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ABSTRACT
Resampling (a.k.a. bootstrapping) is a computationally-
intensive statistical technique for estimating the sampling
distribution of an estimator. Resampling is used in many
machine learning algorithms, including ensemble methods,
active learning, and feature selection. Resampling tech-
niques generate pseudosamples from an underlying popu-
lation by sampling with replacement from a single sample
dataset. It is straightforward to sample with replacement
from propositional data that are independent and identi-
cally distributed (i.i.d.). However, it is not clear how to
sample with replacement from an interconnected relational
data graph with dependencies among related instances. In
this paper, we develop a novel method for resampling from
relational data that uses a subgraph sampling approach to
preserve the local relational dependencies while generating
a pseudosample with sufficient global variance. We evaluate
our approach on synthetic data, showing that compared to
an i.i.d. resampling approach it results in significantly lower
error when used to estimate the variance of feature scores.
We also evaluate our approach on a real-world relational
classification task, showing that it improves the accuracy of
bagging when compared with i.i.d. resampling.

1. INTRODUCTION
Resampling is a statistical technique that approximates sam-
pling from the true underlying population by sampling with
replacement from a single dataset D to create a set of pseu-
dosamples D′. It can be used to estimate the sampling dis-
tribution of a statistic θ measured on D. The value of θ is
calculated for each pseudosample and the resulting distribu-
tion of values is used as an approximation of the sampling
distribution of θ. The approximate sampling distribution is
useful for a wide variety of data mining and machine learn-
ing tasks. For example, resampling can be used to estimate
the variance of a model and/or feature scores for model se-
lection algorithms (see e.g., [13]). Also, resampling can be
used in bagging techniques to estimate the mean prediction
for an instance x—by learning an ensemble of models, one
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for each pseudosample, and applying each model to predict
to a value ŷ for x (see e.g., [1]).

Conventional approaches to resampling assume that the data
consist of independent and identically distributed (i.i.d.) in-
stances, D = {X1, X2, ..., Xn}, thus the algorithms simply
sample instances with replacement independently from D.
Relational data violates this assumption of independence—
the data instances typically have dependencies both as a
result of direct relations and through chaining multiple re-
lations together. For example, in citation networks, there is
correlation among the topics of two papers if one of the pa-
pers cites the other. In addition, there is correlation among
the topics of papers that share a common coauthor.

Two common characteristics of relational data—concentrated
linkage and relational autocorrelation—have been shown to
reduce the effective sample size of relational datasets [7].
Concentrated linkage occurs when many objects are linked
to the same neighbor and it is a common characteristic of
relational data, which typically have skewed degree distribu-
tions. For example, many articles in the scientific literature
are published in a small number of journals. Relational auto-
correlation refers to correlation among the values of the same
attribute (e.g., class label) on pairs of related instances. For
example, two hyperlinked pages are more likely to share the
same topic than two randomly selected web pages [15]. Con-
centrated linkage and relational autocorrelation combine to
reduce the effective sample size of a data set by creating
dependencies among a large set of linked instances. One
can imagine this as having an urn filled with bunches of
grapes—when you reach in to grab a single instance, you
end up pulling out a set of interconnected instances instead.

Decreased effective sample size will increase the variance of
parameters that are estimated from relational data. How-
ever, naive resampling techniques, that ignore the depen-
dencies and link structure and sample independently from
the instances, will not accurately capture this increased vari-
ance. Thus, i.i.d. resampling techniques should consistently
underestimate the variance of sampling distributions in re-
lational data. Our aim in this work is to develop a relational
resampling technique that accurately estimates the variance
of sampling distributions of statistics for heterogeneous, de-
pendent data. The goal is to preserve the local relational de-
pendencies (e.g., relational autocorrelation) and link struc-
ture, while introducing sufficient variance at a global level
to model draws from the underlying population.



In this paper, we present a novel relational subgraph resam-
pling approach. The key idea of the approach is to sample
subgraphs with replacement from the original data, thereby
preserving the local link and attribute structure within the
subgraphs. This is augmented with a procedure that links
up the selected subgraphs in an attempt to match the global
properties of the data without reproducing them exactly.

