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SUMMARY

A simulation smoother in state space time series analysis is a procedure for drawing samples
from the conditional distribution of state or disturbance vectors given the observations. We
present a new technique for this which is both simple and computationally efficient. The
treatment includes models with diffuse initial conditions and regression effects. Computational
comparisons are made with the previous standard method. Two illustrations are provided using

real data.
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1. INTRODUCTION

State space models may be formulated in a variety of ways. In this paper we consider first

the linear Gaussian form

Yt = Zioy + &y, gr ~ N(0, Hy), (1)

a1 = Tiay + Rymy, n, ~ N(0, Q), t=1,...,n,

where y; is a p X 1 vector of observations, oy is an m x 1 state vector and ¢, and 7, are vectors
of disturbances. Matrices Z;, T;, R;, H; and @); are assumed to be known. To begin with
we assume that «; ~ N(aj, P;) where a; and P; are known; later we will investigate the case
where elements of a; and P; are unknown. We will then consider the addition of a regression
component of the form X,/ to the first equation of (1).

We shall examine the problem of drawing samples from the conditional distributions of
e= (... ,e),n=,...,n,) and a« = (af,... , o) given y = (y!,... ,y,) . Such samples
are needed for simulation studies of the properties of estimates arising in the analysis of model
(1) and for the analysis of non-Gaussian and nonlinear variants of it from both classical and
Bayesian inference perspectives.

Fruhwirth-Schnatter (1994b) and Carter and Kohn (1994) independently developed methods
of drawing samples of «|y using a recursive technique consisting of first sampling |y, then
sampling «,, 1|y, y, then a, o|la, 1, an,y, and so on. A significant advance was made by
de Jong and Shephard (1995) for a model which is a generalisation of (1). They first considered
recursive sampling of the disturbances and subsequently sampling of the states; this is generally
more efficient than sampling the states directly when the dimension of 7 is smaller than the
dimension of «. Their paper reviews previous work and describes the application of their
simulation smoother to Bayesian Markov chain Monte Carlo (MCMC) analysis of Gaussian
and non-Gaussian time series.

In this paper we present a new simulation smoother which is simple and is computationally
efficient relative to that of de Jong and Shephard (1995). We achieve the improvements by
avoiding generating random vectors recursively and employing instead a direct approach in
which only mean corrections for unconditional vectors are required. The new simulation method

can be adjusted straightforwardly to allow for diffuse initial conditions of the state vector and

for the inclusion of a regression component in (1). To illustrate the use of the new method



we apply it to classical and Bayesian analyses of structural time series models. Real data
illustrations include monthly time series of number of car drivers killed or seriously injured in
road accidents in Great Britain.

The next section presents the main result together with modifications for sampling state
vectors, allowing for diffuse initial conditions and also for the inclusion of regression components.
Section 3 discusses two applications which concern a Gaussian model and a Poisson model for
counts. Our conclusions are presented in §4. The extension of our approach to the more general

model employed by de Jong and Shephard (1995) is discussed in the Appendix.

2. THE NEW SIMULATION SMOOTHER
2-1 Main result

We first consider the construction of a simulation smoother for the disturbances ¢ and 7.
Let w = (¢/,7') and let w = E(w|y), W = var(w|y). Since the model is linear and Gaussian,
the density of w|y is p(w|y) = N(w, W). The calculation of w is performed by means of the
disturbance smoother as developed by Koopman (1993) based on work by de Jong (1988)
and Kohn and Ansley (1989); for an elementary treatment see Durbin and Koopman (2001,
§4.4.1). The matrix W has the important property that it does not depend upon y; this follows
immediately from the general result that in a multivariate normal distribution the conditional
variance matrix of a vector given that a second vector is fixed does not depend on the second
vector; see, for example, Anderson (1984, Theorem 2.5.1). Since y is an exact linear function
of the elements of w, the matrix W is singular; however, it turns out that this singularity has
no effect on our calculations.

