algorithm �� We discuss in x��� a modi�ed version of Algorithm �

which is slightly more e�cient computationally� Obviously� if we do not require the whole of

�w� but only the part consisting of either � or �� Steps � and � of Algorithm � can be con�ned

to the relevant part� The whole vector w� is� however� needed for Step �� In x��� we obtain a

simulation smoother for the state vector �� The case where at least part of the initial vector

�� is di�use is considered in x���� Finally� in x��� we discuss the computation of antithetic

variables in our method�

It will be evident from the above treatment that the same approach could be employed to

prove the following general proposition� Suppose that x and y are vectors which are jointly

normally distributed with density p�x� y
 and that we wish to draw sample vectors from density

p�xjy
� Denote a draw from density p�x� y
 by x�� y� and let �x � E�xjy
� �x� � E�x�jy�
 and

�x � �x � x� � �x�� Then �x is a draw from p�xjy
� We mention this generalisation in case there

are situations other than state space applications where the device might be useful� particularly

where drawing from p�x� y
 and calculation of E�xjy
 are relatively easy� while direct drawing

from p�xjy
 is relatively di�cult�

��� The Kalman �lter and disturbance smoother

The Kalman �lter for model ��
 is

vt � yt � Ztat� Ft � ZtPtZ
�

t �Ht�

Kt � TtPtZ
�

tF
��
t � Lt � Tt �KtZt�

at�� � Ttat �Ktvt� Pt�� � TtPtL
�

t �RtQtR
�

t�

��


for t � �� � � � � n with a� and P� as the mean vector and variance matrix of the initial state vector

��� Proofs are given by� for example� Anderson and Moore ��
�
� Chapter �
 and Durbin and

Koopman ��		�� x�����


The computation of �w takes the form

�wt �

�
� HtF

��
t �HtK

�

t

	 QtR
�

t

�
�
�
� vt

rt

�
A � ��


�



where rt is evaluated by the backwards recursion

rt�� � ZtF
��
t vt � L�trt� ��


for t � n� n � �� � � � � � with rn � 	� The two block elements obtained by multiplying out the

right�hand side of ��
 give the equations for ��t � E��tjy
 and ��t � E��tjy
� respectively� One

or the other of these can be used when multiple draws of � only or � only are required� Proofs

of the formulae are given in Koopman ��

�
 and Durbin and Koopman ��		�� x���
�

It should be noted that in standard cases the matrices Pt� Ft� Kt and Lt in ��
 and ��
� as

distinct from the vectors at� vt and rt� are all independent of y� However� some or all of them

will in practical cases of interest depend on an unknown parameter vector� � say� Consequently�

when the analysis is based on classical inference� an estimate �� of � will be calculated at the

beginning of the analysis� and the values of the matrices will be treated as if �� was the true value

of �� Thus when generating multiple draws using Algorithm �� only the elements of vectors

at� vt and rt need recalculation for each draw of �w� On the other hand� when the analysis is

Bayesian� the parameter vector � is treated as random and it will vary from one simulation

to another� Thus the matrices that depend on � will need to be recalculated for each draw of

�w� The e�ect is that more calculation per draw is required when multiple samples are required

within a Bayesian analysis than for a classical analysis�

��� Modi�ed version of the simulation smoothing algorithm

We observe that the smoothing recursion ��
 depends as a function of y only on v �

�v��� � � � � v
�

n

�� This suggests that we can increase computational e�ciency by generating v from

w directly during the simulations without computing y as an intermediate step� Let xt � �t�at�

Then

vt � Zt�t � �t � Ztat

� Ztxt � �t� t � �� � � � � n�
��


and

xt�� � Tt�t �Rt�t � Ttat �Ktvt

� Ttxt � Rt�t �Ktvt� t � �� � � � � n� ��
��


�



initialised with x� � N�	� P�
� Thus if we select x
�
� from N�	� P�
 and substitute subvectors

��� � � � � � �
�
n � �

�
� � � � � � �

�
n�� from w� into ��
 and ��
 we can obtain v�� � � � � � v

�
n directly rather than

generate y� from ��
 and then derive the v�t �s from the relevant parts of the Kalman �lter�

This process involves fewer numerical operations than are required in Algorithm �� However�

the computational gain is small since all operations in the simulation once w� has been drawn

are linear so the computations based on them are already fast� Noting that when y is �xed�

v is �xed� and vice�versa� we obtain a modi�ed form of Algorithm � in which the subvectors