We evaluate our resampling approach in two contexts. In the
first set of experiments, we use synthetic data to show that
our method produces more accurate variance estimates than
naive i.i.d. resampling, for a feature score calculation task.
In the second set of experiments, we compare our resam-
pling approach to i.i.d. resampling using ensemble methods
for classification of relational data. We demonstrate that
bagging with our approach results in significant improve-
ments in accuracy for both synthetic data and real-world
relational datasets.

2. RESAMPLING
Resampling is a computationally-intensive statistical tech-
nique used when the observed sample is drawn from a pop-
ulation about which no other information is available. It
works by generating multiple pseudosamples by drawing with
replacement from the original data as if it were the popu-
lation [10]. Each pseudosample contains as many instances
as the original data set. Some instances in the original data
set will occur multiple times in a given pseudosample, and
others will not occur at all. The basic idea of resampling
is that, in the absence of any other information about the
population, the observed sample contains the best available
information about the underlying population. Thus, resam-
pling from the sample is the best way to approximate draws
from the population.

2.1 Applications
Resampling is used for estimating the sampling distribution
of a statistic θ empirically. In practice, it is used to assess
a wide variety of statistics including: the generalization ac-
curacy of models, feature scores, predicted class labels, and
model parameter estimates.

Machine learning techniques that use resampling are gener-
ally concerned with estimating the mean and/or variance of
sampling distributions. For example, model selection tech-
niques may use resampling to estimate the mean generaliza-
tion error of different models in order to identify the model
with lowest average error [13]. Alternatively, feature selec-
tion techniques may use resampling to estimate the standard
errors of feature scores or model coefficients in an effort to
identify which features are most relevant to the task [4].

Resampling techniques are also used in bagging (bootstrap
aggregation) methods, which learn ensembles of classifiers
from sets of pseudosamples [1]. Classification algorithms use
ensemble techniques to reduce variance and improve the sta-
bility of predictions, thus improving model accuracy. Bag-
ging methods construct a number of different training sets
by resampling from the original training set, then a model
is learned from each new training set. Since the resampled
training sets contain different combinations of the instances
in the original dataset, models learned from the datasets
will vary substantially if the model is unstable (i.e., small

changes in the training set result in differences in the learned
models). Each learned model is applied to the test set for
classification and the predictions for an instance x are aver-
aged to produce the final prediction for x. This reduces the
variance of the classification model, which can often improve
prediction accuracy.

Another application of resampling is active learning. The
goal of active learning is to learn an accurate model with as
few labeled instances as possible. Many criteria have been
proposed to determine the most valuable instance for label-
ing. In particular, some methods have proposed selecting
the instances whose prediction have highest variance, which
is determined by resampling (see e.g., [11]).

2.2 Methods
2.2.1 Resampling IID Data

Assuming an independent and identically distributed (i.i.d.)
sample, the pseudosamples are constructed by independent
random sampling, with replacement. We will refer to this
approach as IID resampling.

IID Resampling (D = {X1, .., Xn})

1. Let DPS = {}
2. for j = 1..n

3. Randomly select Xs from D

4. DPS += {Xs}

To estimate the sampling distribution of a statistic from a
set of i.i.d. data, IID resampling is applied m times to cre-
ate m pseudosamples (DPS) of the data (D). The statistic
is then calculated on each pseudosample and the empirical
distribution of values is returned as an approximation of the
statistic’s sampling distribution.

2.2.2 Resampling Dependent Data
It is difficult to resample dependent data because the in-
stances are interconnected in complex ways, hence the i.i.d.
assumption is violated. When the data instance are inter-
dependent, pseudosamples generated by IID resampling are
likely to exhibit less variance than the underlying popula-
tion distribution. Dependencies among instances reduce the
effective sample size of the data and thus increase the vari-
ance of statistics estimated from those data [7]. Resampling
techniques that ignore the dependencies and sample inde-
pendently from the instances will be replicating the actual
sample size, not the effective sample size, and thus they are
likely to underestimate the variance of statistics calculated
from the data.