Our task is to draw random vectors @ from p(w|y). We do this by drawing vectors from
N(0, W) independently of y and adding these to the known vector . This is easily accomplished
in the following way. The density of w is

plw) =N(0,9Q),  Q=diag(Hy,...  Hp,Q1,...,Qn). 2)

Let wt be a random vector drawn from p(w). The process of drawing w* is straightforward,
particularly since in most cases in practice the matrices H; and @y, fort = 1,... ,n, are scalars

or diagonal. Denote by y* the stacked vector of values of y; generated by drawing a vector



o from p(a;) and replacing o and w in (1) by o and w*. Compute w+ = E(w™|y™) using
the disturbance smoother given in (4) below. Since W is independent of y, var(w™|y*) = W.
Consequently, w™ — w™ is the desired draw from N(0,W). Let @ = w + w* — w*. It follows

that @ is a draw from density p(wl|y). In particular, we have
E(wly) =E(@+w" —0T|y) = E(wt — ot |y) + @ = w,
and
var(ily) = B [(w* — @) (w* - o*Y|y] = W,

since wt — w™ is independent of y.

This result implies the validity of the following algorithm for selecting a draw w from density

p(wly).
Algorithm 1.

1. Draw a random vector w" from density p(w) and use it to generate y™ by means of
recursion (1) with w replaced by w™, where the recursion is initialised by the draw a; ~

N(a1;P1);

2. Compute w = E(wly) and w™ = E(w™|y™) by means of standard Kalman filtering and

disturbance smoothing using (3) and (4) below;

The algorithm is applied as many times as is needed to obtain the desired sample of independent
values of w. When a single draw w is required, the amount of computing can be reduced by
defining y; = y; —y;" and putting y; through the Kalman filter and disturbance smoother once
instead of putting y; and y;~ separately through the filter and smoother.

This algorithm for generating @ only requires standard Kalman filtering and disturbance
smoothing applied to the constructed series y* and is therefore easy to incorporate in new
software; special algorithms for simulation smoothing such as the ones developed by Fruhwirth-
Schnatter (1994b), Carter and Kohn (1994) and de Jong and Shephard (1995) are not required.

We do not regard the generation of y* by (1) as an algorithm since we are merely making



straightforward use of the basic model. Thus, the result is not only mathematically simple, it
is also computationally simple.

In §2-2 we present formulae for the Kalman filter and disturbance smoother that are needed
for the implementation of Algorithm 1. We discuss in §2-3 a modified version of Algorithm 1
which is slightly more efficient computationally. Obviously, if we do not require the whole of
w, but only the part consisting of either ¢ or 7, Steps 2 and 3 of Algorithm 1 can be confined
to the relevant part. The whole vector w™ is, however, needed for Step 1. In §2-4 we obtain a
simulation smoother for the state vector .. The case where at least part of the initial vector
o is diffuse is considered in §2-5. Finally, in §2:6 we discuss the computation of antithetic
variables in our method.

It will be evident from the above treatment that the same approach could be employed to
prove the following general proposition. Suppose that x and y are vectors which are jointly
normally distributed with density p(x,y) and that we wish to draw sample vectors from density
p(x]y). Denote a draw from density p(z,y) by =7, y" and let & = E(z|y), 27 = E(z"|y") and
=%+ a2t —2". Then 7 is a draw from p(z|y). We mention this generalisation in case there
are situations other than state space applications where the device might be useful, particularly
where drawing from p(x,y) and calculation of E(z|y) are relatively easy, while direct drawing

from p(x|y) is relatively difficult.

2-2 The Kalman filter and disturbance smoother

The Kalman filter for model (1) is

v = Y — i, F, = ZPZ + Hy,

K, = TtPtZ,;Ft_I; Ly = T, — KiZ, (3)

ayn = T+ Ky, Py = TP L+ RQR;,
fort =1,...,n with a; and P; as the mean vector and variance matrix of the initial state vector
ay. Proofs are given by, for example, Anderson and Moore (1979, Chapter 3) and Durbin and
Koopman (2001, §4.2.1)

The computation of w takes the form

HF ' —HK! v
’UA}t _ tLt tLx ¢ t 7 (4)
0 QtR; Tt



where r; is evaluated by the backwards recursion
re = ZF oy + Ly, (5)

fort =n,n—1,...,1 with r, = 0. The two block elements obtained by multiplying out the
right-hand side of (4) give the equations for ¢, = E(g;|y) and 7, = E(n,|y), respectively. One
or the other of these can be used when multiple draws of € only or n only are required. Proofs
of the formulae are given in Koopman (1993) and Durbin and Koopman (2001, §4.4).

