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Hundreds of papers and factors attempt to explain the cross-section of expected returns.
Given this extensive data mining, it does not make sense to use the usual criteria for
establishing significance. Which hurdle should be used for current research? Our paper
introduces a new multiple testing framework and provides historical cutoffs from the first
empirical tests in 1967 to today. A new factor needs to clear a much higher hurdle, with
a t-statistic greater than 3.0. We argue that most claimed research findings in financial
economics are likely false. (JEL C12, C52, G12)
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Over forty years ago, one of the first tests of the capital asset pricing model
(CAPM) found that the market beta was a significant explanator of the cross-
section of expected returns. The reported z-statistic of 2.57 in Fama and
MacBeth (1973, Table III) comfortably exceeded the usual cutoff of 2.0.
However, since that time, hundreds of papers have tried to explain the cross-
section of expected returns. Given the known number of factors that have been
tried and the reasonable assumption that many more factors have been tried but
did not make it to publication, the usual cutoff levels for statistical significance
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may not be appropriate. We present a new framework that allows for multiple
tests and derive recommended statistical significance levels for current research
in asset pricing.

We begin with 313 papers published in a selection of journals that study
cross-sectional return patterns. We provide recommended test thresholds from
the first empirical tests in 1967 to present day. We also project minimum ¢-
statistics through 2032, assuming the rate of “factor production” remains the
same as the last ten years. We present a taxonomy of historical factors, as well
as definitions]]

Our research is related to a recent paper by IMcLean and Pontifff (2019),
who argue that certain stock market anomalies are less anomalous after bein
publlshed. Their paper tests the statistical biases emphasized in m
(1978). [Rosd (1989). Lo and Mackinlay (199d). [Famd (1991). and [Schwerd
003).
Our paper also adds to the recent literature on biases and inefficiencies
in cross-sectional regression studies. [Lewellen, Nagel, and Shanken (2010)
critique the usual practice of using cross-sectional R?s and pricing errors
to judge success and show that the explanatory power of many previously
documented factors are spurious. Our work focuses on evaluating the statistical
significance of a factor given the previous tests on other factors. Our goal is
to use a multiple testing framework to both re-evaluate past research and to
provide a new benchmark for current and future research.

We tackle multiple hypothesis testing from the frequentist perspective.
Bayesian approaches to multiple testing and variable selection also exist
However, the high dimensionality of the problem combined with the fact
that we do not observe all the factors that have been tried poses a big
challenge for Bayesian methods. While we propose a frequentist approach to
overcome this missing data issue, it is unclear how to do this in the Bayesian
framework. Nonetheless, we provide a detailed discussion of Bayesian methods
in paper.

Multiple testing has only recently gained traction in the finance literature.
For the literature on multiple testing corrections for data snooping biases,

ee [Sullivan, Timmermann, and Whitd (1999, 2001)) and [Whitd (200d). For

research on data snooping and variable selection in predictive regressions,

see BMI%MMMLWML& Lynch
and Vital-Ahuja ). For applications of multiple testing approach in the

finance literature, see, for example,|S_h,ande M),Eﬂmﬂ_andﬂamﬂ (1999),

! 'We also provide a link to a file with full references and Web addresses to the original articles: [attpz//Taculty.Tuqua]
|duke.edu/~charvey/Factor-List.xIsx}

2 Other recent papers that systematically study the cross-sectional return patterns include those by[Subrahmanyan
@010) and[Green. Hand. and Zhang 0134, BOT3H). Other papers that study anomaly discoveries and investor
actions include those by[Edelen. Ince. and Kadled (2074) and [Liuctall @019).

3 See[efTerys and Bergel (1992), Scottand Bergel 2004), and[Scod @00D).
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[Boudoukh et al] (2007), and[Patton and Timmermann (201d). More recently, a
multiple testing connection has been used to study technical trading and mutual
fund performance see, for example, [Barras, Scaillet, and Wermerd d2Q1d)

20049). Conrad, Cooper,
and Kaul 2003) point out that data snooping accounts for a large proportion
of the return differential between equity portfolios that are sorted by firm
characteristics. [Bajgrowicz, Scaillet, and Treccani (2013) show that multiple
testing methods help eliminate a large proportion of spurious jumps detected
using conventional test statistics for high-frequency data. Holland, Basu,
and Sun MM) emphasize the importance of multiple testing in accounting
research. Our paper is consistent with the theme of this literature.

There are limitations to our framework. First, should all factor discoveries be
treated equally? We think no. A factor derived from a theory should have a lower
hurdle than a factor discovered from a purely empirical exercise. Economic
theories are based on a few economic principles and, as a result, there is less
room for data mining. Nevertheless, whether suggested by theory or empirical
work, a t-statistic of 2.0 is too low. Second, our tests focus on unconditional
tests. While the unconditional test might consider the factor marginal, it is
possible that this factor is very important in certain economic environments
and not important in other environments. These two caveats need to be taken
into account when using our recommended significance levels for current asset
pricing research.

While our focus is on the cross-section of equity returns, our message applies
to many different areas of finance. For instance, [Frank and Goyal (2009)
investigate around thirty variables that have been documented to explain the
capital structure decisions of public firms. [Welch and Goyal (2008) examine
the performance of a dozen variables that have been shown to predict market
excess returns.[Novy-Marx (2014) proposes unconventional variables to predict
anomaly returns. These three applications are ideal settings to employ multiple
testing methods.

1. The Search Process

Our goal is not to catalog every asset pricing paper ever published. We narrow
the focus to papers that propose and test new factors. For example,
(1964).[Lintned (1969), and[Mossin (1966) all theoretically proposed (at roughly
the same time), a single-factor model—the capital asset pricing model (CAPM).
Following[Fama and MacBethl (1973), there are hundreds of papers that test the
CAPM. We include the theoretical papers, as well as the first paper to provide
test statistics. We do not include the hundreds of papers that test the CAPM
in different contexts, for example, various international markets and different
time periods. We do, however, include papers, such as[Kraus and Litzenbergei

), who test the market factor, as well as one additional risk factor linked
to the market factor.
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Sometimes different papers propose different empirical proxies for the same
type of economic risk. Although they may look similar from a theoretical
standpoint, we still include them. An example is the empirical proxies for

idiosyncratic financial constraints risk. While [Lamont, Polk, and Saa-Reguejd

) use the %J (1997) index to proxy for firm-level
financial constraints M) estimate their own constraint index
based on the first-order conditions of firms’ optimization problem. We include
both even though they are likely highly correlated.

Since our focus is on factors that can broadly explain return patterns, we
omit papers that focus on a small group of stocks or a short period of time. This
will, for example, exclude a substantial amount of empirical corporate finance
research that studies event-driven return movements

Certain theoretical models lack immediate empirical content. Although they
could be empirically relevant once suitable proxies are constructed, we choose
to exclude them.

With these rules in mind, we narrow our search to generally the top journals
in finance, economics, and accounting. To include the most recent research, we
search for working papers on the Social Science Research Network (SSRN).
Working papers pose a challenge because there are thousands of them, and they
have not been subjected to peer review. We choose a subset of papers that we
suspect are in review at top journals, have been presented at top conferences,
or are due to be presented at top conferences. We end with 63 working papers.
In total, we focus on 313 articles, among which are 250 published articles. We
catalogue 316 different factors

Our collection of 316 factors likely underrepresents the factor population.
First, we generally only consider top journals. Second, we are selective in
choosing only a handful of working papers. Third, sometimes there are many
variants of the same characteristic, and we usually only include the most
representative ones. Fourth, and perhaps most importantly, we should be
measuring the number of factors tested (which is unobservable)—that is, we
do not observe the factors that were tested but that failed to pass the usual
significance levels and were never published (see M@) Our multiple
testing framework tries to account for this possibility.

See[Kothari and Warned 2007) for a survey on event studies. More specifically, three criteria help differentiate
our risk factors from event signals in corporate finance. First, while we are generally considering returns realized
at the monthly or lower frequency intervals for risk factors, it is routine for event studies to consider daily or even
higher frequency returns. Second, portfolio sorts based on risk factors typically cover the entire cross-section of
stocks, whereas event studies usually focus on a much smaller group of securities that are affected by the event
signal. Finally, portfolio sorts based on risk factors are usually repeated at a fixed time interval, whereas events
may happen sporadically.

As already mentioned, some of these factors are highly correlated. For example, we include four versions of

idiosyncratic volatility, that is,[Fama and MacBetl (1973), Al Hwang. and Trombley @003), Bngetall €00d).
and[[d 2009).
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2. Factor Taxonomy

To facilitate our analysis, we group the factors into different categories. We start
with two broad categories: “common” and individual firm “characteristics.”
“Common” means the factor can be viewed as a proxy for a common source of
risk. Risk exposure to this factor or its innovations is supposed to help explain
cross-sectional return patterns. “Characteristics” means the factor is specific
to the security or portfolio. A good example is [Fama and MacBeth (1973).
While the beta against the market return is systematic (exposure to a common
risk factor), the standard deviation of the market model residual is not based
on a common factor—it is a property of the individual firm, that is, it is an
idiosyncratic characteristic.

Strictly speaking, a risk factor should be a variable that has unpredictable
variation through time. Moreover, assets’ risk exposures to this factor need
to be able to explain the cross-sectional return patterns. Based on these
criteria, individual firm characteristics should not qualify as risk factors
because characteristics are preknown and have limited time-series variation.
However, we interpret firm characteristics in a broader sense. If a certain firm
characteristic is found to be correlated with the cross-section of expected
returns, a long-short portfolio can usually be constructed to proxy for the
underlying unknown risk factor. It is this unknown risk factor that we have
in mind when we classify particular firm characteristics as risk factors.

Based on the unique properties of the proposed factors, we further divide the
“common” and “characteristics” groups into finer categories. In particular, we
divide “common” into “financial,” “macro,” “microstructure,” “behavioral,”
“accounting,” and “other.” We divide “characteristics” into the same categories,
except we omit the “macro” classification, which is common, by definition. The
following table provides further details on the definitions of these subcategories
and gives examples for each.

3. Adjusted #-statistics in Multiple Testing

3.1 Why multiple testing?
Given that so many papers have attempted to explain the same cross-section
of expected returns, statistical inference should not be based on a “single” test
perspective. Our goal is to provide guidance as to the appropriate significance
level using a multiple testing framework. When just one hypothesis is tested,
we use the term “individual test,” “single test,” and “independent test”
interchangeablyﬁ

Strictly speaking, different papers study different sample periods and hence
focus on different cross-sections of expected returns. However, the bulk of the
papers we consider have substantial overlapping sample periods. Also, if one

6 The last term should not be confused with any sort of stochastic independence.
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believes that cross-sectional return patterns are stationary, then these papers are
studying roughly the same cross-section of expected returns.

We want to emphasize that there are many forces that make our guidance
lenient; that is, a credible case can be made for an even higher threshold for
discovery. We have already mentioned that we only sample a subset of research
papers and the “publication bias/hidden tests” issue (i.e., it is difficult to publish
a nonresult) However, there is another publication bias that is more subtle.
In many scientific fields, replication studies routinely appear in top journals.
That is, a factor is discovered, and others try to replicate it. In finance and
economics, it is very difficult to publish replication studies. Hence, there is
a bias towards publishing ‘“new” factors rather than rigorously verifying the
existence of discovered factors.

