Artificial Intelligence

Rethinking Streaming Machine Learning Evaluation

May, 2022

Abstract

While most work on evaluating machine learning (ML) models focuses on computing accuracy on batches of data, tracking accuracy alone in a streaming setting (i.e., unbounded, timestamp-ordered datasets) fails to appropriately identify when models are performing unexpectedly. In this position paper, we discuss how the nature of streaming ML problems introduces new real-world challenges (e.g., delayed arrival of labels) and recommend additional metrics to assess streaming ML performance.

Machine-learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram

June, 2022

Abstract

Objectives 

Early detection is of crucial importance for prevention of type 2 diabetes and pre-diabetes. Diagnosis of these conditions relies on the oral glucose tolerance test and haemoglobin A1c estimation which are invasive and challenging for large-scale screening. We aimed to combine the non-invasive nature of ECG with the power of machine learning to detect diabetes and pre-diabetes.

Methods 

Pages