�� and �� are used in Step � to generate v� � �v��� � � � � � v
��
n 


� from ��
 and ��
� Steps � and

� then proceed as before� Since E�w�jv�
 � E�w�jy�
 where y� is the value that would have

been obtained in Step � of Algorithm � from the same w� and the same value of x� � ��� a��

it follows that �w � p�wjy
�

��� Simulation smoothing for state vector

To construct an algorithm for generating draws of the state vector � � ����� � � � � �
�

n

� from

the conditional density p��jy
� we denote a draw from p��
 as �� and a draw from p��jy
 as ���

The smoothed mean ��t � E��tjy
 can be computed as suggested by Koopman ��

�
 by taking

the conditional expectation given y of both sides of the second equation of ��
� substituting for

��t from the second line of ��
 and then applying the resulting forwards recursion

��t�� � Tt��t �RtQtR
�

trt� t � �� � � � � n� ��


with the initialisation ��� � a� � P�r�� where rt is obtained from ��
� for details about the

initialisation see Durbin and Koopman ��		�� x�����
�

Based on this approach� the following algorithm for drawing random vectors �� from p��jy


is obtained by arguments similar to those used for drawing �w from p�wjy
 in Algorithm ��

Algorithm ��

�� Draw a random vector w� from density p�w
 and use it to generate �� and y� by means

of recursion ��
 with w replaced by w�� where the recursion is initialised by the draw

��
� � N�a�� P�
�

�� Compute �� � E��jy
 and ��
� � E���jy�
 by means of standard �ltering and smoothing

using ��
 forwards� ��
 backwards and ��
 forwards�

�



�� Take �� � ��� ��� � ���

When a single draw �� is required� it is computationally more e�cient to compute �� by con�

structing the arti�cial observations y� � y � y� and using �� � ��� � �� where ��� � E��jy�
�

��� Modi�cations for di�use initial conditions

In situations where the initial state vector contains nonstationary elements or unknown

�xed coe�cients� we treat the corresponding initial elements as di�use random variables� that

is� as having in�nite variances� Exact solutions have been developed by Ansley and Kohn

��
��
� de Jong ��

�
 and Koopman ��

�
 for �ltering and smoothing the observed series

under the assumption that some elements of P� go to in�nity� A detailed treatment of di�use

initialisation is given by Durbin and Koopman ��		�� Chapter �
� particularly in xx��� and

��� where explicit formulae are given for calculating �� � E��jy
 and �w � E�wjy
� Smoothers

obtained by formulae given in these sections we shall refer to as di�use smoothers�

An outstanding question is the draw ��
� � N�a�� P�
 in Step � of Algorithm � since in

the di�use case some elements of P� will have variances going to in�nity and a draw from a

normal density with in�nite variance is impossible� However� we now show that provided di�use

smoothers are used for the calculation of �w�� the di�use elements of �� can be set equal to

arbitrary quantities� say zeros� when using Algorithms � and ��

The initial state vector can be modelled generally by

�� � A�� � C��� � � N�	� 	I
� � � N�
� I
�

where 	�� with � and � independent� It follows that �� � N�a�� P�
 with

a� � C�
� P� � 	A�A
�

� � C�C
�

��

Substituting in model ��
� it follows that

y � A� �Bw � C�� � � H� �Gw �D��

where y� w and � are de�ned in x��� and the matrices A� B� C� H� G and D are known functions

of the system matrices� For a given value of 	 we have

�w � Cov�w� y
����y � E�y
�� �



�



where

Cov�w� y
 � �B�� � � 	AA� � ��� �� � B�B� � CC �� E�y
 � C
�

with � � var�w
 de�ned in ��
� Applying a standard inversion lemma to �� see for example

Rao ��
��� p���� Problem ��

� gives

� � ��� � ���
�
� ���

�
A�
�

	
I � A����

�
A
��A����

�
�

for 	 � 	 and so

�w � �B���y � C

�

Letting 	�� we obtain

�w � �B����y � C

� ��	


where

�� � �
��
�
� ���

�
A�A����

�
A
��A����

�
� ���


Equation ��	
 provides a general form for a value of �w obtained by the use of a di�use smoother�

Let �� be an arbitrary value of � and let �� be a random draw of �� Now apply Algorithm