Previous work in spatial statistics has investigated graph-
based reuse sampling techniques for lattice graphs, which
use small, overlapping subgraphs as pseudosamples [2, 14,
6]. A statistic is repeatedly calculated on smaller subgraphs
to estimate the variance of its sampling distribution. This
estimate is then rescaled to reflect the number of instances
in the original data sample. For example, consider a regular
lattice graph with degree four, we could use contiguous sub-
graphs of length four (i.e., 4× 4 squares) as the pseudosam-
ples and then scale the estimate of variance to approximate
the original sample size.



In spatial and temporal datasets, where the link structure
is generally homogeneous (either a line graph or a lattice
of fixed degree), the choice of scaling factor is relatively
straightforward. In relational data it will be difficult to
determine the effective sample size of a relational data set
analytically due to heterogeneous link structure.

For example, consider a bipartite graph with 1000 objects
X connected to 100 objects Y . There is a binary class label
on the objects X and a binary attribute on the objects Y .
When calculating feature scores concerning X, the actual
sample size is NX = 1000. However, if the class labels are
perfectly autocorrelated through the objects Y (i.e., all X
connected to the same object Yi share the same class label
value), then the effective sample size is NY = 100. Again
one can think of this as having an urn filled with bunches of
grapes—when you reach in to grab a single X you end up
pulling out a single Y and all of its neighbors X.

In practice, when the level of autocorrelation is somewhere
between 0 and 1, the effective sample size NESS will be be-
tween the number of coordinating objects and the number
of instances (i.e., NY ≤ NESS ≤ NX). The goal of this work
is thus to develop a relational resampling technique that ac-
curately preserves the effective sample size of the data, thus
producing more accurate estimates of the sampling distribu-
tions of statistics for heterogeneous, dependent data.

In order to maintain the dependencies among related data
instances, we propose to use a two-phase relational subgraph
resampling technique. First, we use subgraph sampling to
identify and sample sets of interconnected instances with
each selection. Then, our approach links up the selected
subgraphs in an attempt to preserve various relational prop-
erties throughout the sample. We refer to our method as
relational subgraph (RS) resampling.

2.2.3 Relational Subgraph Resampling
Relational subgraph (RS) resampling is a novel approach for
resampling relational data. The first phase of the algorithm
selects subgraphs based on snowball sampling [5]. It repeat-
edly selects a subgraph of size b via breadth-first search from
a randomly selected seed node. The second phase then links
up the selected subgraphs. The aim is to preserve the local
relational dependencies among instances in the subgraph,
while generating a pseudosample with sufficient global vari-
ance by linking up the set of selected subgraphs. The key
idea behind our approach is that when autocorrelation is
high, the effective sample size is determined by the num-
ber of underlying groups in the data (e.g., the bunches of
grapes). As such, our approach attempts to sample these
groups instead of single instances, thus preserving the effec-
tive sample size of the data.

One challenge is how to link up the subgraphs into a single
relational data graph. Due to the varied link structure of
relational data, there will be a large number of nodes on the
periphery of the selected subgraphs. If the peripheral nodes
are missing a significant portion of their neighbors, this could
bias the properties of the sample. The potential for bias due
to peripheral nodes is much greater in relational data with
varied link structure than temporal or spatial data with reg-
ular link structure. Consider a lattice subgraph where each

interior node has four neighbors. The peripheral nodes each
have three neighbors, except for the four corners which have
two. Each peripheral node is missing at most 50% of its
neighbors. However, in relational data with concentrated
linkage, if the peripheral nodes in the sample are hub nodes
with high degree from the original data, they may be miss-
ing almost all their neighbors (i.e., ≈100%). To deal with
this issue, we outline a procedure to link up the peripheral
nodes in the selected subgraphs, which attempts to main-
tain the global graph properties and attribute dependencies
of the original data. More specifically, the relational auto-
correlation is maintained by maximizing attribute similarity
between nodes as they are linked, while the link structure is
maintained by considering the neighborhood similarity when
selecting nodes to link.