There are two ways to deal with the bias introduced by multiple
testing: out-of-sample validation and using a statistical framework that
allows for multiple testingﬁ When feasible, out-of-sample testing is the
cleanest way to rule out spurious factors. In their study of anomalies,
[McLean and Pontiff (2013) take the out-of-sample approach. Their results show
a degradation of performance of identified anomalies after publication, which
is consistent with the statistical bias. It is possible that this degradation is larger
than they document. In particular, they drop 12 of their 97 anomalies because
they could not replicate the in-sample performance of published studies. Given
that these nonreplicable anomalies were not even able to survive routine data
revisions, they are likely to be insignificant strategies, either in-sample or out-
of-sample. The degradation from the original published “alpha” is 100% for
these strategies, which would lead to a higher average rate of degradation for
their strategies.

While the out-of-sample approach has many strengths, it has one important
drawback: it cannot be used in real time. To make real time assessments in the
out-of-sample approach, it is common to hold out some data. However, this is
not genuine out-of-sample testing as all the data are observable to researchers. A
real out-of-sample test requires data in the future. In contrast to many tests in the
physical sciences (where new data can be created for an experiment), we often
need years of data to do an out-of-sample test. We pursue the multiple testing
framework because it yields immediate guidance on whether a discovered factor
is real.

3.2 A multiple testing framework
In statistics, multiple testing refers to simultaneous testing of more than one
hypothesis. The statistics literature was aware of this multiplicity problem at

See[Rosenthal (I979) for one of the earliest and most influential works on publication bias.

Another approach to test factor robustness is to look across multiple asset classes. This approach has been
followed in several recent papers, for example,m m) and

11
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Table 2
Contingency table in testing M hypotheses

Panel A: An example

Unpublished Published Total
Truly insignificant 500 50 550
Truly significant 100 50 150
Total 600 100(R) 700(M)
Panel B: The testing framework

Hj not rejected H rejected Total
H true Noja Nojr M
H false Nl\a Nl\r My
Total M—R R M

Panel A shows a hypothetical example for factor testing. Panel B presents the corresponding notation in a standard
multiple testing framework.

least 60 years ago Early generations of multiple testing procedures focus on
the control of the family-wise error rate (see Section 4.3.1). More recently,
increasing interest in multiple testing from the medical literature has spurred
the development of methods that control the false discovery rate (see Section
4.3.2). Multiple testing is an active research area in both the statistics and the
medical literature ['

Despite the rapid development of multiple testing methods, they have not
attracted much attention in the finance literature. Moreover, most of the research
that does involve multiple testing focuses on the Bonferroni adjustment
which is known to be too stringent. Our paper aims to fill this gap.

First, we introduce a hypothetical example to motivate a more general
framework. In Table 2, we categorize the possible outcomes of a multiple
testing exercise. Panel A displays an example of what the literature could have
discovered, and panel B notationalizes panel A to ease our subsequent definition
of the general type I error rate—the chance of making atleast one false discovery
or the expected fraction of false discoveries.

Our example in panel A assumes 100 published factors (denoted as R).
Among these factors, suppose 50 are false discoveries and the rest are real
ones. In addition, researchers have tried 600 other factors, but none were found
to be significant. Among them, 500 are truly insignificant, but the other 100 are
true factors. The total number of tests (M) is 700. Two types of mistakes are
made in this process: 50 factors are falsely discovered to be true (type I error or
false positive), while 100 true factors are buried in unpublished work (type II
error or false negative). The usual statistical control in a multiple testing context
aims at reducing “50” or “50/100,” the absolute or proportionate occurrence of

For early research on multiple testing, see Miukey (1931, [[033) for Tukey’s range test and [Scheffd {[939) for

Scheffé’s method on adjusting significance levels in a multiple regression context.

See [Shaffe] (I993) for a review of multiple testing procedures that control for the family-wise error rate. See
[Earcomen] ©007) for a review that focuses on procedures that control the false-discovery rate.

See[Shanked (T990), [Eerson and Harvey {1999), and [Boudoukh ctall @007).

12
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false discoveries, respectively. Of course, we only observe published factors
because factors that are tried and found to be insignificant rarely make it to
pubhcatlon. This poses a challenge since the usual statistical techniques only
handle the case in which all test results are observable.

Panel B defines the corresponding terms in a formal statistical testing
framework. In a factor testing exercise, the typical null hypothesis is that a
factor is not significant. Therefore, a factor being insignificant means the null
hypothesis is “true.” Using “0” (“1”) to indicate the null is true (false) and
“a” (“r”) to indicate “not reject” (“reject”), we can easily summarize panel
A. For instance, Ny, measures the number of rejections when the null is true
(i.e., the number of false discoveries) and Ny, measures the number of failed
rejections when the null is false (i.e. the number of missed discoveries). To
avoid confusion, we try not to use standard statistical language in describing
our notation but rather use words unique to our factor testing context. The
generic notation in panel B is convenient in formally defining different types
of errors and describing adjustment procedures in subsequent sections.

3.3 Type I and type II errors

For a single hypothesis test, a value « is used to control type I error rate:
the probability of finding a factor to be significant when it is not. The « is
sometimes called the “level of significance.” In a multiple testing framework,
restricting each individual test’s type I error rate at « is not enough to control
the overall probability of false discoveries. The intuition is that, under the null
that all factors are insignificant, it is very likely for an event with « probability
to occur when many factors are tested. In multiple hypothesis testing, we need
measures of the type I error that help us simultaneously evaluate the outcomes
of many individual tests.

To gain some intuition about plausible measures of type I error, we return to
panel B of Table 2l Ny, and Ny, count the total number of the two types of
errors: Ny, counts false discoveries, while Ny, counts missed discoveries.
As generalized from single hypothesis testing, the type I error in multiple
hypothesis testing is also related to false discoveries, by which we conclude
a factor is “significant” when it is not. But, by definition, we must draw
several conclusions in multiple hypothesis testing, and there is a possible false
discovery for each. Therefore, plausible definitions of the type I error should
take into account the joint occurrence of false discoveries.

The literature has adopted at least two ways of summarizing the “joint
occurrence.” One approach is to count the total number of false discoveries

Examples of the publication of unsuccessful factors include [Fama and MacBet (I973) andm

). Famaand MacBet (I973) show that squared beta and standard deviation of the market model residual
have an insignificant role in explaining the cross-section of expected returns. However, the inclusion of these
two variables was a result of a falsification experiment rather than a search for new factors. Overall, it is rare
to publish “nonresults” and all instances of published nonresults are coupled with significant results for other
factors.

13
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Noj-. Nojr greater than zero suggests incorrect statistical inference for the
overall multiple testing problem—the occurrence of which we should limit.
Therefore, the probability of event Ny >0 should be a meaningful quantity
for us to control. Indeed, this is the intuition behind the family-wise error rate
introduced later. On the other hand, when the total number of discoveries R is
large, one or even a few false discoveries may be tolerable. In this case, Noj,
is no longer a suitable measure; a certain false discovery proportion may be
more desirable. Unsurprisingly, the expected value of Ny, /R is the focus of
false discovery rate, the second type of control.

3.3.1 Family-wise error rate. The two aforementioned measures are the
most widely used in the statistics literature. Moreover, many other techniques
can be viewed as extensions of these measures. m ) is the first to
formally define the family-wise error rate. [Be erg (@)
define and study the false discovery rate. Alternative definitions of error rate
include per comparison error rate m ), positive false discovery rate
), and generalized false discovery rate dS_arkaLandﬁu_dlzm)Q) We
now describe the two leading approaches in detail.
The family-wise error rate (FWER) is the probability of at least one type I
error:

FWER= Pr(No,, > 1).

FWER measures the probability of even a single false discovery, regardless
of the total number of tests. For instance, researchers might test 100 factors;
FWER measures the probability of incorrectly identifying one or more factors
to be significant. Given significance or threshold level «, we explore two
existing methods (Bonferroni and Holm’s adjustment) to ensure FWER does
not exceed «. Even as the number of trials increases, FWER still measures the
probability of at least one false discovery. This absolute control is in contrast
to the proportionate control afforded by the false discovery rate (FDR), defined
below.

3.3.2 False discovery rate. The false discovery proportion (FDP) is the
proportion of type I errors:
N()\r

if R>0,
FDP=

0 if R=0.
The false discovery rate (FDR) is defined as
FDR=E[FDP].

FDR measures the expected proportion of false discoveries among all
discoveries. It is less stringent (i.e., leads to more discoveries) than FWER

14
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and usually much less so when many tests are performed@ Intuitively, this is
because FDR allows N, to grow in proportion to R, whereas FWER measures
the probability of making even a single type I error.

Returning to example A, panel A shows that a false discovery event has
occurred under FWER since No,=50>1 and the realized FDP is high,
50/100=50%. This suggests that the probability of false discoveries (FWER)
and the expected proportion of false discoveries (FDR) may both be high@
The remedy, as suggested by many FWER and FDR adjustment procedures,
is to lower p-value thresholds for these hypotheses (p-value, as defined in our
context, is the single test probability of having a -statistic that is at least as
large as the observed one under the null hypothesis). In terms of panel A, this
would turn some of the fifty false discoveries insignificant and push them into
the “Unpublished” category. Hopefully, the fifty true discoveries would survive
this change in p-value threshold and remain significant, which is only possible
if their p-values are relatively small.

On the other hand, type II errors—the mistake of missing true factors—are
also important in multiple hypothesis testing. Similar to type I errors, both the
total number of missed discoveries N, and the fraction of missed discoveries
among all abandoned tests Ny,/(M — R) are frequently used to measure the
severity of type 11 errors[J] Ideally, one would like to simultaneously minimize
the chance of committing a type I error and that of committing a type II error.
In our context, we would like to include as few insignificant factors (i.e., as
low a type I error rate) as possible and simultaneously as many significant
ones (i.e., as low a type II error rate) as possible. Unfortunately, this is not

There is a natural ordering between FDR and FWER. Theoretically, FDR is always bounded above by FWER,
that is, FDR < FW ER. To see this, by definition,

Nojr
FDR=E[ " |R>0]Pr(R>0)

< Elng, =R >0]Pr(R>0)
=Pr((Nojr = DN(R>0))

< Pr(NO\r >1)=FWER,

where I(NO\r >1) is an indicator function of event Ny, > 1. This implies that procedures that control FWER under

a certain significance level automatically control FDR under the same significance level. In our context, a factor
discovery criterion that controls FWER at « also controls FDR at «.

Panel A only shows one realization of the testing outcome for a certain testing procedure (e.g., single tests). To
evaluate FWER and FDR, both of which are expectations and hence depend on the underlying joint distribution
of the testing statistics, we need to know the population of the testing outcomes. To give an example that is
compatible with panel A, we assume that the #-statistics for the 700 hypotheses are independent. Moreover, we
assume the ¢-statistic for a false factor follows a normal distribution with mean of zero and variance of 1.0, that
is, (0, 1); for a true factor, we assume its ¢-statistic follows a normal distribution with mean of 2.0 and variance
of 1.0, that is, N/(2,1). Under these assumptions about the joint distribution of the test statistics, we find via
simulations that FWER is 100% and FDR is 26%, both exceeding 5%.

See[Simed (I984) for one example of type Il error in simulation studies and[Earcomen] 007) for another example
in medical experiments.
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feasible: as in single hypothesis testing, a decrease in the type I error rate often
leads to an increase in the type II error rate and vice versa. We therefore seek
a balance between the two types of errors. A standard approach is to specify a
significance level « for the type I error rate and derive testing procedures that
aim to minimize the type II error rate, that is, maximize power, among the class
of tests with type I error rate at most .