� to compute y�� �w� and �w� taking ��
� � A��

� � C��
� and using the di�use smoother to

compute �w�� Since ��	
 holds for any realised vector y which satis�es model ��
� it holds for

y� � A�� �Bw� � C�� so we have

�w� � �B����y
� � C



� �B����A�
� �Bw� � C��� � 

�� ���


Postmultiplying ���
 by A gives ��A � 	 so �
� disappears from ���
 and we therefore have

�w� � �B����Bw
� � C��� � 

�� ���


which does not depend on ��� It follows that we can take �� � 	 and ��
� � C��� thus obtaining

a �nite series y�� � � � � � y
�
n �

A similar result applies to state simulation smoothing� We have

�� � E��
 � Cov��� y
����y � E�y
�� ���







where

E��
 � D
� Cov��� y
 � 	HA� �X� X � G�B� �DC ��

Thus

�� � D
�X��y � C

 � 	HA���y � C

� ���


with

	A�� � 	�I � A����
�
A� �

�
I � A����

�
A
���A����

�

� 	�� �
�
I � A����

�
A
� A����

�
A�� �

�
I � A����

�
A
��A����

�

� � �
�
I � A����

�
A
��A����

�
�

���


for 	 � 	� As 	�� we have

�� � D
�X���y � C

 �H�A����
�
A
��A����

�
�y � C

� ���


To obtain �� � �� � �� � ���� we �rst compute y� and �� from ��
 initialised with �� �

A��
� � C��

� where �� is arbitrary and then calculate �� and ��� using di�use smoothers�

Analogously to ���
� we have

��� � D
� �X�� �H�A����
�
A
��A����

�

�Bw� � C��� � 

� �H��� ���


which includes the term H��� However� this term will be eliminated when computing �� since

it also appears in �� � H�� �Gw� �D��� We can therefore take �� � 	�

If the observational vector yt depends on a regressor matrix Xt with unknown constant

regression coe�cient vector � the �rst equation of ��
 is replaced by the form

yt � Zt�t �Xt� � �t� ��



We can estimate � in the Kalman �lter by rede�ning the state vector as ��t � ��
�

t� �
�

t

�� with

the constraints �� � � and �t�� � �t� t � �� � � � � n� and modifying the second equation of

��
 accordingly� We then treat the vector �� as di�use� It follows from the earlier results of

this section that we can put � � �� � 	 when drawing �unconditional
 simulation samples

provided that we use di�use smoothers for the expanded model to calculate �w� �w�� �� and ����

This has the computational advantage that we can exclude Xt and consequently employ the

reduced model ��
 when computing y�� This solution is simpler than the treatment of �xed

e�ects given by de Jong and Shephard ��

�� x�
�

�	



��� Antithetic variables

When using the simulation smoother in practice� it is often advantageous to employ an�

tithetic variables� An antithetic variable for a draw x is one which is equiprobable with x

and which� when used together with x� increases simulation e�ciency� It is easy to construct

antithetic variables using the techniques of this paper� Thus for the draw �w � �w � �w� � w��

we note that w� � �w� and ��w� � �w�
 have the same distribution N�	�W 
� It follows that if

we de�ne �w� � �w � �w� � w� then �w and �w� have the same conditional distribution given y�

that is� N� �w�W 
� The use of �w and �w� together in the estimation process leads to an increase

in e�ciency for two reasons� First� estimates based on �w and �w� separately are likely to be

negatively correlated� Secondly� two draws of wjy are obtained for a computational cost which

is little more than the cost of �w alone� A second antithetic could be constructed along similar

lines to the one described in Durbin and Koopman ��		�� x���
��
 but we shall not pursue this

further here�

�� ILLUSTRATIONS

��� Bayesian analysis based on Gibbs sampling

For our �rst illustrative example� we consider the class of structural time series models as

discussed in Harvey ��
�

 and Durbin and Koopman ��		�� x���
 for which a Bayesian analysis

will be presented based on the Gibbs sampler as proposed by Fruhwirth�Schnatter ��

�b
 and

Carter and Kohn ��

�
� For example� let us consider the local level model

yt � �t � �t� �t�� � �t � �t� ��	


where the disturbances �t and �t are mutually and serially uncorrelated and generated by normal

densities with zero mean and variances 
�� and 

�
�� respectively� The variances are treated as

random variables and� as an example� a model for a variance 
� can be based on the inverse

gamma distribution with logdensity

log p�
�jc� s
 � � log ��
c

�

�

c

�
log

s

�
�
c� �

�
log
� �

s

�
�
� for 
� � 	�

and p�
�jc� s
 � 	 for 
� � 	� see� for example� Poirier ��

�� Table �����
� We denote this

density by 
� � IG�c��� s��
 where c determines the shape and s determines the scale of the