It should be noted that in standard cases the matrices P;, F}, K; and L; in (3) and (4), as
distinct from the vectors a;, v; and ry, are all independent of y. However, some or all of them
will in practical cases of interest depend on an unknown parameter vector, 1) say. Consequently,
when the analysis is based on classical inference, an estimate 12) of ¢ will be calculated at the
beginning of the analysis, and the values of the matrices will be treated as if 12) was the true value
of ¢. Thus when generating multiple draws using Algorithm 1, only the elements of vectors
as, vy and r; need recalculation for each draw of @w. On the other hand, when the analysis is
Bayesian, the parameter vector 1 is treated as random and it will vary from one simulation
to another. Thus the matrices that depend on 1 will need to be recalculated for each draw of
w. The effect is that more calculation per draw is required when multiple samples are required

within a Bayesian analysis than for a classical analysis.

2:3 Modified version of the simulation smoothing algorithm

We observe that the smoothing recursion (4) depends as a function of y only on v =
(vf,...,vl)". This suggests that we can increase computational efficiency by generating v from
w directly during the simulations without computing y as an intermediate step. Let z; = a;—ay.

Then

Uy = Ztat + &4 — Ztat
(6)
= tht—i—st, tzl,...,n,
and
T = Tyoy + Ryny — Thay — Koy
= Ttxt—i—Rmt—Ktvt, tzl,...,n—l,



initialised with z; ~ N(0, P;). Thus if we select ] from N(0, P;) and substitute subvectors
el .. el nf, ... nt from w™ into (6) and (7) we can obtain vy, ... , v, directly rather than
generate y* from (1) and then derive the v;’s from the relevant parts of the Kalman filter.
This process involves fewer numerical operations than are required in Algorithm 1. However,
the computational gain is small since all operations in the simulation once w™ has been drawn
are linear so the computations based on them are already fast. Noting that when y is fixed,
v is fixed, and vice-versa, we obtain a modified form of Algorithm 1 in which the subvectors
et and nT are used in Step 1 to generate v* = (v{”,... ,v") from (6) and (7). Steps 2 and
3 then proceed as before. Since E(w™|vT) = E(w™|y™) where y* is the value that would have

been obtained in Step 1 of Algorithm 1 from the same w™ and the same value of z; = a; — ay,

it follows that @ ~ p(wly).

2:4 Simulation smoothing for state vector

To construct an algorithm for generating draws of the state vector a = (o}, ..., a}) from
the conditional density p(a|y), we denote a draw from p(a) as at and a draw from p(«aly) as a.
The smoothed mean &; = E(y|y) can be computed as suggested by Koopman (1993) by taking
the conditional expectation given y of both sides of the second equation of (1), substituting for

7, from the second line of (4) and then applying the resulting forwards recursion
dyy1 = Ty6y + RyQRyry, t=1,...,n, (8)

with the initialisation &y = a; + Pyrg, where r, is obtained from (5); for details about the
initialisation see Durbin and Koopman (2001, §4.4.2).
Based on this approach, the following algorithm for drawing random vectors & from p(a|y)

is obtained by arguments similar to those used for drawing @ from p(wly) in Algorithm 1.

Algorithm 2.

1. Draw a random vector w™ from density p(w) and use it to generate a and y* by means
of recursion (1) with w replaced by w™, where the recursion is initialised by the draw

Oéf ~ N(alapl)§

2. Compute & = E(a|y) and &* = E(at|y™) by means of standard filtering and smoothing
using (3) forwards, (4) backwards and (8) forwards;

7



3. Take @ = & — at + at.

When a single draw & is required, it is computationally more efficient to compute & by con-

structing the artificial observations y* =y — y* and using & = &" + o where &" = E(«|y*).

2-5 Modifications for diffuse initial conditions

In situations where the initial state vector contains nonstationary elements or unknown
fixed coefficients, we treat the corresponding initial elements as diffuse random variables, that
is, as having infinite variances. Exact solutions have been developed by Ansley and Kohn
(1985), de Jong (1991) and Koopman (1997) for filtering and smoothing the observed series
under the assumption that some elements of P, go to infinity. A detailed treatment of diffuse
initialisation is given by Durbin and Koopman (2001, Chapter 5), particularly in §§5.3 and
5.4 where explicit formulae are given for calculating @ = E(«|y) and @ = E(w|y). Smoothers
obtained by formulae given in these sections we shall refer to as diffuse smoothers.

An outstanding question is the draw af ~ N(ai, P;) in Step 1 of Algorithm 1 since in
the diffuse case some elements of P, will have variances going to infinity and a draw from a
normal density with infinite variance is impossible. However, we now show that provided diffuse
smoothers are used for the calculation of w™, the diffuse elements of a; can be set equal to

arbitrary quantities, say zeros, when using Algorithms 1 and 2.