When comparing two testing procedures that can both achieve a significance
level «, it seems reasonable to use their type II error rates. However, when
we have multiple tests, the exact type II error rate typically depends on a set
of unknown parameters and is therefore difficult to assess{] To overcome this
difficulty, researchers frequently use the distance of the actual type I error rate to
some prespecified significance level as the measure for a procedure’s efficiency.
Intuitively, if a procedure’s actual type I error rate is strictly below «, we can
probably push this error rate closer to « by making the testing procedure less
stringent, that is, a higher p-value threshold so there will be more discoveries. In
doing so, the type II error rate is presumably lowered given the inverse relation
between the two types of error rates. Therefore, once a procedure’s actual type
I error rate falls below a prespecified significance level, we want it to be as
close as possible to that significance level in order to achieve the smallest type
II error rate. Ideally, we would like a procedure’s actual type I error rate to be
exactly the same as the given significance level[]

Both FWER and FDR are important concepts that are widely applied in
many scientific fields. However, based on specific applications, one may be
preferred over the other. When the number of tests is very large (e.g., a million),
FWER controlling procedures tend to become very tough as they control for the
occurrence of even a single false discovery among one million tests. As a result,
they often lead to a very limited number of discoveries, if any. Conversely,
FWER control is more desirable when the number of tests is relatively small,
in which case more discoveries can be achieved and at the same time trusted.
In the context of our paper, we are sure that many tests have been tried in the
finance literature. Although there are around 300 published ones, hundreds or
even thousands of factors could have been constructed and tested. However, it
is not clear whether this number should be considered “large” compared to the

In single hypothesis testing, the type II error is a function of the unknown true parameter value—in our context,
the population factor mean return—under the alternative hypothesis. By tracing out all possible values under
the alternative hypothesis, we obtain the type II error function. The situation is more complicated in multiple
hypothesis testing because the type II error depends on multiple parameters that correspond to the collection of
alternative hypotheses for all the tests. Hence, the type II error function is multivariate when there are multiple
tests. See [@QI0) for power estimation in large-scale multiple testing problems.

In our framework, individual p-values are sufficient statistics for us to make adjustment for multiple tests. Each
individual p-value represents the probability of having a ¢-statistic that is at least as large as the observed one
under the null hypothesis. What happens under the alternative hypotheses (i.e., type II error rate) does not directly
come into play because hypothesis testing in the frequentist framework has a primary focus on the type I error
rate. When we deviate from the frequentist framework and consider Bayesian methods, the type II error rate
becomes more important because Bayesian odds ratios put the type I and type II error rates on the same footing.
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Table 3

A summary of p-value adjustments

Adjustment type Single/Sequential Multiple test
Bonferroni single family-wise error rate
Holm sequential family-wise error rate
Benjamini, Hochberg, and Yekutieli (BHY) sequential false discovery rate

number of tests conducted in, say, medical research This creates difficulty
in choosing between FWER and FDR. Given this difficulty, we do not take a
stand on the relative appropriateness of these two measures but instead provide
adjusted p-values for both. Researchers can compare their p-values with these
benchmarks to see whether FDR or even FWER is satisfied.

3.4 p-value adjustment: Three approaches

The statistics literature has developed many methods to control both FWER
and FDR[ We choose to present the three most well-known adjustments:
Bonferroni, Holm, and Benjamini, Hochberg, and Yekutieli (BHY). Both
Bonferroni and Holm control FWER, and BHY controls FDR. Depending on
how the adjustment is implemented, they can be categorized into two general
types of corrections: a “single-step” correction equally adjusts each p-value,
and a “sequential” correction is an adaptive procedure that depends on the entire
distribution of p-values. Bonferroni is a single-step procedure, whereas Holm
and BHY are sequential procedures. Table f] summarizes the two properties of
the three methods.

Suppose there are in total M tests and we choose to set FWER at «,, and
FDR at ¢;. In particular, we consider an example with the total number of tests
M =10 to illustrate how different adjustment procedures work. For our main
results, we set both «,, and ay at 5%. Table ] panel A, lists the ¢-statistics and
the corresponding p-values for ten hypothetical tests. The numbers in the table
are broadly consistent with the magnitude of #-statistics that researchers report
for factor significance. Note that all ten factors will be “discovered” if we test
one hypothesis at a time. Multiple testing adjustments will usually generate
different results P9

3.4.1 Bonferroni’s adjustment. Bonferroni’s adjustment is as follows:

* Reject any hypothesis with p-value < S

Bonferroni
i

=min[M x p;, 1].

For instance, tens of thousands of tests are performed in the analysis of DNA microarrays. See[Farcomen] 2002
for more applications of multiple testing in medical research.

Methods that control FWER include[Holm M),m ({1989), and[Hommel {T988). Methods that control
FDR include those of{[Benjamini and Hochberd ([993), [Benjamini and Tid (1999), and [Benjamini and Yekutell
Coal.

Readers who are already familiar with the three multiple testing adjustment procedures can skip to Section 4.5
for our main results.
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Table 4
An example of multiple testing

Panel A: Single tests and “significant” factors

Test — 1 2 3 4 5 6 7 8 9 10 # of

discoveries
t-statistic 199 263 221 343 217 264 456 534 275 249 10
p-value (%) 466 085 271 0.05 300 084 0.00 0.00 060 1.28

Panel B: Bonferroni “significant” factors

Test — 1 2 3 4 5 6 7 8 9 10
t-statistic 1.99 263 221 343 217 264 456 534 275 249 3
p-value (%) 466 085 271 0.05 300 0.84 000 000 060 1.28

Panel C: Holm adjusted p-values and “significant” factors

Reordered tests b (€)) 2) 3) 4) (5) (6) (7 8) © 10)

O1d order 8 7 4 9 6 2 10 3 5 1 4
p-value (%) 0.00 000 005 060 084 08 128 271 300 466
cw/(M+1-b) 050 056 063 071 083 100 125 167 250 500

oy =5%

Panel D: BHY adjusted p-values and “significant” factors
Reordered tests b (€3] 2) 3) 4) %) (6) 7 ®) © 10)

Old order 8 7 4 9 6 2 10 3 5 1 6
p-value (%) 0.00 0.00 0.05 0.60 0.84 0.85 128 271 3.00 4.66

(brag)/(MxeM) 17 034 051 068 085 102 119 137 154 171
ag=5%

The table displays ten z-statistics and their associated p-values for a hypothetical example. Panels A and B
highlight the significant factors under single tests and Bonferroni’s procedure, respectively. Panels C and D
explain Holm’s and BHY’s adjustment procedure, respectively. The bold numbers in each panel are associated
with significant factors under the specific adjustment procedure of that panel. M represents the total number of

tests M =10) and c(M)= Z?’I:I 1/j. b is the order of p-values from lowest to highest. oy, is the significance level

for Bonferroni’s and Holm’s procedure, and « is the significance level for BHY’s procedure. Both numbers are
set at 5%. The cutoff p-value for Bonferroni is 0.5%, for Holm is 0.60%, and for BHY is 0.85%.

Bonferroni applies the same adjustment to each test. It inflates the original
p-value by the number of tests M; the adjusted p-value is compared with the
threshold value «,,.

Example 4.4.1 To apply Bonferroni’s adjustment to the example in Table ]
we simply multiply all the p-values by ten and compare the new p-values
with o, =5%. Equivalently, we can look at the original p-values and consider
the cutoff of 0.5%(=a,,/10). This leaves the 7-statistic of tests 4, 7, and 8 as
significant, which are highlighted in panel B.

Using the notation in panel B of Table 2 and assuming M\ of the M null
hypotheses are true, Bonferroni operates as a single-step procedure that can be
shown to restrict FWER at levels less than or equal to (M x «,,)/ M, without
any assumption on the dependence structure of the p-values. Since My <M,
Bonferroni also controls FWER at level aw

The number of true nulls M() is unknown, so we usually cannot make Bonferroni more powerful by increasing
ay 1o &=May, /M (note that Moa /M =ay,). However some papers, including those by|
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3.4.2 Holm’s adjustment. Sequential methods have been proposed to adjust
p-values in multiple hypothesis testlng. They are motivated by a seminal
paper bylSchweder and Spjotvoll (1982), who suggest a graphical presentation
of the multiple testing p-values. In particular, using N, to denote the number of
tests that have a p-value exceeding p, ISchweder and Spjotvoll (1982) suggest
plotting N, against (1 — p). When p is not very small (e.g., p > 0.2), it is very
likely that the associated test is from the null hypothesis. In this case, the p-
value for a null test can be shown to be uniformly distributed between 0 and
1. It then follows that for a large p and under independence among tests, the
expected number of tests with a p-value exceeding p equals Ty(1 — p), where
Ty is the number of null hypotheses, i.e., E(N,)=Ty(1— p). By plotting N,
against (1 — p), the graph should be approximately linear with slope Tj, for large
p-values. Points on the graph that substantially deviate from this linear pattern
should correspond to non-null hypotheses, i.e., discoveries. The gist of this
argument—Ilarge and small p-values should be treated differently—has been
distilled into many variations of sequential adjustment methods, among which
we will introduce Holm’s method that controls FWER and BHY’s method that
controls FDR.
Holm’s adjustment is as follows:

* Order the original p-values such that p(;y < po) <---pupy <--- < p(m), and
let the associated null hypotheses be H(yy, Hw), - Hpy -+, Houy.

* Let k be the minimum index such that pg,) > 354

* Reject the null hypotheses Hj)---Hy—1y (i.e., declare these factors

significant), but not Hy)--- H(y).

The equivalent adjusted p-value is therefore

Pl =minfmax((M — j+ D), 11

Holm’s adjustment is a step-down procedure: for the ordered p-values, we start
from the smallest p-value and go down to the largest one P If & is the smallest
index that satisfies p(;) > %, we will reject all tests whose ordered index is
below k.

To explore how Holm’s adjustment procedure works, suppose k is the
smallest index such that p) > 575%—; . This means that for b <k, pe) < 3771

In particular, for b= 1, Bonferroni equals Holm, that is, 5% = #‘Ehl), forb=2,

M+17b’

{[990), try to improve the power of Bonferroni by estimating M. We try to
achieve the same goal by using either Holm’s procedure, which also controls FWER, or procedures that control
FDR, an alternative definition of type I error rate.

Here, “sequential” refers to the fact that we adjust the ordered p-values sequentially. It does not mean that the
individual tests arrive sequentially.

Viewing small p-values as “up” and large p-values as “down,” Holm’s procedure is a “step-down” procedure
in that it goes from small p-values to large ones. This terminology is consistent with the statistics literature. Of
course, small p-values are associated with “large” values of the test statistics.
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T < #‘Eb:z)’ so Holm is less stringent than Bonferroni. Since less stringent
hurdles are applied to the second to the (k — 1)th p-values, more discoveries are

generated under Holm’s than Bonferroni’s adjustment.

Example 4.4.2 To apply Holm’s adjustment to the example in Table B we
first order the p-values in ascending order and try to locate the smallest index
k that makes pg > M+11“ . Table @] panel C, shows the ordered p-values and
the associated 3774—’s. Starting from the smallest p-value and going up, we
see that p(, is below 5% until b=5, at Wthh point p(s) is above 15—
Therefore, the smallest b that satisfies p,) > 3771 is 5 and we reject the null
hypothesis for the first four ordered tests (we discover four factors) and fail to
reject the null for the remaining six tests. The original labels for the rejected
tests are in the second row in panel C. Compared to Bonferroni, one more factor
(test 9) is discovered; that is, four factors rather than three are significant. In
general, Holm’s approach leads to more discoveries and all discoveries under
Bonferroni are also discoveries under Holm’s criteria.

Like Bonferroni, Holm also restricts FWER at «,, without any requirement
on the dependence structure of p-values. It can also be shown that Holm
is uniformly more powerful than Bonferroni in that tests rejected (factors
discovered) under Bonferroni are always rejected under Holm, but not vice
versa. In other words, Holm leads to at least as many discoveries as Bonferroni.
Given the dominance of Holm over Bonferroni, one might opt to only use
Holm. We include Bonferroni because it is the most widely used adjustment
and a simple single-step procedure.