��



distribution� It has the convenient property that if we take this as the prior density of 
� and

we take a sample u�� � � � � un of independent N�	� 

�
 variables� the posterior density of 
� is

p�
�ju�� � � � � un
 � IG��c� n
��� �s�
nX
i��

u�i 
���

�
�� ���


for further details see� for example� Poirier ��

�� Chapter �
�

The posterior means of � � ���� � � � � �n

� and of the variances � � �
��� 


�
�

� can be estimated

by simulating from the joint density p��� �jy
 and taking sample means� In a Markov chain

Monte Carlo �MCMC
 procedure� the sampling from this joint density is implemented as a

Markov chain� After the initialisation � � ����� we repeat the following simulation steps M�

times�

�� sample ��i� from p��jy� ��i���
 using Algorithm � of x��� to obtain ��i� and hence ��i� from

��	
�

�� sample ��i� from p��jy� ��i�
 using the inverse gamma density�

for i � �� � � � �M�� After the process has stabilised� we treat the last M samples from Step

� as being generated from the density p��jy
� Usually� sampling from conditional densities is

easier than sampling from the marginal density p��jy
� For the implementation of Step � a

sample value of an element of � is chosen from the posterior density ���
� We can take ut in

���
 as a standardised element of �t or �t obtained by the simulation smoother of x��� in Step

�� Here� we are following standard practice in working with the marginal distributions of 
��

and 
�� instead of their joint distributions�

Similar methods can be applied to the local linear trend model� which incorporates a

stochastic slope in �t� and to the basic structural time series model� which includes slope

and seasonal components� see Harvey ��
�
� x���
 or Durbin and Koopman ��		�� x���
 for

details of these models� The Gibbs sampler requires the application of a simulation smoother

M times� We now investigate the computational e�ciency of Algorithm � compared to the

simulation smoother of de Jong and Shephard ��

�
� hereafter referred to as method JS� for

a general class of models� We accept the claim in their paper that for most cases method JS

is computationally more e�cient than the methods of Fruhwirth�Schnatter ��

�b
 and Carter

and Kohn ��

�
� Method JS and Algorithm � both require the Kalman �lter although method

JS applies it to the observed series yt whereas in e�ect our method applies it to the constructed

��



series y�t � yt�y
�
t � for this we need to draw random values of disturbances from univariate nor�

mal densities and then apply the state space recursion ��
� After the Kalman �lter� Algorithm

� applies standard disturbance smoothing whereas method JS applies either equation ��
 or ��


or ��
 in de Jong and Shephard ��

�
 which is similar to backwards disturbance smoothing

but is computationally more involved�

Table � presents the numbers of multiplications required for a single draw of univariate

�p � �
 state space models with di�erent state vector dimensions� It is assumed that the

elements of Zt� Tt and Rt are either zero or one and variance matrices Ht and Qt are diagonal�

Method JS clearly involves more computations for all state dimensions although when a draw

from p��jy
 only is required� di�erences with Algorithm � are smaller� Method JS further

requires for each time period t an inversion of a symmetric m �m matrix and a draw from a

multivariate normal distribution whereas Algorithm � does not require matrix inversions and

draws are from univariate densities� Both methods require the same storage from the Kalman

�lter� that is� storage of vt� Ft and Kt for t � �� � � � � n� We conclude that computational

gains are achieved using our simulation smoothing Algorithm � compared to method JS� The

computational gains for the modi�ed algorithm of x��� are virtually the same since the main

di�erence from Algorithm � is that the Kalman �lter equation for at�� in ��
 is replaced by the

equation for xt�� in ��
 and the resulting di�erence is negligible�

�Table � about here�

��� Linear Gaussian illustration

In this illustration we follow Fruhwirth�Schnatter ��

�a
 in considering data from the

study of Harvey and Durbin ��
��
 on the e�ect of the seat belt law on road accidents in