The initial state vector can be modelled generally by
a; = A0+ Chy, § ~ N(0,kI), X ~ N\, I),
where k — oo with § and y independent. It follows that «; ~ N(ay, P;) with
a; = C) ), P =rA A+ CCY.
Substituting in model (1), it follows that
y= Ad + Bw + C, a=Hj+ Guw + Dy,

where y, w and « are defined in §2-1 and the matrices A, B, C, H, G and D are known functions

of the system matrices. For a given value of k we have

w = Cov(w,y)X Yy — E(y)], (9)



where
Cov(w,y) = QB’, Y =gAA + 3, Y., = BOQB' +CC', E(y) = O\,

with ©Q = var(w) defined in (2). Applying a standard inversion lemma to X, see for example

Rao (1973, p.33, Problem 2.9), gives
1
F=Y"'=S S TA(-T + AT A)TA'S
K

for kK > 0 and so
Letting kK — 0o we obtain

where

Il =X - S7TAA'STTA) AT (11)

*

Equation (10) provides a general form for a value of  obtained by the use of a diffuse smoother.

Let 01 be an arbitrary value of 6 and let x* be a random draw of y. Now apply Algorithm
1 to compute y*, @' and @, taking af = A;67 + Cix" and using the diffuse smoother to
compute . Since (10) holds for any realised vector y which satisfies model (1), it holds for

yt = AT + Bwt + Cx* so we have

@t = QBT (y" —C\)
= QBT.[A6" + Buwt +C(x* — M)]. (12)

Postmultiplying (11) by A gives I'ooA = 0 so §* disappears from (12) and we therefore have
ot = QBT [Bw™ +C(x" =\, (13)

which does not depend on §*. It follows that we can take §* = 0 and o] = C} Y, thus obtaining
a finite series y;", ...,y .

A similar result applies to state simulation smoothing. We have

& = E(a)+ Cov(a,y)X ty — E(y)], (14)



where
E(a) = DA, Cov(a,y) = kHA + X, X = GOQB' + DC.
Thus

& = DM+ XD(y—C\ +rcHAT(y — C\), (15)
with
KAT = w[I - ASTTA(LT + A'STTA)THAS !
= K[(ET+A'STTA) — ASTHA](LT + ASTA) T AS (16)
= (LI +AS]TA)TTAS

for K > 0. As kK — oo we have

& = DN+ XDy(y— CN) + HASTTA)TTASH(y — CN). (17)

To obtain & = & + at — &t

, we first compute y* and a® from (1) initialised with o =
A6T 4+ Oxt where 67 is arbitrary and then calculate & and &" using diffuse smoothers.

Analogously to (13), we have
&t = DN+ (XTy + HA'STA)TAS H[Bwt +C(xT — \)] + HT, (18)

which includes the term H§". However, this term will be eliminated when computing & since
it also appears in ot = Hd" 4+ Gw* + Dx*. We can therefore take 67 = 0.
If the observational vector y; depends on a regressor matrix X; with unknown constant

regression coefficient vector  the first equation of (1) is replaced by the form
Ye = Zyoy + Xy B + &y (19)

We can estimate § in the Kalman filter by redefining the state vector as af = (aj, 3})', with
the constraints 3, = 3 and §,,, = §;, t = 1,...,n, and modifying the second equation of
(1) accordingly. We then treat the vector §, as diffuse. It follows from the earlier results of
this section that we can put § = ; = 0 when drawing (unconditional) simulation samples
provided that we use diffuse smoothers for the expanded model to calculate w, W', & and &™.
This has the computational advantage that we can exclude X; and consequently employ the
reduced model (1) when computing y™. This solution is simpler than the treatment of fixed

effects given by de Jong and Shephard (1995, §5).
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2-6 Antithetic variables

When using the simulation smoother in practice, it is often advantageous to employ an-
tithetic variables. An antithetic variable for a draw x is one which is equiprobable with z
and which, when used together with z, increases simulation efficiency. It is easy to construct
antithetic variables using the techniques of this paper. Thus for the draw @ = @ — 0t + w™,
we note that w™ — @' and —(w™ — &™) have the same distribution N(0, W). It follows that if
we define W~ = w + w" — w* then @ and @~ have the same conditional distribution given y,
that is, N(w, W). The use of @ and W~ together in the estimation process leads to an increase
in efficiency for two reasons. First, estimates based on w and w~ separately are likely to be
negatively correlated. Secondly, two draws of w|y are obtained for a computational cost which
is little more than the cost of w alone. A second antithetic could be constructed along similar
lines to the one described in Durbin and Koopman (2001, §11.9.3) but we shall not pursue this

further here.