3.4.3 Benjamini, Hochberg, and Yekutieli’s adjustment. Benjamini,
Hochberg, and Yekutieli’s (BHY) adjustment is as follows:

* As with Holm’s procedure, we order the original p-values such that
PSP =<--Pw=--=<pw and let associated null hypotheses be
Hy, Hoy, - Hay -+ Hony.-

* Let k be the maximum index such that pg, < mad

* Reject null hypotheses H(iy--- H), but not H1y- - Hopry.

The equivalent adjusted p-value is defined sequentially as

Y4 ifi=M
BHY _
P inf pEHY M) .y
min[pgy pil ifi=M-—1,

where, ¢(M) is a function of the total number of tests M and controls for the
generality of the test. The larger ¢(M) is the more stringent test and hence
is more general in guarding against dependency among the test statistics. In
particular, [Benjamini and Yekutielf dZDD_ﬂ) show that setting c(M) at

1
c<M>=Z; (1)
j=1
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allows the procedure to work under arbitrary dependency among the test
statistics. We focus on this specification due to its generality but will discuss
what happens under alternative specifications of c(M).

In contrast to Holm’s, BHY’s method starts with the largest p-value and goes
to the smallest one. If k is the largest index that satisfies p,) < #-(M)ad’ we
will reject tests (discover factors) whose ordered index is below or equal to
k. Also, note that o, (significance level for FDR) is chosen to be the same
as «a,, (significance level for FWER). The significance level is subjective in
nature. Here, we choose the same significance level to make an apples-to-apples
comparison between FDR and FWER adjustment procedures. We discuss this
choice in more detail in Section 4.6.

To explore how BHY works, let k be the largest index, such that py) <

b . b .

e - This means that for b >k, pg) > ean - In particular, we have
k+1 k+2 M

Dic+1) > #()mad, Dk+2) > M(+()M)ad’ cees D) > mad. We see that the

(k+1)th to the last null hypotheses, not rejected, are compared to numbers
smaller than «,, the usual significance level in single hypothesis testing.
By being stricter than single hypothesis tests, BHY guarantees that the false
discovery rate, which depends on the joint distribution of all the test statistics, is

below the prespecified significance level. See [Benjamini and Yekutieli (2001])

for details on the proof.

Example 4.4.3 To apply BHY’s adjustment to the example in Table d] we first
order the p-values in ascending order and try to locate the largest index k that

satisfies pg) < mad. Table Bl panel D, shows the ordered p-values and

the associated ay’s. Starting from the largest p-value and going down,

_b
Mxc(M)

we see that p, is above aq until b=6, at which point p is below

b
Mxc(M)
6 . b .
Toxa93 ¥d- Therefore, the smallest b that satisfies pgy < e % 18 6, and we
reject the null hypothesis for the first six ordered tests and fail to reject for the
remaining four tests. In the end, BHY leads to six significant factors (tests 8,
7,4,9, 6, and 2), three more than Bonferroni and two more than Holm.

In summary, for single tests, using the usual 5% cutoff, 10 out of 10 are
discovered. Allowing for multiple tests, the cutoffs are far smaller, with BHY
at 0.85%, Holm at 0.60%, and Bonferroni at 0.5%.

The choice of c¢(M) determines the generality of BHY’s procedure.
Intuitively, when c(M) is larger, then the more difficult it is to satisfy the
inequality pg) < ﬁ(mad, and hence there will be fewer discoveries. This
makes it easier to restrict the false discovery rate below a given significance
level since fewer discoveries are made. In the original work that develops
the concept of false discovery rate and related testing procedures, c(M)
is set equal to one. Under this choice, BHY is only valid when the test
statistics are independent or positively dependent. With our choice of c(M)
(.e., c(M)= Z;W:I %), BHY is valid under any form of dependence among the
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Figure 1

Multiple test thresholds for example A,

The ten p-values for the example in TableEland the adjusted p-value lines for various adjustment procedures. All
ten factors are discovered using the standard criteria for single tests, three under Bonferroni, four under Holm,
and six under BHY. The significance level is set at 5% for each adjustment method.

p—values@ Note with ¢(M) > 1, this reduces the size of #(M)(xd and it is

tougher to satisfy the inequality pg) < oy. That is, there will be fewer
factors found to be significant.

Figure [I] summarizes our example. It plots the original p-values (single
tests), as well as adjusted p-value lines, for various multiple testing adjustment
procedures. We see the stark difference in outcomes between multiple and
single hypothesis testing. While all ten factors would be discovered under
single hypothesis testing, only three to six factors would be discovered under
a multiple hypothesis test. Although single hypothesis testing guarantees the
type I error of each test meets a given significance level, meeting the more
stringent FWER or FDR bound will lead us to discard a number of factors.

_b
Mxc(M)

3.5 Summary statistics
FigurePlshows the history of discovered factors and publications@ We observe
a dramatic increase in factor discoveries during the last decade. In the early

See[Benjamini and Yekutiell 2001) for the proof.

To be clear, we only count those that have ¢-statistics or equivalent statistics reported. Roughly twenty new
factors fail to satisfy this requirement. For additional details, see factors in Table 6 marked with #.
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Factors and publications.

period from 1980 to 1991, only about one factor is discovered per year. This
number has grown to around five for the 1991-2003 period, during which

time a number of papers, such as [Fama and FrencH (]_]_9_92), [Carhart (l]_M),
and [Pastor and Stambaughi (2003), spurred interest in studying cross-sectional
return patterns. In the last nine years, the annual factor discovery rate has
increased sharply to around 18. In total, 164 factors were discovered in the past
nine years, roughly doubling the 84 factors discovered in all previous years. We
do not include working papers in Figure 2l In our sample, there are 63 working
papers covering 68 factors.

We obtain ¢-statistics for each of the 316 factors discovered, including the
ones in the working papers. The overwhelming majority of z-statistics exceed
the 1.96 benchmark for 5% 51gn1ﬁcance. The nonsignificant ones typically
belong to papers that propose a number of factors. These likely represent
only a small subsample of nonsignificant ¢-statistics for all tried factors.
Importantly, we take published z-statistics as given. That is, we assume they are
econometrically sound with respect to the usual suspects (data errors, coding
errors, misalignment, heteroscedasticity, autocorrelation, clustering, outliers,
etc.).

The sign of a ¢-statistic depends on the direction of the long/short strategy. We usually calculate p-values based
on two-sided -tests, so the sign does not matter. From an investment perspective, the sign of the mean return of
a long/short strategy does not matter as we can always reverse the direction of the strategy. Therefore we use
absolute values of these -statistics.

The multiple testing framework is robust to outliers. The procedures are based on either the total number of tests
(Bonferroni) or the order statistics of -statistics (Holm and BHY).
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3.6 p-value adjustment when all tests are published (M = R)

We now apply the three adjustment methods previously introduced to the
observed factor tests, under the assumption that the test results of all tried
factors are available. We know that this assumption is false since our sample
underrepresents all insignificant factors by conventional significance standards:
we only observe those insignificant factors that are the results of purposeful
falsification experiments. We design methods to handle this missing data
issue later.

Despite some limitations, our results in this section are useful for at least
two reasons. First, the benchmark ¢-statistic based on our incomplete sample
provides a lower bound of the true ¢-statistic benchmark. In other words, if M
(total number of tests) > R (total number of discoveries), then we would expect
fewer factors than when M = R@ so future #-statistics need to at least surpass
our benchmark to claim significance. Second, results in this section can be
rationalized within a Bayesian or hierarchical testing framework ] Factors in
our list constitute an “elite” group: they have survived academia’s scrutiny for
publication. Placing a high prior on this group in a Bayesian testing framework
or viewing this group as a cluster in a hierarchical testing framework, one
can interpret results in this section as the first-step factor selection within an a
priori group.

Based on our sample of observed z-statistics of published factorsE we obtain
three benchmark 7-statistics. In particular, at each point in time, we transform
the set of available z-statistics into p-values. We then apply the three adjustment
methods to obtain benchmark p-values. Finally, these p-value benchmarks are
transformed back into 7-statistics, assuming that standard normal distribution
approximates the ¢-distribution well. To guide future research, we extrapolate
our benchmark #-statistics into the future, assuming that the rate of “factor
production” remains the same as the recent history, that is, 2003-2012.

We choose to set a,, at 5% (Holm, FWER) and o, at 1% (BHY, FDR)
for our main results. The significance level is subjective, as in individual
hypothesis testing, where conventional significance levels are usually adopted.
Since FWER is a special case of the type I error in individual testing and 5%
seems the default significance level in cross-sectional studies, we set o, at
5%. On the other hand, FDR is a more lenient control relative to FWER. If we
choose the same «; as «,,, then by definition the BHY method will be more
lenient than both Holm and Bonferroni. We set FDR at 1% but will explain
what happens when « is increased to 5%.

FigureBlpresents the three benchmark ¢-statistics. Both Bonferroni and Holm
adjusted benchmark z-statistics are monotonically increasing in the number
of discoveries. For Bonferroni, the benchmark z-statistic starts at 1.96 and
increases to 3.78 by 2012. It reaches 4.00 in 2032. The corresponding p-values

This is always true for Bonferroni’s adjustment but is not always true for the other two types of adjustments. The
Bonferroni adjusted 7-statistic is monotonically increasing in the number of trials, so the -statistic benchmark
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(under single tests) for 3.78 and 4.00 are 0.02% and 0.01%, respectively, much
lower than the starting level of 5%. Holm implied z-statistics always fall below
Bonferroni #-statistics, consistent with the fact that Bonferroni always results
in fewer discoveries than Holm. However, Holm tracks Bonferroni closely
and their differences are small. BHY implied benchmarks, on the other hand,
are not monotonic. They fluctuate before year 2000 and stabilize at 3.39 (p-
value =0.07%) after 2010. This stationarity feature of BHY implied z-statistics,
inherent in the definition of FDR, contrasts with that of Bonferroni and Holm.
Intuitively, at any fixed significance level «, the law of large numbers forces
the false discovery rate (FDR) to converge to a constant. If we change oy to
5%, the corresponding BHY implied benchmark z-statistic is 2.78 (p-value =
0.54%) in 2012 and 2.81 (p-value = 0.50%) in 2032, still much higher than
the starting value of 1.96. In sum, after taking testing multiplicity into account,
we believe the minimum threshold #-statistic for 5% significance is about 2.8,
which corresponds to a p-value (if a single test) of 0.5%.

To see how the new 7-statistic benchmarks better reveal the statistical
significance of factors, in Figure Bl we mark the ¢-statistics of a few prominent
factors. Among these factors, HML, MOM, DCG, SRV, and MRT are significant
across all types of ¢-statistic adjustments, EP, LIQ, and CVOL are sometimes
significant, and the rest are never significant.

One concern with our results is that factors are discovered at different times
and tests are conducted using different methods. This heterogeneity in the time
of discovery and testing methods may blur the interpretation of our results.
Ideally, we want updated factor tests that are based on the most recent sample
and the same testing methodP]] To alleviate this concern, we focus on the
group of factors that are published no earlier than 2000 and rely on Fama-
MacBeth tests. Additionally, we require that factor tests cover at least the
1970-1995 period and have as controls at least the Fama-French three factors
dEama_and_ELQn_cHhM). This leaves us with 124 factors. Based on this factor
group, the Bonferroni and Holm implied threshold ¢-statistics are 3.54 and
3.20 (5% significance), respectively, and the BHY implied thresholds are 3.23
(1% significance) and 2.67 (5% significance) by 2012. Not surprisingly, these
statistics are smaller than the corresponding thresholds based on the full sample.

will only rise if there are more factors. Holm and BHY depend on the exact ¢-statistic distribution, so more factors
do not necessarily imply a higher #-statistic benchmark.

