Data Science Using Open Souce Tools Decision Trees and Random Forest Using R

Jennifer Evans

Clickfox
jennifer.evans@clickfox.com

January 14, 2014

Text Questions to Twitter Account

JenniferE_CF

Example Code in R

All the R Code is Hosted -includes additional code examples-

www.clickfox.com/ds_rcode

Overview

(1) Data Science a Brief Overview
(2) Data Science at Clickfox
(3) Data Preparation
(4) Algorithms

- Decision Trees
- Knowing your Algorithm
- Example Code in R
(5) Evaluation
- Evaluating the Model
- Evaluating the Business Questions
(6) Kaggle and Random Forest
(7) Visualization
(8) Recommended Reading

Data Science a Brief Overview

What is Data Science?

The meticulous process of iterative testing, proving, revising, retesting, resolving, redoing, programming (because you got smart here and thought automate), debugging, recoding, debugging, tracing, more debugging, documenting (maybe should have started here...) analyzing results, some tweaking, some researching, some hacking, and start over.

Data Science at Clickfox

Data Science at Clickfox

Software Development

Activly engaged in development of product capabilities in ClickFox Experience Analytics Platform (CEA).

Client Specific Analytics

Engagements in client specific projects.

Force Multipliers

Focus on enabling everyone to be more effective at using data to make decisions.

Will it Rain Tomorrow?

Data Preparation

Receive the Data

Raw Data

Data Munging

Begin Creating Analytic Data Set

Data Munging

Data Munging and Meta Data Creation

Data Preparation

Checking that Data Quality has been Preserved

Bad Data

Types of bad data

- missing, unknown, does not exist
- inaccurate, invalid, inconsistent - false records, or wrong information
- corrupt, wrong character encoding
- poor interpretation, often because lack of context.
- polluted - too much data and overlook what is important

Bad Data

A lot can go wrong in the data collection process, the data storage process, and the data analysis process.

- Nephew and the movie survey
- Protection troops and flooded with information, overlooked that the group gathering nearby was women and children aka. Civilians.
- Manufacturing with acceptable variance, but every so often the measurement machine was bumped, causing miss measurements
- Chemists were meticulous about data collection, but inconsistent with data storage. Used flat files and spreadsheets. They did not have a central data center. The data base grew over time. e.g. Threshold limits listed as zero and less than some threshold number.

Bad Data

Parrot helping you write code...

Not to mention all the things that we can do to really screw things up.
"The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data"
~John Tukey

Final Analytic Data Set

Will it Rain Tomorrow?

Will it Rain Tomorrow?

Example (Variables)

```
1 > names(ds)
```

2 [1] "Date"
[5] "Rainfall"
[17] "Pressure3pm"
[21] "Temp3pm"
[9] "WindGustSpeed"
[13] "WindSpeed3pm"
"Location"
"Evaporation"
"WindDir9am"
"Humidity9am"
"Cloud9am"
"RainToday"
"MinTemp"
"Sunshine"
"WindDir3pm"
"Humidity3pm"
"Cloud3pm"
"RISK_MM"
"MaxTemp"
"WindGustDir"
"WindSpeed9am"
"Pressure9am"
"Temp9am"
"RainTomorrow"

Will it Rain Tomorrow?

Example (First Four Rows of Data)

Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir

1	$2007-11-01$	Canberra	8.0	24.3	0.0	3.4	6.3	NW
2	$2007-11-02$	Canberra	14.0	26.9	3.6	4.4	9.7	ENE
3	$2007-11-03$	Canberra	13.7	23.4	3.6	5.8	3.3	NW
4	$2007-11-04$	Canberra	13.3	15.5	39.8	7.2	9.1	NW

WindGustSpeed WindDir9am WindDir3pm WindSpeed9am WindSpeed3pm Humidity9am

1	30	SW	NW	6	20	68
2	39	E	W	4	17	80
3	85	N	NNE	6	6	82
4	54	WNW	W	30	24	62

Humidity3pm Pressure9am Pressure3pm Cloud9am Cloud3pm Temp9am Temp3pm

1	29	1019.7	1015.0	7	7	14.4	23.6
2	36	1012.4	1008.4	5	3	17.5	25.7
3	69	1009.5	1007.2	8	7	15.4	20.2
4	56	1005.5	1007.0	2	7	13.5	14.1

RainToday RISK_MM RainTomorrow

1	No	3.6	Yes
2	Yes	3.6	Yes
3	Yes	39.8	Yes
4	Yes	2.8	Yes

Data Checking

Make sure that the values make sense in the context of the field.