3. ILLUSTRATIONS
31 Bayesian analysis based on Gibbs sampling

For our first illustrative example, we consider the class of structural time series models as
discussed in Harvey (1989) and Durbin and Koopman (2001, §3.2) for which a Bayesian analysis
will be presented based on the Gibbs sampler as proposed by Fruhwirth-Schnatter (1994b) and

Carter and Kohn (1994). For example, let us consider the local level model

Yt = My T &4, Hypr = P T 1y, (20)

where the disturbances €, and 1, are mutually and serially uncorrelated and generated by normal

2 and o2, respectively. The variances are treated as

densities with zero mean and variances o m

2

random variables and, as an example, a model for a variance o° can be based on the inverse

gamma distribution with logdensity

c

2

S
202’

)= Slog 2 —

f 2
5 5 5 or o > 0,

log p(0?|e, s) = —log T'( logo? —

and p(o?|c,s) = 0 for 0 < 0; see, for example, Poirier (1995, Table 3.3.1). We denote this

density by o2 ~ IG(c/2,s/2) where ¢ determines the shape and s determines the scale of the

11



distribution. It has the convenient property that if we take this as the prior density of o2 and

we take a sample uy, ... ,u, of independent N(0, o?) variables, the posterior density of o2 is
p(0®ur, .y un) = 1G[(c +n)/2, (s + Y ul)/(207)]; (21)
=1

for further details see, for example, Poirier (1995, Chapter 6).

The posterior means of p1 = (y, ... , j1,,)" and of the variances 1) = (62, 07)" can be estimated
by simulating from the joint density p(, u|ly) and taking sample means. In a Markov chain
Monte Carlo (MCMC) procedure, the sampling from this joint density is implemented as a
Markov chain. After the initialisation 1) = 1/)(0), we repeat the following simulation steps M*

times:

1. sample p@ from p(u|y, 1/)(%1)) using Algorithm 1 of §2-1 to obtain e® and hence x® from
(20);

2. sample ¥ from p(¢|y, u?) using the inverse gamma density;

for i = 1,...,M*. After the process has stabilised, we treat the last M samples from Step
2 as being generated from the density p(¢|y). Usually, sampling from conditional densities is
easier than sampling from the marginal density p(¢|y). For the implementation of Step 2 a
sample value of an element of v is chosen from the posterior density (21). We can take u; in
(21) as a standardised element of ; or 1, obtained by the simulation smoother of §2-1 in Step
1. Here, we are following standard practice in working with the marginal distributions of o2
and o7 instead of their joint distributions.

Similar methods can be applied to the local linear trend model, which incorporates a
stochastic slope in p,, and to the basic structural time series model, which includes slope
and seasonal components; see Harvey (1989, §2.3) or Durbin and Koopman (2001, §3.2) for
details of these models. The Gibbs sampler requires the application of a simulation smoother
M times. We now investigate the computational efficiency of Algorithm 1 compared to the
simulation smoother of de Jong and Shephard (1995), hereafter referred to as method JS, for
a general class of models. We accept the claim in their paper that for most cases method JS
is computationally more efficient than the methods of Fruhwirth-Schnatter (1994b) and Carter
and Kohn (1994). Method JS and Algorithm 1 both require the Kalman filter although method

JS applies it to the observed series y; whereas in effect our method applies it to the constructed

12



series y; = y; —y; ; for this we need to draw random values of disturbances from univariate nor-
mal densities and then apply the state space recursion (1). After the Kalman filter, Algorithm
1 applies standard disturbance smoothing whereas method JS applies either equation (3) or (4)
or (5) in de Jong and Shephard (1995) which is similar to backwards disturbance smoothing
but is computationally more involved.

Table 1 presents the numbers of multiplications required for a single draw of univariate
(p = 1) state space models with different state vector dimensions. It is assumed that the
elements of 7Z;, T; and R, are either zero or one and variance matrices H; and (), are diagonal.
Method JS clearly involves more computations for all state dimensions although when a draw
from p(ely) only is required, differences with Algorithm 1 are smaller. Method JS further
requires for each time period ¢ an inversion of a symmetric m X m matrix and a draw from a
multivariate normal distribution whereas Algorithm 1 does not require matrix inversions and
draws are from univariate densities. Both methods require the same storage from the Kalman
filter, that is, storage of vy, F; and K; for t = 1,...,n. We conclude that computational
gains are achieved using our simulation smoothing Algorithm 1 compared to method JS. The
computational gains for the modified algorithm of §2-3 are virtually the same since the main
difference from Algorithm 1 is that the Kalman filter equation for a;;; in (3) is replaced by the

equation for zyy1 in (7) and the resulting difference is negligible.