SeelWagenmakers and Griinwald @ €o0d) andm €0a3) on Bayesian interpretations of traditional hypothesis
testing. See [Meinshaused 003) for a hierarchical approach on variable selection.

See the[Online Appendix B|for details on our sampling procedure.

We want to stress that the three types of adjustments in our paper are robust to the heterogeneity in the time of
discovery and testing methods among individual studies. That is, despite the varying degrees of sample overlap
and the differences in the testing methods, our adjustment procedures guarantee that the type I errors (however
they are defined) are controlled under their prespecified levels. Therefore, from a technical point of view, neither
nonsimultaneity nor differences in testing methods invalidate our results.
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However, the general message that we need a much higher #-statistic threshold
when multiple testing is taken into account is unchanged.

3.7 Robustness

3.7.1 Test statistics dependence. There is a caveat for all three methods
considered so far. In the context of multiple testing, any type of adjustment
procedure can become too stringent when there is a certain dependence structure
in the data. This is because these procedures are primarily designed to guard
against type I errors. Under a certain correlation structure, they may penalize
type I errors too harshly and lead to a high type II error rate.

In theory, under independence, Bonferroni and Holm approximately achieve
the prespecified significance level « when the number of tests is large. On the
other hand, both procedures tend to generate fewer discoveries than desired
when there is a certain degree of dependence among the tests. Intuitively, in
the extreme case in which all tests are the same (i.e., correlation = 1.0), we
do not need to adjust at all: FWER is the same as the type I error rate for
single tests. Hence, the usual single hypothesis test is sufficient. Similarly,
BHY may generate too few discoveries when tests are independent or positively
correlated.

Having discussed assumptions for the testing methods to work efficiently,
we now try to think of scenarios that can potentially violate these assumptions.
First, factors that proxy for the same type of risk may be dependent. Moreover,
returns of long-short portfolios designed to achieve exposure to a particular
type of factor may be correlated. For example, there are a number of factors
with price in the denominator that are naturally correlated. We also count four
different idiosyncratic volatility factors. If this type of positive dependence
exists among test statistics, all three methods would likely generate fewer
significant factors than desired. On the other hand, most often factors need to
“stand their ground” to be published. In the end, if you think we are overcounting
at 316, consider taking a haircut to 113 factors (the number of “common” factors
in Table[D). FigureBlshows that our main conclusions do not materially change.
For example, the Holm at 113 factors is 3.29 (p-value = 0.10%), while Holm
at 316 factors is 3.64 (p-value = 0.03%).

Second, research studying the same factor but based on different samples
will generate highly dependent test statistics. Examples include the sequence
of papers studying the size effect. We try to minimize this concern by including,
with a few exceptions, only the original paper that proposes the factor. To the
extent that our list includes few such duplicate factors, our method greatly
reduces the dependence that would be introduced by including all papers
studying the same factor but for different sample periods.

Finally, when dependence among test statistics can be captured by Pearson
correlations among contemporaneous strategy returns, we present a new model
in Section 5 to systematically incorporate the information in test correlations.
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3.7.2 The case in which M > R. To deal with the hidden tests issue when
M > R, we propose in Appendix A a simulation framework to estimate
benchmark z-statistics. The idea is to first back out the underlying distribution
for the r-statistics of all tried factors, then to generate benchmark 7-statistic
estimates, and apply the three adjustment procedures to simulated z-statistics
samples

Based on our estimates, 71% of all tried factors are missing. Using this
information, the new benchmark z-statistics for Bonferroni and Holm are
estimated to be 4.01 and 3.96, respectively, both slightly higher than when
M = R.This is as expected because more factors are tried under this framework.
The BHY implied #-statistic increases from 3.39 to 3.68 at 1% significance
and from 2.78 to 3.18 at 5% significance. In sum, across various scenarios,
we think the minimum threshold #-statistic is 3.18, corresponding to BHY’s
adjustment for M > R at 5% significance. Alternative cases all result in even
higher benchmark #-statistics.

One concern with BHY is that our specification of c¢(M) results in an overly
stringent threshold for FDR. We therefore try the more lenient choice (i.e.,
c(M)=1) as inlB_an_amini_and_HQthQ[Q (]12%). Based on our estimate that
71% of tried factors are missing and by simulating the missing tests as in
Appendix A, we find that the BHY implied threshold equals 3.05 at 5%
significance and 3.17 at 1% significance. Indeed, these numbers are smaller
than the numbers under our default specification of ¢(M) (i.e., c(M)= Z?I: ] %).
However, they are above 3.0 and therefore are consistent with our overall
message.

3.7.3 A Bayesian hypothesis testing framework. We can also study multiple
hypothesis testing within a Bayesian framework. One major obstacle of
applying Bayesian methods in our context is the unobservability of all tried
factors. While we propose new frequentist methods to handle this missing data
problem, it is not clear how to structure the Bayesian framework in this context.
In addition, the high dimensionality of the problem raises concerns on both the
accuracy and the computational burden of Bayesian methods.

Nevertheless, ignoring the missing data issue, we outline a standard Bayesian
multiple hypothesis testing framework in Appendix B and explain how it
relates to our multiple testing framework. We discuss in detail the pros and
cons of the Bayesian approach. In contrast to the frequentist approach, which
uses generalized type I error rates to guide multiple testing, the Bayesian
approach relies on the posterior likelihood function and thus contains a natural
penalty term for multiplicity. However, this simplicity comes at the expense of
having a restrictive hierarchical model structure and independence assumptions

The underlying assumption for the model in Appendix A is the independence among #-statistics, which may not
be plausible given our previous discussions on test dependence. In that case, our structural model in Section 5
proposes a more realistic data generating process for the cross-section of test statistics.
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that may not be realistic for our factor testing problem. Although extensions
incorporating certain forms of dependence are possible, it is unclear what
precisely we should do for the 316 factors in our list. In addition, even for the
Bayesian approach, the final reject/accept decision still involves the threshold
choice. Due to these concerns, we choose not to implement the Bayesian
approach. We leave extensions of the basic Bayesian framework that could
possibly alleviate the above concerns to future research.

3.7.4 Methods controlling the FDP. Instead of FDR, recent research by
[Lehmann and Romand ) develops methods to directly control the realized
FDP. In particular, they propose a step-down method to control for the
probability of FDP exceeding a threshold value. Since their definition of type I
error (i.e., P(FD P > y), where y is the threshold FDP value) is different from
either FWER or FDR, results based on their methods are not comparable to
ours. However, the main conclusion is the same. For instance, when y =0.10
and «=0.05, the benchmark z-statistic is 2.70 (p-value = 0.69%), which is
much higher than the conventional cutoff of 1.96. Details are presented in
[Online Appendix C]

4. Correlation among Test Statistics

33

34

Although the BHY method is robust to arbitrary dependence among test
statistics, it does not use any information about the dependence structure. Such
information, when appropriately incorporated, can be helpful in making the
method more accurate (i.e., less stringent). We focus on the type of dependence
that can be captured by the Pearson correlation. To generate correlation among
test statistics, we focus on the correlation among factor returns. This correlation
is likely driven by macroeconomic and market-wide variables. Therefore, in
our context, the dependence among test statistics is equivalent to the correlation
among factor returns.

Multiple testing corrections in the presence of correlation have been only
considered in the recent statistics literature. Existing methods include bootstrap-
based permutation tests and direct statistical modeling. Permutation tests
resample the entire dataset and construct an empirical distribution for the pool
of test statistics 3 Through resampling, the correlation structure in the data
is taken into account and no model is needed. In contrast, direct statistical
modeling makes additional distributional assumptions on the data-generating
process. These assumptions are usually case dependent as different kinds of
correlations are more plausible under different circumstances P4

[Westfall (1993) and [Geetall @003) are the early papers that suggest the permutation resampling approach
in multiple testing. Later development of the permutation approach tries to reduce computational burden by
proposing efficient alternative approaches. Examples include [[id 2003), [Conneely and Bochnkd (2007), and

Cond).
See[Sunand Cal €009) and [Welcrall 2009).
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In addition, recent research in finance explores bootstrap procedures to assess
the statistical significance of individual testsP3 Many of these studies focus
on performance evaluation and test whether fund managers exhibit skill. Our
approach focuses on the joint distribution of the test statistics (both FWER and
FDR depend on the cross-section of 7-statistics) and evaluates the significance
of each individual factor.

Unfortunately, we do not always observe the time series of factor returns
(when a ¢-statistic is based on long-short strategy returns) or the time series
of slopes in cross-sectional regressions (when a ¢-statistic is based on the
slope coefficients in cross-sectional regressions). Because few researchers post
their original data, often all we have is the single 7-statistic that summarizes
the significance of a factor. We propose a novel approach to overcome this
missing data problem. Itis in essence a “direct modeling approach” but does not
require the full information of the return series based on which the #-statistic is
constructed. In addition, our approach is flexible enough to incorporate various
kinds of distributional assumptions. We expect it to be a valuable addition to the
multiple testing literature, especially when only test statistics are observable.

4.1 A model with correlations

For each factor, suppose researchers construct a corresponding long-short
trading strategy and normalize the return standard deviation to be o =15% per
year, which is close to the annual volatility of the market indexPYIn particular,
let the normalized strategy return in period ¢ for the i-th discovered strategy be
X ;. Then the z-statistic for testing the significance of this strategy is:

N
T;=()_Xi./N)/(@/VN).
1=1
Assuming joint normality and zero serial correlation for strategy returns, this
t-statistic has a normal distribution

Ti~N(ui/(o/v/N), 1),
where p; denotes the population mean of the strategy. The u;’s are
unobservable, and hypothesis testing under this framework amounts to testing
i >0. We assume that each u; is an independent draw from the following
mixture distribution:

wi ~ polyu=0y+(1— po)Exp(d),
where Ij,—¢) is the distribution that has a point mass at zero, Exp(}) is the
exponential distribution that has a mean parameter X, and py is the probability of

and Kho 2004), [Kosowski et all (2009),

0D, andMarvey and Ll COTAD).

Notice that this assumption is not necessary for our approach. Fixing the standard deviations of different strategies
eliminates the need to separately model them, which can be done through a joint modeling of the mean and
variance of the cross-section of returns. Seem @O0I4I) for further discussions on this.
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drawing from the point mass distribution. This mixture distribution assumption
is the core component for Bayesian multiple testing and succinctly captures
the idea of hypothesis testing in the traditional frequentist’s view: while there
is a range of possible values for the means of truly profitable strategies, a
proportion of strategies should have a mean that is indistinguishable from zero.
The exponential assumption is not essential for our model as more sophisticated
distributions (e.g., a Gamma distribution featuring two free parameters) can
be used. We use the exponential distribution for its simplicit and, perhaps
more importantly, because it is consistent with the intuition that more profitable
strategies are less likely to exist. An exponential distribution captures this
feature by having a monotonically decreasing probability density function.

Next, we incorporate correlations into the above framework. Among
the various sources of correlations, the cross-sectional correlations among
contemporaneous returns are the most important for us to take into account.
These correlations are likely induced by a response to common macroeconomic
or market shocks. Other kinds of correlations can be easily embedded into our
framework as well F§

As a starting point, we assume that the contemporaneous correlation between
two strategies’ returns is p. The noncontemporaneous correlations are assumed
to be zero. That is,

Corr(Xi,tan,t):p’ i#js
Corr(X;;, X 5)=0, t#s.