We outline our modified resampling procedure in pseudocode
below. Given a sample relational data graph G = (V,E), it
returns a pseudosample data graph GPS = (VPS , EPS). The

first phase samples a set of NS = d |V |
b
e subgraphs of size b

from G, using breadth-first search from NS randomly se-
lected seed nodes. We sample with replacement from the
graph, so a node may appear in multiple subgraphs, one
subgraph, or none.

The pseudosample node set (VPS) consists of all the nodes
selected in the subgraphs (suitably relabeled so multiple
copies of the same original node are distinguishable). The
pseudosample edge set (EPS) initially consists of all the
edges within the selected subgraphs. This is augmented by a
process that links up the peripheral nodes across subgraphs,
choosing the links that are most similar to the links that
were broken by the subgraph selection process. For exam-
ple, if a peripheral node vp linked to node vm in the original
dataset but vm was not selected as a member of vp’s sub-
graph, we will find a node similar to vm in another subgraph
and link it to vp. We first attempt to link vp to a copy of
vm in another subgraph in the pseudosample. If there are
multiple copies, we choose the copy with the shortest path
length to vp and with the greatest number of missing neigh-
bors. Then we create links for any nodes with neighbors still
missing after the first pass. For example, if there were no
copies of vm selected for the pseudosample, then we would
not create a corresponding link for vp in the first pass. The
second pass looks for the node in the pseudosample that is
most similar to vm. We calculate node similarity based on
both the attributes of the nodes and on their link structure
(i.e., the number of neighbors they have in common in the
original data). Again, if there are multiple nodes with the
same (maximum) similarity to vm, we choose the node with
the the shortest path length to vp and with the greatest
number of missing neighbors.

We use the following similarity function to compare nodes
based on both attributes and links:

Sim(vi, vj) = α ∗ aSim(vi, vj) + (1− α) ∗ lSim(vi, vj)

where the attribute similarity is defined as aSim(vi, vj) =
# shared attribute values between vi and vj , and the link
similarity is defined as lSim(vi, vj) = # common neighbors
between vi and vj . In the experiments reported in this pa-
per, we set α = 0.15 to upweight the importance of matching
on link structure.



RS Resampling (G = (V,E), b)

1. Let VPS = ∅
2. Let EPS = ∅
3. for s in 1..d |V |

b
e

4. choose a seed node vs randomly from V

5. construct V S by selecting b− 1 nodes around vs

using breadth-first search

6. Let ES = {eij ∈ E s.t. vi, vj ∈ V S}
7. VPS += V S

8. EPS += ES

9. for each V S

10. for each vi ∈ V S

11. NS
i = {vj s.t. eij ∈ E ∧ vj /∈ V S}

12. while true

13. update = false

14. for each node vi ∈ VPS

15. if |NS
i | > 0

16. let vj be a random select from NS
i

17. let Cj =
˘
vk : vk ≡ vj∧vk ∈ V S′ 6=S∧vi ∈ NS

k

18. Select vm ∈ Cj s.t. vm = argminPath(vm, vi),
break ties by maximizing |Nm|

19. if vm 6= null

20. NS
i = NS

i − {vj}; NS′
m = NS′

m − {vi}
21. EPS = EPS + {eim}
22. update = true

23. break if update = false

24. while true

25. update = false

26. for each node vi ∈ VPS

27. if |NS
i | > 0

28. let vj be a random select from NS
i

29. let Cj =
˘
vk : |Nk| > 0 ∧ vk ∈ V S′ 6=S

30. Select vm ∈ Cj s.t vm = argmax Sim(vm, vj),
break ties by argmin Path(vm, vi), argmax|Nm|

31. if vm 6= null

32. NS
i = NS

i − {vj}; NS′
m = NS′

m − {vi}
33. EPS = EPS + {eim}
34. update = true

35. break if update = false

36. return GPS = (VPS , EPS)

3. EXPERIMENTAL EVALUATION
To evaluate our resampling methodology, we applied it in
two different relational settings. First, to estimate a sam-
pling distribution of feature scores on synthetic data and
calculate an accurate estimate of the variance of the fea-
ture score distribution. Second, to improve the accuracy of
bagging on both real-world and synthetic relational classifi-
cation tasks.