[Table 1 about here]

3-2 Linear Gaussian illustration

In this illustration we follow Fruhwirth-Schnatter (1994a) in considering data from the
study of Harvey and Durbin (1986) on the effect of the seat belt law on road accidents in
Great Britain using a Bayesian analysis based on a structural time series model. A graph of
the log of monthly number of car drivers killed or seriously injured shows a seasonal pattern
due primarily to weather conditions and festive celebrations. The overall trend of the series
is basically constant over the years with breaks in the mid-seventies, probably due to the oil
crisis, and in February 1983 after the introduction of the seat belt law. The model that we

consider is

Yt = Py + Y T E,

13



where p, is the local level component as given by (20) and the seasonal component 7, is modelled

by the equation

Vet Vimr T T Vi1 = Wiy

where s is the seasonal length and w; is a disturbance with mean zero and variance o2. The
irregular ¢, is treated as a disturbance term with mean zero and variance o2. All disturbances
are mutually and serially uncorrelated and generated by normal densities. For the purpose of
this illustration we do not include an intervention component to measure the effect of the seat

belt law.
[Table 2 about here]

We have applied the Gibbs sampler as described in the previous subsection with M =
2000. The computations were implemented in the matrix language 0x of Doornik (1998) using
SsfPack of Koopman, Shephard, and Doornik (1999). Let ¢ = (07, 07,02)". Figure 1 shows the
realised draws from p(t|y), the correlogram of the series of draws and a histogram of the realised
draws which is smoothed nonparametrically to provide estimates of the posterior densities of
the elements of ©. The estimated posterior means and standard deviations of elements of 1
are reported in Table 2. We observe that the histogram of the seasonal variance o2 has a lot
of mass at zero and its posterior mean is also close to zero. This is consistent with the fact
that in a classical analysis the maximum likelihood estimate of 02 is zero. We therefore repeat
the Gibbs sampler with ¢ fixed at zero and the same results as in Figure 1 are presented in
Figure 2 for 1" = (07,0?2)". In the second panel of Table 2 the posterior mean and standard
deviation of ¢)* are reported. Comparisons of Figures 1 and 2 supports the view that the Gibbs

sampler works better for ¢* than for ¢. The computer time required for the Gibbs sampler

using Algorithm 1 was about 30% less compared to using method JS for both v and v".

[Figures 1 and 2 about here]
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3-3 Illustration of the use of importance sampling for non-Gaussian models

We now consider classical inference for a class of models in which the normal density of
the observation equation in (1) is replaced by the more general class of the exponential family

densities, that is, we generalise the density
p(y:l0:) = N(8;,02),
where 0; = Z,y;, to densities of the form
p(yel0:) = exp[y,0; — bi(0:) + c(yr)],  —o0 <0 < o0, (22)

where b;(6;) is a twice differentiable function and ¢;(y;) is a function of g, only. Examples of
such densities include the Poisson, binomial and exponential densities.

For this more general class of models, smoothed estimates of the state vector cannot be
evaluated analytically so we adopt simulation techniques. Using methods developed in Shephard
and Pitt (1997), Durbin and Koopman (1997) and Durbin and Koopman (2000), we evaluate the
smoothed state vector by means of importance sampling based on the use of an approximating
linear Gaussian model with observational density denoted by ¢(y:|f;). The approximating

model is based on the standard state space model (1) and is obtained by solving the equations

ap(yt|9t) _ 3g(yt|9t) 52p(yt|9t) _ 829(yt|9t)_
00, 00, 89,589; 89,589; ’

see Durbin and Koopman (2001, Chapter 11) for further details. The smoothed estimator of
the state vector «a; for exponential family models can be computed by
by = Z%}[ ai“’l’)
D i1 Wi
where w; = [[1_, p(v:|0})/9(:|0}), with 6) = Z,a} where o} is a draw from the conditional
Gaussian density g(a;|y) for the approximating linear Gaussian model.