Finally, to incorporate the impact of hidden tests, we assume that M
factors are tried, but only factors that exceed a certain z-statistic threshold are
published. We set the threshold ¢-statistic at 1.96 and focus on the subsample
of factors that have a z-statistic larger than 1.96. However, as shown in
Appendix A, factors with marginal 7-statistics (i.e., t-statistics just above 1.96)
are less likely to be published than those with larger ¢-statistics. Therefore,
our subsample of published ¢-statistics only covers a fraction of ¢-statistics
above 1.96 for tried factors. To overcome this missing data problem, we
assume that our sample covers a fraction r of ¢-statistics in between 1.96
and 2.57 and that all 7-statistics above 2.57 are covered. We augment the
existing ¢-statistic sample to construct the full sample. For instance, when
r=1/2, we simply duplicate the sample of ¢-statistics in between 1.96 and
2.57 and maintain the sample of ¢-statistics above 2.57 to construct the full

As shown later, we need to estimate the parameters in the mixture model based on our #-statistics sample. An
overparameterized distribution for the continuous distribution in the mixture model, albeit flexible, may result
in imprecise estimates. We therefore use the simple one-parameter exponential distribution family.

To incorporate the serial correlation for individual strategies, we can model them as simple autoregressive
processes. See[Harvey and Lil] @014d) for further discussion of the kinds of correlation structures that our model
is able to incorporate. SeefSun and Cal 2009) for an example that models the spatial dependence among the null
hypotheses.
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sample. For the baseline case, we set r=1/2, consistent with the analysis
in Appendix A. We try alternative values of r to determine how the results
change

Given the correlation structure and the sampling distribution for the means
of returns, we can fully characterize the distributional properties of the cross-
section of returns. We can also determine the distribution for the cross-section
of ¢-statistics as they are functions of returns. Based on our sample of z-statistics
for published research, we match key sample statistics with their population
counterparts in the model.

The sample statistics we choose to match are the quantiles of the sample
of z-statistics and the sample size (i.e., the total number of discoveries).
Two concerns motivate us to use quantiles. First, sample quantiles are less
susceptible to outliers compared to means and other moment-related sample
statistics. Our z-statistic sample does have a few influential observations, and
we expect quantiles to be more useful descriptive statistics than the mean and
the standard deviation. Second, simulation studies show that quantiles in our
model are more sensitive to changes in parameters than other statistics. To offer
a more efficient estimation of the model, we choose to focus on quantiles.

In particular, the quantities we choose to match and their values for the
baseline sample (i.e., r =1/2) are given by:

T =Total number of discoveries= 353,

@ 1 =The 20th percentile of the sample of z-statistics=2.39,
@z =The 50th percentile of the sample of 7-statistics=3.16,
§3 =The 90th percentile of the sample of ¢-statistics=6.34.

These three quantiles are representative of the spectrum of quantiles and can be
shown to be most sensitive to parameter changes in our model. Fixing the model
parameters, we can also obtain the model implied sample statistics 7', Q1, Q»,
and Q3 through simulations ' The estimation works by seeking to find the set
of parameters that minimizes the following objective function:

3

DG, po, M, p)=wo(T =T+ wi(Q;— i),
i=1

where wy and {w;};_, are the weights associated with the squared distances.
Motivated by the optimal weighting for the generalized method of moments
(GMM) estimators, we set these weights at wop=1 and w;=w,=w3=10,000.

Our choice of the threshold #-statistic is smaller than the 2.57 threshold in Appendix A. This allows us to observe
false discoveries that overcome the threshold more frequently than under 2.57. This is important for the estimation
of pg in the model. For more details on the selection of the threshold z-statistic, seem 20144d).

Model implied quantiles are difficult (and most likely infeasible) to calculate analytically. We obtain them through
simulations. In particular, for a fixed set of parameters, we simulate 5,000 independent samples of 7-statistics.
For each sample, we calculate the four summary statistics. The median of these summary statistics across the
5,000 simulations is taken as the model implied statistics.
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They can be shown to have the same magnitude as the inverses of the variances
of the corresponding model implied sample statistics across a wide range of
parameter values and should help improve estimation efﬁciency

We estimate the three parameters (A, pg, and M) in the model and choose
to calibrate the correlation coefficient p. In particular, for a given level of
correlation p, we numerically search for the model parameters (A, py, M) that
minimize the objective function D(X, pg, M, p).

We choose to calibrate the amount of correlation because the correlation
coefficient is likely to be weakly identified in this framework. Ideally, to
have a better identification of p, we would like to have 7-statistics that are
generated from samples that have varying degrees of overlap@ We do not
allow heterogeneity in sample periods in either our estimation framework (i.e.,
all z-statistics are generated from samples that cover the same period) or our
data (we do not record the specific period for which the ¢-statistic is generated).
As aresult, our results are best interpreted as the estimated #-statistic thresholds
for a hypothetical level of correlation.

To investigate how correlation affects multiple testing, we follow an intuitive
simulation procedure. In particular, fixing A, po, and M at their estimates, we
know the data-generating process for the cross-section of returns. Through
simulations, we are able to calculate the previously defined type I error rates
(i.e., FWER and FDR) for any given threshold #-statistic. We search for the
optimal threshold z-statistic that exactly achieves a prespecified error rate.

4.2 Results
Our estimation framework assumes a balanced panel with M factors and N
periods of returns. We need to assign a value to N. Published papers usually
cover a period ranging from twenty to fifty years. In our framework, the
choice of N does not affect the distribution of 7; under the null hypothesis
(i.e., u; =0) but will affect 7; under the alternative hypothesis (i.e., u; >0).
When u; is different from zero, 7; has a mean of M,-/(a/«/ﬁ ). A larger N
reduces the noise in returns and makes it more likely for 7; to be significant.
To be conservative (i.e., less likely to generate significant z-statistics under the
alternative hypotheses), we set N at 240 (i.e., twenty years). Other specifications
of N change the estimate of A but leave the other parameters almost intact. In
particular, the threshold #-statistics are little changed for alternative values of N.
The results are presented in Table [3 Across different correlation levels, A
(the mean parameter for the exponential distribution that represents the mean

We do not pursue a likelihood-based estimation. Given that we have more than a thousand factors and each of
them is associated with an indicator variable that is missing, the likelihood function involves high-dimensional
integrals and is difficult to optimize. This leads us to a GMM-based approach.

Intuitively, 7-statistics that are based on similar sample periods are more correlated than #-statistics that are
based on distinct sample periods. Therefore, the degree of overlap in sample period helps identify the correlation
coefficient. See] @013 for a similar argument on measuring the correlations among fund returns.
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Table 5
Estimation results: A model with correlations

Panel A: r = 1/2 (baseline)

t-statistic

P Po M%) M FWER(5%) FWER(1%) FDR(5%) FDR(1%)
0 0.396 0.550 1,297 3.89 4.28 2.16 2.88
0.2 0.444 0.555 1,378 391 4.30 227 2.95
0.4 0.485 0.554 1,477 3.81 4.23 2.34 3.05
0.6 0.601 0.555 1,775 3.67 4.15 243 3.09
0.8 0.840 0.560 3,110 3.35 3.89 2.59 3.25
Panel B: r = 2/3 (more unobserved tests)

0 0.683 0.550 2,458 4.17 4.55 2.69 3.30
0.2 0.722 0.551 2,696 4.15 4.54 2.76 3.38
0.4 0.773 0.552 3,031 4.06 445 2.80 3.40
0.6 0.885 0.562 4,339 3.86 4.29 291 3.55
0.8 0.922 0.532 5,392 3.44 4.00 2.75 3.39

‘We estimate the model with correlations. r is the assumed proportion of missing factors with a ¢-statistic between
1.96 and 2.57. Panel A shows the results for the baseline case in which r=1/2, and panel B shows the results
for the case in which r=2/3. p is the correlation coefficient between two strategy returns in the same period.
po is the probability of having a strategy that has a mean of zero. A is the mean parameter of the exponential
distribution for the monthly means of the true factors. M is the total number of trials.

returns for true factors) is consistently estimated at 0.55% per month. This
corresponds to an annual factor return of 6.6%. Therefore, we estimate the
average mean returns for truly significant factors to be 6.6% per annum. Given
that we standardize factor returns by an annual volatility of 15%, the average
annual Sharpe ratio for these factors is 0.44 (or monthly Sharpe ratio of 0.13)
For the other parameter estimates, both py and M are increasing in p.
Focusing on the baseline case in panel A and at p=0, we estimate that
researchers have tried M =1,297 factors and 60.4% (=1—0.396) are true
discoveries. When p is increased to 0.60, we estimate that a total of M =1,775
factors have been tried and around 39.9% (=1—0.601) are true factors.
Turning to the estimates of threshold #-statistics and focusing on FWER,
we see that they are not monotonic in the level of correlation. Intuitively, two
forces are at work in driving these threshold #-statistics. On the one hand, both
po and M are increasing in the level of correlation. Therefore, more factors—
both in absolute value and in proportion—are drawn from the null hypothesis.
To control the occurrences of false discoveries based on these factors, we need
a higher threshold z-statistic. On the other hand, a higher correlation among
test statistics reduces the required threshold #-statistic. In the extreme case
when all test statistics are perfectly correlated, we do not need multiple testing
adjustment at all. These two forces work against each other and result in the
nonmonotonic pattern for the threshold z-statistics under FWER. For FDR,

Our estimates are robust to the sample percentiles that we choose to match. For instance, fixing the level of
correlation at 0.2, when we use the 10th together with the 50th and 90th percentiles of the sample of #-statistics,
our parameter estimate is (pg, A, M)=(0.390,0.548,1,287). Alternatively, when we use the 80th together with the
20th and 50th percentiles of the sample of z-statistics, our parameter estimate is (pg, A, M)=(0.514,0.579, 1,493).
Both estimates are in the neighborhood of our baseline model estimates.
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it appears that the impact of larger pyo and M dominates so that the threshold
t-statistics are increasing in the level of correlation.

Across various correlation specifications, our estimates show that in general
a t-statistic of 3.9 and 3.0 is needed to control FWER at 5% and FDR at 1%,
respectively@ Notice that these numbers are not far away from our previous
estimates of 3.78 (Holm adjustment that controls FWER at 5%) and 3.38 (BHY
adjustment that controls FDR at 1%). However, these similar numbers are
generated through different mechanisms. Our current estimate assumes a certain
level of correlation among returns and relies on an estimate of more than 1,300
for the total number of factor tests. On the other hand, our previous calculation
assumes that the 316 published factors are all the factors that have been tried
but does not specify a correlation structure.

4.3 How large is p?
Our sample has limitations in making a direct inference on the level of
correlation. To give some guidance, we provide indirect evidence on the
plausible levels of p.

First, the value of the optimized objective function sheds light on the level
of p. Intuitively, a value of p that is more consistent with the data-generating
process should resultin alower optimized objective function. Across the various
specifications of p in Table 5, we find that the optimized objective function
reaches its lowest point when p =0.2. Therefore, our #-statistic sample suggests
a low level of correlation. However, this evidence is only suggestive given the
weak identification of p in our model.

Second, we draw on external data source to provide inference. In
particular, we analyze the S&P CAPITAL IQ database, which includes detailed
information on the time-series of returns of over 400 factors for the U.S. equity
market. We estimate the average pairwise correlation among these factors to
be 0.15 for the 1985-2014 period.

Finally, existing studies in the literature provide guidance on the level of
correlation.lM_d&an_an_d_hn_tj_fﬂg!ggg 1 j) estimate the correlation among anomaly
returns to be around 0.05. GLQQ[LHan_d_an_d_Zh_ané (]21)_]_1&) focus on accounting-
based factors and find the average correlation to be between 0.06 and 0.20.
Focusing on mutual fund returns Bmasjgaﬂlﬂ_an.dﬂetmﬂﬂ (]2&111) argue for
a correlation of zero among fund returns (i.e., excess returns against benchmark
factors), whilelEerson and Chen (2013) calibrate this number to be between 0.04
and 0.09.