3.1 Variance Estimation
For synthetic relational datasets that exhibit relational auto-
correlation and concentrated linkage, we use RS resampling
to calculate an approximation of the unknown sampling dis-
tribution of features scores and estimate the variance of their
distribution. We compare to IID resampling and show that
RS resampling results in more accurate variance estimates
on both correlated and random attributes.

3.1.1 Data
Our synthetic datasets are generated with a latent group
model [8]. The relational data graphs are homogeneous (i.e.,
single object type); each object has a boolean class label C
(that is determined by the type of group to which it be-
longs), and two boolean attributes X0 and X1 . We gener-
ated datasets with 270 objects and groups of size 15. The
class label C has an autocorrelation level of 0.5 and the prob-
abilities of intra- and inter-group linkage are 0.4 and 0.004
respectively. The attribute X0 is correlated with C, and X1

has no dependencies (i.e., it is random).

3.1.2 Methodology
We use both IID and RS resampling to estimate the vari-
ance of relational feature scores in our synthetic datasets. To
calculate variance, we create 20 pseudosamples, calculate a
feature score for each sample, then we calculate the variance
(V arest) of the distribution of the 20 feature scores. We con-
sider two relational features: one that is correlated with the
class (i.e., MODE(linked.X0)) and one that is random (i.e.,
MODE(linked.X1)). The feature score calculation assesses
the correlation of the feature values with the class labels C
using Pearson’s corrected contingency coefficient [12].

To evaluate the accuracy of the feature score variance esti-
mates, we compare to the empirical variance of the feature
scores in the synthetic datasets. We estimate the population
variance V arpop of the features by generating 100 different
datasets and calculating the variance from the empirical dis-
tribution of features scores in those datasets. We use relative
error as a measure of accuracy:

(V arpop−V arest)

V arpop
.

3.1.3 Results
We calculated the feature score variances using RS resam-
pling and IID resampling and measured the relative error
for both approaches. We report the average relative error
over 10 trials. For RS resampling, we evaluate performance
on subgraphs of varying sizes: {1,5,15,25,35,45}. Since our
algorithm aims to exploit the underlying groups structure,
we expect it to outperform the IID resampling most signif-
icantly when the subgraph size is the same as the average
group size (15) of the generated data.

Figure 1(a) and 1(b) graphs the average relative error in
variance for both IID resampling and RS resampling using
different subgraph sizes. Figure 1(a) graphs the results for
the correlated feature and Figure 1(b) graphs the results for
the random feature. Both plots show that RS resampling re-
sults in lower error than IID resampling. Furthermore, the
RS resampling estimates of variance increase in accuracy as
the subgraph size approaches the underlying group size (15).
Notice also that RS resampling shows a more significant re-
duction in estimation error for the feature formed from the
random attribute (Figure 1(b)).
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Figure 1: Experimental results on synthetic data.

Accurately estimating the variance of random (or irrelevant)
features is likely to impact model learning more significantly
than accurate estimation for real features, since reduction in
effective sample size increases the risk of Type I errors. Im-
proved resampling techniques can be used to develop more
accurate feature selection models, reducing the risk that ran-
dom features are selected for inclusion in relational models
when the data exhibit linkage and autocorrelation.

3.2 Bagging
In classification, bagging is used to improve model accu-
racy by reducing prediction variance. In bagging, multiple
training sets are generated by resampling from the original
training set, then a model is learned on each pseudosample.
Each of the learned models is then applied to the test set,
producing a set of predictions for each instance, which are
then aggregated.

To evaluate our resampling method, we compared the clas-
sification accuracy of three modeling techniques: a single
model, bagging using IID resampling, and bagging using RS
resampling. We compare the performance of these three
models on the WebKB dataset and synthetic datasets. The
ensemble methods construct five pseudosamples and learn
an ensemble of five models. For the WebKB experiment, RS
resampling uses a subgraph size of 50.