To employ this approach we require multiple samples of the state vectors using simulation
smoothing algorithms. To sample from p(aly) we use Algorithm 2 in §2-4. The method JS is
different in the sense that it first samples from p(n|y) and then computes draws for a; using the
second equation of (1). Table 3 presents the numbers of multiplications required for multiple

draws of univariate (p = 1) state space models with different state vector dimensions. It is
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assumed that the elements of Z;, T; and R; are either zero or one and variance matrices H; and
Q) are diagonal. Since matrices such as F;, K; and P, in (3) and Uy in (4) of JS depend only on
the parameter vector ¢ which is kept fixed for all draws, we only need to repeat the calculation
of v, in (3), 7, in (4) and & in (8) for our method while method JS only requires to repeat the
computation of 7, using (4) in JS and «a; using (1). The number of multiplications required to
draw from p(n|y) in our method is smaller when the state vector dimension is larger than one;
the computational gains become more evident when the state size increases. However, when
drawing from the density p(g|y), method JS is more efficient by one multiplication irrespective
of the state dimension. For the implementation of both Algorithms 1 and 2, the storage of F;
and K, in (3) only is required whereas method JS requires the extra storage of C; and V; in
(4) of JS. Table 4 presents the number of values to be stored when multiple draws need to be
selected and it confirms that the required storage space for our method is small relative to that

required for method JS.

[Tables 3 and 4 about here]

3-4 Poisson illustration

We now apply these ideas to the special case of the monthly numbers of light goods vehicle
(van) drivers killed in road accidents from 1969 to 1984, which was previously considered by
us in Durbin and Koopman (2000, §6.1). The numbers of deaths of van drivers were too small
to justify the use of the linear Gaussian model. A better model for the data is based on the

Poisson distribution with mean exp (#;) and density
P (yil6r) = exp {0y, — exp (0,) —logy!},  t=1,....n. (23)
We model 8, by the relation
O0r = 1y + 74,

where the level p, and seasonal 7, have the same specification as in §3-2. For simplicity we do
not include an intervention component to measure the effect of the seat belt law. The smoothed

estimates of the two components were computed using importance sampling as decribed in the
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previous section. The computations were implemented in the matrix language 0x of Doornik
(1998) using SsfPack of Koopman, Shephard, and Doornik (1999). Figure 3 presents the
smoothed estimates of p, and 7,. A reduction of about 15% computing time was achieved

when we replaced method JS by our Algorithm 1.

[Figure 3 about here]

4. CONCLUSIONS

In this paper we have presented a new simulation smoother for drawing samples from the
conditional distribution of the disturbances given the observations. We obtained this by ex-
ploiting elementary properties of the multivariate normal distribution. Our main algorithm
only involves the application of standard filtering and smoothing methods and does not require
special recursions. An extension of the algorithm is given for the case in which draws of the
state vector are required. Some of the advantages of our algorithms in relation to existing

methods are:
e derivation is simple;

e the method requires only the generation of simulated observations from the model together

with the Kalman filter and standard smoothing algorithms;
e no inversions of matrices are needed beyond those in the standard Kalman filter;
e our algorithms involve smaller numbers of multiplications than other methods;

e our approach solves problems arising from the singularity of the conditional variance

matrix W automatically;
e for many practical models, draws from multivariate normal distributions are not needed;

e when multiple samples are needed, required storage space is smaller than with other

methods;

e diffuse initialisation of the state vector is handled simply.
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APPENDIX A

In this Appendix we consider the application of the basic technique of this paper to the state
space model used in de Jong and Shephard (1995), which was originally proposed by de Jong
(1991). This model is

Y = Xu 8+ Zyay + Gy, t=1,...,n, (24)

o = Wi+ Ty + Huy, t=0,1,...,n,

where oy = 0, the u;’s are independent N(0,0?I) vectors, and the coefficient matrices may
depend, implicitly, on some random vector w drawn from a specified distribution. We use the
notation of de Jong and Shephard (1995) in this Appendix in order to facilitate comparison
with their paper; their use of symbols GG;, H; and others should not be confused with our use of
these symbols in the main paper. Model (24) is more general than our model (1) since it allows
overtly for regression effects and for correlation between the disturbances G,u; and Hyu; in the
two equations of (24). However, we prefer our formulation since it appears in most textbooks
and since we regard it as more transparent than (24) while at the same time covering most
practical applications. We believe that it is preferable to treat regression effects and correlation
between disturbances as optional extras that can be dealt with separately.