Overall, we believe that the average correlation among factor returns is in
the neighborhood of 0.20.

To save space, we choose not to discuss the performance of our estimation method.m ©0144)
provide a detailed simulation study of our model.
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4.4 How many true factors are there?

The number of true discoveries using our method seems high given that most
of us believe as a priori that there are only a handful of true systematic risk
factors. However, many of these factors that our method deems statistically
true have tiny Sharpe ratios. For example, around 70% of them have a Sharpe
ratio that is less than 0.5 per annum. From a modeling perspective, we impose
a monotonic exponential density for the mean returns of true factors. Hence, by
assumption, the number of discoveries will be decreasing in the mean return.

Overall, statistical evidence can only get us so far in reducing the number
of false discoveries. This is a limitation not only to our framework but also
probably in any statistical framework that relies on individual p-values. To see
this, suppose the smallest z-statistic among true risk factors is 3.0 and assume
our sample covers fifty risk factors that all have a #-statistic above 3.0. Then
based on statistical evidence only, it is impossible to rule out any of these fifty
factors from the list of true risk factors.

We agree that a further scrutiny of the factor universe is a valuable exercise.
There are at least two routes we can take. One route is to introduce additional
testable assumptions that a systematic risk factor has to satisfy to claim
significance. [Pukthuanthong and Roll (2014) use the principle components
of the cross-section of realized returns to impose such assumptions. The other
route is to incrementally increase the factor list by allowing different factors to

crowd each other out. [Harvey and Liu (2014d) provide such a framework. We

expect both lines of research to help in culling the number of factors.

Conclusion

At least 316 factors have been tested to explain the cross-section of expected
returns. Most of these factors have been proposed over the last ten years. Indeed,
M) refers to this as “a zoo of new factors.” Our paper argues that
it is a serious mistake to use the usual statistical significance cutoffs (e.g., a
t-statistic exceeding 2.0) in asset pricing tests. Given the plethora of factors, and
the inevitable data mining, many of the historically discovered factors would
be deemed “significant” by chance.

There is an important philosophical issue embedded in our approach. Our
threshold cutoffs increase through time as more factors are data mined.
However, data mining is not new. Why should we have a higher threshold
for today’s data mining than for data mining in the 1980s? We believe there are
three reasons for tougher criteria today. First, the low-hanging fruit has already
been picked. That is, the rate of discovering a true factor has likely decreased.
Second, there is a limited amount of data. Indeed, there is only so much you
can do with the CRSP database. In contrast, in particle physics, it is routine
to create trillions of new observations in an experiment. We do not have that
luxury in finance. Third, the cost of data mining has dramatically decreased.
In the past, data collection and estimation were time intensive, so it was more
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likely that only factors with the highest priors—potentially based on economic
first principles—were tried.

Our paper presents three conventional multiple testing frameworks and
proposes a new one that particularly suits research in financial economics.
While these frameworks differ in their assumptions, they are consistent in their
conclusions. We argue that a newly discovered factor today should have a
t-statistic that exceeds 3.0. We provide a time-series of recommended “cutoffs”
from the first empirical test in 1967 through to present day. Many published
factors fail to exceed our recommended cutoffs.

While a #-statistic of 3.0 (which corresponds to a p-value of 0.27%) seems
like a very high hurdle, we also argue that there are good reasons to expect
that 3.0 is too low. First, we only count factors that are published in prominent
journals and we sample only a small fraction of the working papers. Second,
there are surely many factors that were tried by empiricists, failed, and never
made it to publication or even a working paper. Indeed, the culture in financial
economics is to focus on the discovery of new factors. In contrast with other
fields, such as medical science, it is rare to publish replication studies focusing
on only existing factors. Given that our count of 316 tested factors is surely too
low, this means the 7-statistic cutoff is likely even higher

Should a ¢-statistic of 3.0 be used for every factor proposed in the future?
Probably not. A case can be made that a factor developed from first principles
should have a lower threshold #-statistic than a factor that is discovered as
a purely empirical exercise. Nevertheless, a z-statistic of 2.0 is no longer
appropriate—even for factors that are derived from theory.

In medical research, the recognition of the multiple testing problem has
led to the disturbing conclusion that “most claimed research findings are
false” m )). Our analysis of factor discoveries leads to the same
conclusion —many of the factors discovered in the field of finance are likely false
discoveries: of the 296 published significant factors, 158 would be considered
false discoveries under Bonferonni, 142 under Holm, 132 under BHY (1%),
and 80 under BHY (5%). In addition, the idea that there are so many factors is
inconsistent with the principal component analysis, where, perhaps there are
five “statistical” common factlzcgigriving time-series variation in equity returns
(Ahn, Horenstein, and Wang[2012).

The assumption that researchers follow the rules of classical statistics
(e.g., randomization, unbiased reporting) is at odds with the notion of
individual incentives, ironically, one of the fundamental premises in economics.
Importantly, the optimal amount of data mining is not zero since some data
mining produces knowledge. The key, as argued bym M), is to design
appropriate statistical methods to adjust for biases, not to eliminate research

In astronomy and physics, even higher threshold z-statistics are often used to control for testing multiplicity. For
instance, the high profile discovery of Higgs Boson has a 7-statistic of more than 5 (p-value less than 0.0001%).
See 013, [CMS Collaboratiod @013). and [Harvey and Ti] QOT4H).
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initiatives. The multiple testing framework detailed in our paper is true to this
advice.
Our research quantifies the warnings of both [Eamd (1991l) and [Schwer(
). We attempt to navigate the zoo and establish new benchmarks to guide
empirical asset pricing tests.

Appendix A Multiple Testing When the Number of Tests (}/) Is Unknown

The empirical difficulty in applying standard p-value adjustments is that we do not observe factors
that have been tried, found to be insignificant and then discarded. We attempt to overcome this
difficulty using a simulation framework. The idea is first to simulate the empirical distribution of
p-values for all experiments (published and unpublished) and then to adjust the p-values based on
these simulated samples.

First, we assume the test statistic (¢-statistic, for instance) for any experiment follows a certain
distribution D (e.g., exponential distribution) and the set of published works is a truncated D
distribution. Based on the estimation framework for truncated distributions@ we estimate the
parameters of distribution D and the total number of trials M. Next, we simulate many sequences
of p-values, each corresponding to a plausible set of p-value realizations of all trials. To account for
the uncertainty in parameter estimates of D and M, we simulate the p-value sequences based on
the distribution of estimated D and M. Finally, for each p-value, we calculate the adjusted p-value
based on a sequence of simulated p-values. The median is taken as the final adjusted p-value.

A.1 Using Truncated Exponential Distribution to Model the ¢-statistic Sample

Truncated distributions have been used to study hidden tests (i.e., publication bias) in medical
researchF] The idea is that studies reporting significant results are more likely to get published.
Assuming a threshold significance level or 7-statistic, researchers can, to some extent, infer the
results of unpublished works and gain an understanding of the overall effect of a drug or treatment.
However, in medical research, insignificant results are still viewed as an indispensable part of the
overall statistical evidence and are given much more prominence than in the financial economics
research. As a result, medical publications are more likely to report insignificant results. This makes
applying the truncated distribution framework to medical studies difficult as there is no clear-cut
threshold value@ In this sense, the truncated distributional framework suits our study better—1.96
is the obvious hurdle that research needs to overcome to be published.

On the other hand, not all tried factors with a -statistic above 1.96 are reported. In the
quantitative asset management industry, significant results are not published—they are considered
“trade secrets.” For the academic literature, factors with “borderline” ¢-statistics are difficult to
get published. Thus, our sample is likely missing a number of factors that have z-statistics just
over 1.96. To make our inference robust, for our baseline result, we assume all tried factors with
t-statistics above 2.57 are observed and ignore those with z-statistics in the range of (1.96, 2.57).
We experiment with alternative ways to handle #-statistics in this range.

Many distributions can be used to model the z-statistic sample. One restriction that we think
any of these distributions should satisfy is the monotonicity of the density curve. Intuitively, it
should be easier to find factors with small #-statistics than with large ones@ ‘We choose to use the
simplest distribution that incorporates this monotonicity condition: the exponential distribution.

See[Heckmad (I979) and[Greend 2008), Chapter 24).
See[Beggand Berli] {T983) and [Mhormion and T.ed £000).

‘When the threshold value is unknown, it must be estimated from the likelihood function. However, such estimation
usually incurs large estimation errors.

This basic scarcity assumption is also the key ingredient in our model in Section 5.
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Panel A: Baseline t-ratio > 2.57 sample
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Figure A.1

Density plots for ¢-statistic

Empirical density and fitted exponential density curves based on three different samples. Panel A is based on
the baseline sample that includes all 7-statistics above 2.57. Panel B is based on the original sample with all
t-statistics above 1.96. Panel C is based on the augmented sample that adds the subsample of observations that
fall in between 1.96 and 2.57 to the original ¢-statistic sample. It doubles the number of observations within the
range of 1.96 and 2.57 in the original sample. A is the single parameter for the exponential curve. It gives the
population mean for the unrestricted (i.e., nontruncated) distribution.

Panel A of Figure ATl presents the histogram of the baseline ¢-statistic sample and the fitted
truncated exponential curvePY The fitted density closely tracks the histogram and has a population
mean of 2.07@ Panel B is a histogram of the original z-statistic sample, which, as we discussed
before, is likely to underrepresent the sample with a #-statistic in the range of (1.96, 2.57). Panel C
is the augmented #-statistic sample with the ad hoc assumption that our sample covers only half of
all factors with #-statistics between 1.96 and 2.57. The population mean estimate is 2.22 in panel

There are a few very large #-statistics in our sample. We fit the truncated exponential model without dropping any
large #-statistics. In contrast to the usual normal density, exponential distribution is better at modeling extreme
observations. In addition, extreme values are pivotal statistics for heavy-tailed distributions and are key for model
estimation. While extreme observations are included for model estimation, we exclude them in Figure B to
better focus on the main part of the z-statistic range.

Our truncated exponential distribution framework allows a simple analytical estimate for the population mean
of the exponential distribution. In particular, let ¢ be the truncation point and the f-statistic sample be {#; }f\i 1

The mean estimate is given by A=1/(7 —c), where f:(Zf\;l t;)/N is the sample mean.
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B and 1.93 in panel C. As expected, the underrepresentation of relatively small #-statistics results
in a higher mean estimate for the #-statistic population. We think the baseline model is the best
among all three models as it not only overcomes the missing data problem for the original sample,
but also avoids guessing the fraction of missing observations in the 1.96-2.57 range. We use those
model estimates for the follow-up analysis.

Using the baseline model, we calculate other interesting population characteristics that are key
to multiple hypothesis testing. Assuming independence, we model observed z-statistics as draws
from an exponential distribution with mean parameter ’ and a known cutoff point of 2.57. The
proportion of unobserved factors is then estimated as

P(unobserved)=(2.57; 1) =1 —exp(—2.57/4)=71.1%, (A1)

where ®(c; ) is the cumulative distribution function evaluated at ¢ for a exponential distribution
with mean X. Our estimates indicate that the mean absolute value of the ¢-statistic for the underlying
factor population is 2.07 and about 71.1% of tried factors are discarded. Given that 238 out of the
original 316 factors have a z-statistic exceeding 2.57, the total number of factor tests is estimated
to be 824 (=238/(1—71.1%)) and the number of factors with a ¢-statistic between 1.96 and 2.57
is estimated to be 82@ Since our z-statistic sample covers only 57 such factors, roughly 30%
(=(82-57)/82) of t-statistics between 1.96 and 2.57 are hidden.