Great Britain using a Bayesian analysis based on a structural time series model� A graph of

the log of monthly number of car drivers killed or seriously injured shows a seasonal pattern

due primarily to weather conditions and festive celebrations� The overall trend of the series

is basically constant over the years with breaks in the mid�seventies� probably due to the oil

crisis� and in February �
�� after the introduction of the seat belt law� The model that we

consider is

yt � �t � �t � �t�

��



where �t is the local level component as given by ��	
 and the seasonal component �t is modelled

by the equation

�t � �t�� � � � �� �t�s�� � �t�

where s is the seasonal length and �t is a disturbance with mean zero and variance 

�
�� The

irregular �t is treated as a disturbance term with mean zero and variance 

�
�� All disturbances

are mutually and serially uncorrelated and generated by normal densities� For the purpose of

this illustration we do not include an intervention component to measure the e�ect of the seat

belt law�

�Table � about here�

We have applied the Gibbs sampler as described in the previous subsection with M �

�			� The computations were implemented in the matrix language Ox of Doornik ��

�
 using

SsfPack of Koopman� Shephard� and Doornik ��



� Let � � �
��� 

�
�� 


�
�

�� Figure � shows the

realised draws from p��jy
� the correlogram of the series of draws and a histogram of the realised

draws which is smoothed nonparametrically to provide estimates of the posterior densities of

the elements of �� The estimated posterior means and standard deviations of elements of �

are reported in Table �� We observe that the histogram of the seasonal variance 
�� has a lot

of mass at zero and its posterior mean is also close to zero� This is consistent with the fact

that in a classical analysis the maximum likelihood estimate of 
�� is zero� We therefore repeat

the Gibbs sampler with 
�� �xed at zero and the same results as in Figure � are presented in

Figure � for �� � �
��� 

�
�

�� In the second panel of Table � the posterior mean and standard

deviation of �� are reported� Comparisons of Figures � and � supports the view that the Gibbs

sampler works better for �� than for �� The computer time required for the Gibbs sampler

using Algorithm � was about �	� less compared to using method JS for both � and ���

�Figures � and � about here�

��



��� Illustration of the use of importance sampling for non�Gaussian models

We now consider classical inference for a class of models in which the normal density of

the observation equation in ��
 is replaced by the more general class of the exponential family

densities� that is� we generalise the density

p�ytj�t
 � N��t� 

�
�
�

where �t � Ztyt� to densities of the form

p�ytj�t
 � exp�y
�

t�t � bt��t
 � ct�yt
�� �� � �t ��� ���


where bt��t
 is a twice di�erentiable function and ct�yt
 is a function of yt only� Examples of

such densities include the Poisson� binomial and exponential densities�

For this more general class of models� smoothed estimates of the state vector cannot be

evaluated analytically so we adopt simulation techniques� Using methods developed in Shephard

and Pitt ��

�
� Durbin and Koopman ��

�
 and Durbin and Koopman ��			
� we evaluate the

smoothed state vector by means of importance sampling based on the use of an approximating

linear Gaussian model with observational density denoted by g�ytj�t
� The approximating

model is based on the standard state space model ��
 and is obtained by solving the equations

�p�ytj�t


��t
�
�g�ytj�t


��t
�

��p�ytj�t


��t��
�

t

�
��g�ytj�t


��t��
�

t

�

see Durbin and Koopman ��		�� Chapter ��
 for further details� The smoothed estimator of

the state vector �t for exponential family models can be computed by

��t �

PM

i�� �
i
twiPM

i��wi

�

where wi �
Qn

t�� p�ytj�
i
t
�g�ytj�

i
t
� with �it � Zt�

i
t where �

i
t is a draw from the conditional

Gaussian density g��tjy
 for the approximating linear Gaussian model�

To employ this approach we require multiple samples of the state vectors using simulation

smoothing algorithms� To sample from p��jy
 we use Algorithm � in x���� The method JS is

di�erent in the sense that it �rst samples from p��jy
 and then computes draws for �t using the

second equation of ��
� Table � presents the numbers of multiplications required for multiple

draws of univariate �p � �
 state space models with di�erent state vector dimensions� It is

��



assumed that the elements of Zt� Tt and Rt are either zero or one and variance matrices Ht and