A general form of simulation smoothing is considered in de Jong and Shephard (1995) in

/

which they draw samples of 7 from density p(n|y,w) with n = (ng, 74, ...7,,)" and n, = Fyu,,

where the F} are, with some qualifications, arbitrary matrices. Following the approach of our §2,

let u;” be a random draw from N(0,0?1), generate v, , ...,y from ug,uf,... ,ul using (24),

let 0 = Fu', 0™ = (ng",ny"s...0il")'s i = E(nly,w), 777 = E(*ly*,w) and = i+ " — 7"
It follows by applying the steps of the proof in §2-1 that 7 ~ p(n|y,w). The smoothed vector 7
is obtained by taking 7, = F,(G,D; e, + J/r;), where D; and e; are given by (2) and r; is given
by (3) of de Jong and Shephard (1995) with ¢, = 0 and V; = 0. It is worth mentioning that

our technique handles cases where var(n|y,w) is singular without difficulty.
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Table 1: Number of multiplications for a (univariate) single draw

Egs (1) (3)  (4) & (5) (3) of JS Alg 1 Method JS
(a) m+1 m?# m+1 m2+m % 3m2+29m+2
€ n £ n € n € n
(b) 1 m m2+;m+6 3m3+3;n2+8m 1 m m2+;m4r8 3m3+3732+10m
m
1 2 3 3 3 9 9 8 8 15 15
2 3 7 4 5 18 32 14 15 29 44
Y 6 25 7 11 63 275 38 42 95 311
10 11 75 12 21 198 1800 98 107 285 1896
20 21 250 22 41 693 13100 293 312 965 13391

Number of multiplications are reported for each time period ¢: (a) common to both € and n; (b) specific to €
and n. Total number is (a) plus (b). It is assumed that Z;, T; and R; only contain zeros and ones and H; and
Q)+ are diagonal. Reported values for equation (3) of JS are additional to equations (4) & (5). Algorithm 1
requires equations (1), (3), (4) and (5); Method JS requires equations (3) of this paper and (3) of JS.
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Table 2: Posterior results for variances based on Gibbs sampler with M = 2000

all variances stochastic

variance posterior mean posterior stand.dev
o2 0.003398 0.0006047
a% 0.001151 0.0003957
o 0.00001603 0.00002450

seasonal variance fixed at zero

variance posterior mean posterior stand.dev
o? 0.003560 0.0005806
0727 0.001039 0.0003712
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Table 3: Number of multiplications for (univariate) multiple draws

Eqgs (1) (3) (4) & (5) (3)of JS Algl Method JS

(a) m+1 m m+1 0 3m—+2 2m—+1

€ n € n e n € n
(b) 1 m m m?2 1 m m—+1 m2+m

m

1 2 1 3 3 1 1 6 6 5 5

2 3 2 4 5 2 4 9 10 8 11
5 6 5 7 11 5 25 18 22 17 41
10 11 10 12 21 10 100 33 42 32 131

20 21 20 22 41 20 400 63 82 62 461

Number of multiplications are reported for each time period ¢: (a) common to both € and n; (b) specific to €
and 7. Total number is (a) plus (b). It is assumed that Z;, T3 and R; only contain zeros and ones and H; and
Q: are diagonal. Reported values for equation (3) of JS are additional to equations (4) & (5). Algorithm 1
requires equations (1), (3), (4) and (5); Method JS requires equations (3) of this paper and (3) of JS.

23



Table 4: Storage space for (univariate) multiple draws

Egs (1) (3) (4) & (5) (3) of JS Alg1  Method JS

(a) 0 m+1 0 0 m+1 m+1

€ n € n e n € n
(b) 0 0 m+1  3m*+m 0 0 m+1  3m*+m

2 2

m
1 0 2 0 0 2 2 2 2 4 4
2 0 3 0 0 3 7 3 3 6 10
5 0 6 0 0 6 40 6 6 12 46
10 0 11 0 0 11 155 11 11 22 166
20 0 21 0 0 21 610 21 21 42 631

Storage space is reported for each time period ¢: (a) common to both € and 7; (b) specific to € and 5. Total
number is (a) plus (b). It is assumed that Z;, T} and R; only contain zeros and ones and H; and ); are diagonal.
Reported values for equation (3) of JS are additional to equations (4) & (5). Algorithm 1 requires equations
(1), (3), (4) and (5); Method JS requires equations (3) of this paper and (3) of JS.
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Figure 1: Gibbs sampler diagnostics for seatbelt model
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Figure 2: Gibbs sampler diagnostics for seatbelt model with seasonal variance fixed at zero
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Figure 3: Data and estimated level and seasonal components for the van model.
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