A.2 Simulated Benchmark ¢-statistics under Independence
The truncated exponential distribution framework helps us approximate the distribution of
t-statistics for all factors, both published and unpublished. We can then apply the aforementioned
adjustment techniques to this distribution to generate new ¢-statistic benchmarks. However, there
are two sources of sampling and estimation uncertainty that affect our results. First, our #-statistic
sample may underrepresent all factors with 7-statistics exceeding 2.57E Hence, our estimates of the
total trials are biased (too low), which affects our calculation of the benchmarks. Second, estimation
errors in the truncated exponential distribution can affect our benchmark #-statistics. Although we
can approximate the estimation error through the usual asymptotic distribution theory for MLE, it
is unclear how this error affects our benchmark 7-statistics. This is because #-statistic adjustment
procedures usually depend on the entire #-statistic distribution and so standard transformational
techniques (e.g., the delta method) do not apply. Moreover, we are not sure whether our sample is
large enough to trust the accuracy of asymptotic approximations.

Given these concerns, we propose a four-step simulation framework that incorporates these
uncertainties.

Step I Estimate 1 and M based on a new ¢-statistic sample with size r x R.

Suppose our current #-statistic sample size is R and it only covers a fraction of 1/r of
all factors. We sample r x R t-statistics (with replacement) from the original #-statistic
sample. Based on this new ¢-statistic sample, we apply the above truncated exponential
distribution framework to the z-statistics and obtain the parameter estimates A for the
exponential distribution. The truncation probability is calculated as P=d(2.57;1). We can
then estimate the total number of trials by

~ rR

M= ~.

1-P

Directly applying our estimate framework to the original sample that includes all 7-statistics above 1.96, the
estimated total number of factor tests would be 713. Alternatively, assuming our sample only covers half of the
factors with z-statistics between 1.96 and 2.57, the estimated number of factors is 971.

2 This will happen if we miss factors published by the academic literature or we do not have access to the “trade

secrets” by industry practitioners.
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Table A.1

Benchmark ¢-statistics when M is estimated

Sampling ratio M Bonferroni Holm BHY(1%) BHY(5%)

(r) [10% 90%] [10%  90%] [10% 90%] [10%  90%] [10%  90%]

1 817 4.01 3.96 3.68 3.17
[731 947 ] [3.98 4.04] [392 4.00] [3.63 3.74] [3.12  3.24]

1.5 1,234 4.11 4.06 3.70 3.20
[1,128 1,358] [4.08 4.13] [403 4.091 [3.66 3.74] [3.16  3.24]

2 1,646 4.17 4.13 3.71 3.21

(1,531 1,786] [4.15 4.19] [411 4.15] [3.67 375] [3.18 3.25]

The estimated total number of factors tried (M) and the benchmark t-statistic percentiles based on a truncated
exponential distribution framework. Our estimation is based on the original #-statistic sample truncated at 2.57.
The sampling ratio is the assumed ratio of the true population size of ¢-statistics exceeding 2.57 over our current
sample size. Both Bonferroni and Holm have a significance level of 5%.

Step II Calculate the benchmark #-statistic based on a random sample generated from A
and M.

Based on the previous step estimate of Aand M, we generate a random sample of #-statistics
for all tried factors. We then calculate the appropriate benchmark #-statistic based on this
generated sample.

Step III Repeat Step II 10,000 times to obtain the median benchmark ¢-statistic.

We take the median as the final benchmark z-statistic corresponding to the parameter
estimate (A, M).

Step IV Repeat Steps I-III 10,000 times to generate a distribution of benchmark ¢-statistics.

Repeat Steps I-1II 10,000 times, each time with a newly generated z-statistic sample as
in Step L. For each repetition, we obtain a benchmark z-statistic #; corresponding to the

parameter estimates (ii,ﬂ;l[). In the end, we have a collection of benchmark #-statistics
(111290
i

To see how our procedure works, notice that Steps II and III calculate the theoretical benchmark
t-statistic for a t-statistic distribution characterized by (A, M). As a result, the outcome is simply
one number and there is no uncertainty around it. Uncertainties are incorporated in Steps I and IV.
In particular, by repeatedly sampling from the original z-statistic sample and re-estimating A and
M each time, we take into account the estimation error of the truncated exponential distribution.
Also, under the assumption that neglected significant z-statistics follow the empirical distribution
of our #-statistic sample, by varying r, we can assess how this underrepresentation of our #-statistic
sample affects results.

Table [A1] shows estimates of M and benchmark z-statistics. When r =1, the median estimate
for the total number of trials is 817@ almost the same as our previous estimate of 820 based on
the original sample. Unsurprisingly, the Bonferroni implied benchmark ¢-statistic (4.01) is larger
than 3.78, which is what we obtain when ignoring unpublished works. The Holm implied #-statistic
(3.96), while not necessarily increasing in the number of trials, is also higher than before (3.64).
The BHY implied #-statistic increases from 3.39 to 3.68 at 1% significance and from 2.78 to 3.18
at 5% significance. As r increases, the sample size M and the benchmark z-statistics for all four

Our previous estimate of 820 is a one-shot estimate based on the truncated sample. The results in Table A.1 are
based on repeated estimates based on resampled data: we resample many times, and 817 is the median of all
these estimates. It is close to the one-shot estimate.
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types of adjustments increase. When r doubles, the estimate of M also approximately doubles
and the Bonferroni and Holm implied #-statistics increase by about 0.2, whereas the BHY implied
t-statistics increase by around 0.03 (under both significance levels).

Appendix B A Bayesian Approach to Multiple Tests

The following framework is adopted from m (M) and highlights the key issues

in Bayesian multiple hypothesis testingE More sophisticated generalizations modify the basic

model but are unlikely to change the fundamental hierarchical testing structurePd We use this

framework to explain the pros and cons of performing multiple testing in a Bayesian framework.
The hierarchical model is as follows:

.
HL. (X;|ui,02,7)~ N(yipi,o2),

iid iid
H2. ;T2 ~ N(0,7%),yi|po ~ Ber(1—py),

H3. (12,02 ~mi(x?,07), po~ma(po).
‘We explain each step and the notation in detail

H1. X; denotes the average return generated from a long-short trading strategy based on a certain
factor; w; is the unknown mean return; o2 is the common variance for returns; and yi 18
an indicator function, with y; =0 indicating a zero factor mean. y; is the counterpart of the
reject/accept decision in the usual (frequentists’) hypothesis testing framework.

H1 therefore says that factor returns are independent conditional on mean y;u; and
common variance o2, with ;=0 indicating that the factor is spurious. The common
variance assumption may look restrictive, but we can always scale factor returns by
changing the dollar investment in the long-short strategy. The crucial assumption is
conditional independence of average strategy returns. A certain form of conditional
independence is unavoidable for Bayesian hierarchical modelinﬂ—probably unrealistic
for our application. We can easily think of scenarios in which average returns of different
strategies are correlated, even when population means are known. For example, it is well
known that two of the most popular factors, them @) HML and SMB,
are correlated.

H2. The first-step population parameters ;s and y;’s are assumed to be generated from two other
parametric distributions: ;s are independently generated from a normal distribution, and
y;’s are simply generated from a Bernoulli distribution, that is, y; =0 with probability pg.

The normality assumption for the p;’s requires the reported X;’s to randomly represent
either long/short or short/long strategy returns. If researchers have a tendency to report

We choose to present the full Bayes” approach. An alternative approach—the empirical Bayes’ approach—is
closely related to the BHY method that controls the false-discovery rate (FDR). See[Storey (003) and Efron and
Tibshirani ) for the empirical Bayes’ interpretation of FDR. For details on the empirical Bayes’ method,
see[Efronetall ), and[Efrod ), 2008). For an in-depth investigation of the differences between the full
Bayes’ and the empirical-Bayes’ approach, see[Scottand Berged Z010). For an application of the empirical-Bayes’
method in finance, see [Markowitz and X4 (1994).

SeelMeng and Dempsted (987) and[Whittemord 007) for more works on the Bayesian approach in hypothesis

testing.

Conditional independence is crucial for the Bayesian framework and the construction of posterior likelihoods.
Although it can be extended to incorporate special dependence structures, there is no consensus on how to
systematically handle dependence. See[Brown etall @014) for a discussion of independence in Bayesian multiple
testing. They also propose a spatial dependence structure into a Bayesian testing framework.
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positive abnormal returns, we need to randomly assign to these returns plus/minus signs.
The normality assumptions in both Hl and H2 are important as they are necessary to
guarantee the properness of the posterior distributions.

H3. Finally, the two variance variables 2 and o2 follow a joint prior distribution 77; and the
probability pg follows a prior distribution ;.

Objective or “neutral” priors for 71 and m can be specified as:
m(t%6%) o« (240272,
m2(po) =  Uniform(0, 1).

Under this framework, the joint conditional likelihood function for X;’s is simply a product
of individual normal likelihood functions and the posterior probability that y; =1 (discovery)
can be calculated by applying Bayes’ law. When the number of trials is large, to calculate the
posterior probability, we need efficient methods, such as importance sampling, which involves
high-dimensional integrals.

One benefit of a Bayesian framework for multiple testing is that the multiplicity penalty term is
already embedded. In the frequentists’ framework, this is done by introducing FWER or FDR. In a
Bayesian framework, the so-called “Ockham’s razor effect’@ automatically adjusts the posterior

robabilities when more factors are simultaneously tested P Simulation studies in|
?m) show how the discovery probabilities for a few initial signals increase when more noise is
added to the original sample.

However, there are several shortcomings for the Bayesian approach. Some of them are specific to
the context of our application and the others are generic to the Bayesian multiple testing framework.

At least two issues arise when applying the Bayesian approach to our factor selection problem.
First, we do not observe all tried factors. While we back out the distribution of hidden factors
parametrically under the frequentist framework, it is not clear how the missing data and the
multiple testing problems can be simultaneously solved under the Bayesian framework. Second,
the hierarchical testing framework may be overly restrictive. Both independence and normality
assumptions can have a large impact on the posterior distributions. Although normality can be
somewhat relaxed by using alternative distributions, the scope of alternative distributions is limited
as there are only a few distributions that can guarantee the properness of the posterior distributions.
Independence, as we previously discussed, is likely to be violated in our context. In contrast, the
three adjustment procedures under the frequentists’ framework are able to handle complex data
structures since they rely on only fundamental probability inequalities to restrict their objective
function—the type I error rate.

There are a few general concerns about the Bayesian multiple testing framework. First, it is not
clear what to do after obtaining the posterior probabilities for individual hypotheses. Presumably,
we should find a cutoff probability P and reject all hypotheses that have a posterior discovery
probability larger than P. But then we return to the initial problem of finding an appropriate cutoff
p-value, which is nota clear task.m (M) suggest a decision-theoretic approach that
chooses the cutoff P by minimizing a loss function. The parameters of the loss function, however,
are again subjective. Second, the Bayesian posterior distributions are computationally challenging.
We document 300 factors, but there are potentially many more if missing factors are taken into
account. When M gets large, importance sampling is a necessity. However, results of importance
sampling rely on simulations and subjective choices of the centers of the probability distributions

See[lefTerys and Berge] (T992).

Intuitively, more complex models are penalized because extra parameters involve additional sources of
uncertainty. Simplicity is rewarded in a Bayesian framework as simple models produce sharp predictions. See
the discussions in
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for random variables. Consequently, two researchers trying to calculate the same quantity might
obtain very different results. Moreover, in multiple testing, the curse of dimensionality generates
additional risks for Bayesian statistical inference[® These technical issues create additional hurdles
for the application of the Bayesian approach.
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