3.2.1 Data
The synthetic data we used for these experiments was the
same as described previously, except that we generated datasets
of size 120 for training and 255 for testing.

The real-world relational dataset we used for model evalua-
tion was collected by the WebKB Project [3]. The data con-
sists of a set of 4,135 web pages from four computer science
departments, labeled with the categories: course, faculty,
staff, student, research project, or other. The classification
task was to predict page category. As in previous work on
this dataset, we do not try to predict the category “other”.

3.2.2 Methodology
For the synthetic data experiments, we generated four train-
ing and testing sets of sizes 120 and 255 respectively, for a

total of 16 training-test pairs. We learned relational proba-
bility trees (RPTs) [9] to predict C, using MODE, COUNT,
and PROPORTION as the aggregation functions in feature
construction. We measured the area under the ROC curve
(AUC) of each type of model and then measured the error
reduction of each bagging approach compared to the single
model. We evaluate performance on datasets with increasing
levels of autocorrelation {0.25,0.50,0.75} to test the hypoth-
esis that as autocorrelation increases the improvement of RS
resampling over IID resampling should increase as well (due
to a lower effective sample size).

In the WebKB experiments we learned RPTs to predict the
page type using MODE features. For each of the three mod-
els, we used 12 training-testing pairs based on the four dis-
joint websites in WebKB. We compared the performance by
measuring the AUC for each class label value separately.
We also evaluated model robustness by adding random at-
tributes to the data. We present the results for 0, 3 and
6 random attributes. This is to test the hypothesis that
RS resampling will be more accurate at determining which
features are irrelevant in relational data.

3.2.3 Results
Figure 1(c) presents the results for synthetic data experi-
ments where we varied the level of autocorrelation in the
data. We graph the reduction in AUC error achieved by
each of the bagging models over the single model. Notice
that as autocorrelation increases, the difference between RS
and IID resampling approaches increases. These synthetic
data experiments were conducted with relatively simple re-
lational datasets. We expect that the performance difference
between the two approaches will only increase on complex,
real-world relational datasets.

Figure 2 shows the results for the WebKB data, plotting
the AUC values for each class label value: Student, Faculty,
Course and Research Project. Bagging with IID resampling
produces higher accuracy than the single model. However,
bagging with RS resampling is not only significantly better
than the single model, it also achieves equivalent or better
performance compared to IID resampling for all datasets. As
more random attributes are included in the learning process,
the single model and the IID bagging model both experience
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Figure 2: Experimental results on WebKB.

a degradation in performance while bagging using subgraph
resampling is more robust.

4. CONCLUSIONS
Accurate resampling methods are important for many ma-
chine learning algorithms, including ensemble methods, ac-
tive learning, and feature selection. Although it is straight-
forward to sample with replacement from IID data, it is
more difficult to sample with replacement from an intercon-
nected relational data graph in a manner that preserves the
link structure and relational attribute dependencies.

In this paper, we present a novel method for resampling from
relational data, which accounts for the link structure and at-
tribute dependencies of the data. Resampling in this man-
ner maintains the local autocorrelation dependencies while
allowing the global structure to vary as if we were sampling
from the population.

Since RS resampling explicitly accounts for the local struc-
ture in the data, it avoids overestimating the effective sample
size and thus is able to be used for accurate variance estima-
tion. To our knowledge, this is the first estimation algorithm
that can effectively estimate sampling distributions in data
with autocorrelation and heterogeneous link structure.

We evaluate our approach on synthetic data, showing that
compared to an IID approach, RS resampling results in sig-
nificantly lower error when used to estimate the variance of
feature scores. We also evaluate our methodology on a real-
world relational classification task, showing that it improves
the accuracy of bagging when compared to IID resampling.

In future work we plan to investigate a more efficient sub-
graph resampling approach that uses subsampling to cal-
culate statistics on smaller subgraphs and then scales the
estimates to produce a valid estimate of the sampling dis-
tributions on the full graph. This approach should scale
more effectively but may suffer from larger approximation
errors and boundary effects. In addition, we are developing
model selection and active learning techniques that exploit
the increased accuracy afforded by RS resampling.
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