Qt are diagonal� Since matrices such as Ft� Kt and Pt in ��
 and Ut in ��
 of JS depend only on

the parameter vector � which is kept �xed for all draws� we only need to repeat the calculation

of vt in ��
� ��t in ��
 and ��t in ��
 for our method while method JS only requires to repeat the

computation of �t using ��
 in JS and �t using ��
� The number of multiplications required to

draw from p��jy
 in our method is smaller when the state vector dimension is larger than one�

the computational gains become more evident when the state size increases� However� when

drawing from the density p��jy
� method JS is more e�cient by one multiplication irrespective

of the state dimension� For the implementation of both Algorithms � and �� the storage of Ft

and Kt in ��
 only is required whereas method JS requires the extra storage of Ct and Vt in

��
 of JS� Table � presents the number of values to be stored when multiple draws need to be

selected and it con�rms that the required storage space for our method is small relative to that

required for method JS�

�Tables � and � about here�

��� Poisson illustration

We now apply these ideas to the special case of the monthly numbers of light goods vehicle

�van
 drivers killed in road accidents from �
�
 to �
��� which was previously considered by

us in Durbin and Koopman ��			� x���
� The numbers of deaths of van drivers were too small

to justify the use of the linear Gaussian model� A better model for the data is based on the

Poisson distribution with mean exp ��t
 and density

p �ytj�t
 � exp f�
�

tyt � exp ��t
� log yt�g � t � �� � � � � n� ���


We model �t by the relation

�t � �t � �t�

where the level �t and seasonal �t have the same speci�cation as in x���� For simplicity we do

not include an intervention component to measure the e�ect of the seat belt law� The smoothed

estimates of the two components were computed using importance sampling as decribed in the

��



previous section� The computations were implemented in the matrix language Ox of Doornik

��

�
 using SsfPack of Koopman� Shephard� and Doornik ��



� Figure � presents the

smoothed estimates of �t and �t� A reduction of about ��� computing time was achieved

when we replaced method JS by our Algorithm ��

�Figure � about here�

�� CONCLUSIONS

In this paper we have presented a new simulation smoother for drawing samples from the

conditional distribution of the disturbances given the observations� We obtained this by ex�

ploiting elementary properties of the multivariate normal distribution� Our main algorithm

only involves the application of standard �ltering and smoothing methods and does not require

special recursions� An extension of the algorithm is given for the case in which draws of the

state vector are required� Some of the advantages of our algorithms in relation to existing

methods are�

� derivation is simple�

� the method requires only the generation of simulated observations from the model together

with the Kalman �lter and standard smoothing algorithms�

� no inversions of matrices are needed beyond those in the standard Kalman �lter�

� our algorithms involve smaller numbers of multiplications than other methods�

� our approach solves problems arising from the singularity of the conditional variance

matrix W automatically�

� for many practical models� draws from multivariate normal distributions are not needed�

� when multiple samples are needed� required storage space is smaller than with other

methods�

� di�use initialisation of the state vector is handled simply�

��



ACKNOWLEDGEMENT

We thank the referees for some perceptive comments which led to a signi�cant improvement

of the paper�

APPENDIX A

In this Appendix we consider the application of the basic technique of this paper to the state

space model used in de Jong and Shephard ��

�
� which was originally proposed by de Jong

��

�
� This model is

yt � Xt� � Zt�t �Gtut� t � �� � � � � n�

�t�� � Wt� � Tt�t �Htut� t � 	� �� � � � � n�
���


where �� � 	� the ut�s are independent N�	� 

�I
 vectors� and the coe�cient matrices may

depend� implicitly� on some random vector � drawn from a speci�ed distribution� We use the

notation of de Jong and Shephard ��

�
 in this Appendix in order to facilitate comparison

with their paper� their use of symbols Gt� Ht and others should not be confused with our use of

these symbols in the main paper� Model ���
 is more general than our model ��
 since it allows

overtly for regression e�ects and for correlation between the disturbances Gtut and Htut in the

two equations of ���
� However� we prefer our formulation since it appears in most textbooks

and since we regard it as more transparent than ���
 while at the same time covering most

practical applications� We believe that it is preferable to treat regression e�ects and correlation

between disturbances as optional extras that can be dealt with separately�

A general form of simulation smoothing is considered in de Jong and Shephard ��

�
 in

which they draw samples of � from density p��jy� �
 with � � ����� �
�

�� � � � �
�

n

� and �t � Ftut�

where the Ft are� with some quali�cations� arbitrary matrices� Following the approach of our x��

let u�t be a random draw from N�	� 
�I
� generate y
�
� � � � � � y

�
n from u�� � u

�
� � � � � � u

�
n using ���
�

let ��t � Ftu
�
t � �

� � ����� � �
��
� � � � � �

��
n 


�� �� � E��jy� �
� ��
� � E���jy�� �
 and �� � �� � �� � ����

It follows by applying the steps of the proof in x��� that �� � p��jy� �
� The smoothed vector ��

is obtained by taking ��t � Ft�G
�

tD
��
t et� J �trt
� where Dt and et are given by ��
 and rt is given

by ��
 of de Jong and Shephard ��

�
 with �t � 	 and Vt � 	� It is worth mentioning that

our technique handles cases where var��jy� �
 is singular without di�culty�

��
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Table �� Number of multiplications for a �univariate
 single draw

Eqs ��
 ��
 ��
  ��
 ��
 of JS Alg � Method JS

�a
 m�� m���m
�

m�� m��m m���m�	
�


m���m��
�

� � � � � � � �

�b
 � m m���m��
�


m��
m��
m
�

� m m���m�

�


m��
m����m
�

m

� � � � � 
 
 � � �� ��

� � � � � �� �� �� �� �
 ��

� � �� � �� �� ��� �� �� 
� ���

�	 �� �� �� �� �
� ��		 
� �	� ��� ��
�

�	 �� ��	 �� �� �
� ���		 �
� ��� 
�� ���
�

Number of multiplications are reported for each time period t� �a� common to both � and �� �b� speci�c to �

and �� Total number is �a� plus �b�� It is assumed that Zt� Tt and Rt only contain zeros and ones and Ht and

Qt are diagonal� Reported values for equation ��� of JS are additional to equations ��� 	 �
�� Algorithm �

requires equations ���� ���� ��� and �
�� Method JS requires equations ��� of this paper and ��� of JS�

��



Table �� Posterior results for variances based on Gibbs sampler with M � �			

all variances stochastic

variance posterior mean posterior stand�dev


�� 	�		��
� 	�			�	��


�� 	�		���� 	�			�
��


�� 	�				��	� 	�				���	

seasonal variance �xed at zero

variance posterior mean posterior stand�dev


�� 	�		���	 	�			��	�


�� 	�		�	�
 	�			����

��



Table �� Number of multiplications for �univariate
 multiple draws

Eqs ��
 ��
 ��
  ��
 ��
 of JS Alg � Method JS

�a
 m�� m m�� � 
m�� �m��

� � � � � � � �

�b
 � m m m� � m m�� m��m

m

� � � � � � � � � � �

� � � � � � � 
 �	 � ��

� � � � �� � �� �� �� �� ��

�	 �� �	 �� �� �	 �		 �� �� �� ���

�	 �� �	 �� �� �	 �		 �� �� �� ���

Number of multiplications are reported for each time period t� �a� common to both � and �� �b� speci�c to �

and �� Total number is �a� plus �b�� It is assumed that Zt� Tt and Rt only contain zeros and ones and Ht and

Qt are diagonal� Reported values for equation ��� of JS are additional to equations ��� 	 �
�� Algorithm �

requires equations ���� ���� ��� and �
�� Method JS requires equations ��� of this paper and ��� of JS�

��



Table �� Storage space for �univariate
 multiple draws

Eqs ��
 ��
 ��
  ��
 ��
 of JS Alg � Method JS

�a
 � m�� � � m�� m��

� � � � � � � �

�b
 � � m�� 
m��m
�

� � m�� 
m��m
�

m

� 	 � 	 	 � � � � � �

� 	 � 	 	 � � � � � �	

� 	 � 	 	 � �	 � � �� ��

�	 	 �� 	 	 �� ��� �� �� �� ���

�	 	 �� 	 	 �� ��	 �� �� �� ���

Storage space is reported for each time period t� �a� common to both � and �� �b� speci�c to � and �� Total

number is �a� plus �b�� It is assumed that Zt� Tt and Rt only contain zeros and ones and Ht and Qt are diagonal�

Reported values for equation ��� of JS are additional to equations ��� 	 �
�� Algorithm � requires equations

���� ���� ��� and �
�� Method JS requires equations ��� of this paper and ��� of JS�

��



Figure �� Gibbs sampler diagnostics for seatbelt model
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Figure �� Gibbs sampler diagnostics for seatbelt model with seasonal variance �xed at zero
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Figure �� Data and estimated level and seasonal components for the van model�
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