- Dates are in the date field.
- A measurement field has numerical values
- Counts of occurrences should be zero or greater.

head(ds)

	Date		cation	MinT	emp	MaxTemp	Rainfall		porati		Suns	hine	WindGustDir	
1	2007-11-01		nberra		8.0	24.3	0.0			3.4		6.3		NW
2	2007-11-02	Can	nberra		4.0	26.9	3.6			4.4		9.7		ENE
3	2007-11-03	Can	nberra		3.7	23.4	3.6			5.8		3.3		NW
4	2007-11-04	Can	nberra		3.3	15.5	39.8			7.2		9.1		MW
5	2007-11-05	Can	nberra		7.6	16.1	2.8			5.6		10.6		SSE
6	2007-11-06	Can	nberra		6.2	16.9	0.0			5.8		8.2		SE
	WindGustSpe	eed	WindD	ir9am		ndDir3pm	WindSpeed	9am	Wind	Spee	d3pm	Hu	idity 9 am	
1		30		SW		MW		6			20		68	
2		39		E		W		4			17		80	
3		85		N		NNE		6			6		82	
4		54		WMW		W		30			24		62	
5		50		SSE		ESE		20			28		68	
6		44		SE		E		20			24		70	
	Humidity3pm		ressure	9am	Pres	ssure 3 pm	Cloud9am	Clou	d3pm	Tem	m9am	Temp	p3pm	
1	29			19.7		1015.0	7		7		14.4		23.6	
2	36			12.4		1008.4	5		3		17.5		25.7	
3	69			09.5		1007.2	8		7		15.4		20.2	
4	56			05.5		1007.0	2		7		13.5		14.1	
5	49			18.3		1018.5	7		7		11.1		15.4	
6	57		10	23.8		1021.7	7		5		10.9		14.8	
	RainToday R	RISK_	MM R	RainTo	morr	row								
1	No		3.6			Yes								
2	Yes		3.6			Yes								
3	Yes		39.8			Yes								
4	Yes		2.8			Yes								
5	Yes		0.0			No								
6	No		0.2			No								

Data Checking

There are numeric and categoric variables.

Data Checking

Check the max/min do they make sense? What are the ranges? Do the numerical values need to be normalized?

summary(ds)

Data Checking

Plot variables against one another.

R Code

Example (Scatterplot)

pairs(${ }^{\sim}$ MinTemp+MaxTemp+Rainfall+Evaporation, data $=$ ds, main="Simple Scatterplot Matrix")

Simple Scatterplot Matrix

Simple Scatterplot Matrix

Simple Scatterplot Matrix

Data Checking

Create a histogram of numerical values in a data field, or kernel density estimate.

R Code

Example (Histogram)

histogram(ds\$MinTemp, breaks=20, col="blue")

MinTemp

R Code

Example (Kernel Density Plot)
 plot(density(ds\$MinTemp))

MinTemp

Data Checking

Kernel Density Plot for all Numerical Variables

density.default($\mathrm{x}=\mathrm{ds} \$$ Rainfall)

density.default($\mathrm{x}=$ ds.complete\$WindSpeed9am)

density.default($\mathbf{x}=\mathbf{d s} \$$ WindSpeed3pm)

density.default($x=$ ds\$Humidity9am)

density.default($\mathrm{x}=\mathrm{ds} \$$ Humidity 3 pm)

density.default($\mathrm{x}=\mathrm{ds}$ \$Pressure9am)

density.default($\mathrm{x}=\mathrm{ds}$ \$Cloud9am)

density.default($\mathrm{x}=\mathrm{ds}$ \$Cloud3pm)

Data Checking

d) There are missing values in 'Sunshine' and 'WindSpeed9am'.

Data Checking

Missing and Incomplete
A common pitfall is to assume that you are working with data that is correct and complete. Usually a round of simple checks will reveal any problems; such as counting records, aggregating totals, plotting and comparing to known quantities.

Data Checking

Spillover of time-bound data
Check for duplicates - do not expect that data is perfectly partitioned.

(\%) Algorithms

"All models are wrong, some are useful."

~George Box

Movie Selection Explanation

Difference between Decision Trees and Random Forest

Movie Selection Explanation

Willow is a decision tree.

Movie Selection Explanation

Willow does not generalize well, so you want to ask a few more friends.

Random Friend

Rainbow Dash

Random Friend

Cartman

Random Friend

Stay Puff Marshmallow

Random Friend

Professor Cat

PROFESSOR CAT FOUND EQUATION

$a+b+c+d-g / q=$ you give me da cheezburger

Movie Selection Explanation

Your friends are an ensebmble of decision trees. But you dont want them all having the same information and giving the same answer.

Good and Bad Predictiors

- Willow thinks you like vampire movies more than you do
- Stay Puff thinks you like candy
- Rainbowdash thinks you can fly
- Cartman thinks you just hate everything
- Professor Cat wants a cheeseburger

Movie Selection Explanation

Thus, your friends now form a bagged (bootstrap aggregated) forest of your movie preferences.

Movie Selection Explanation

There is still one problem with your data. You don't want all your friends asking the same questions and basing their decisions on whether a movies is scary or not. So when each friend asks a question, only a random subset of the possible questions is allowed. About the square root of all variables.

Conclusion

Random forest is just an ensemble of decision trees. Really bad, over-fit beasts. A whole lot of trees that really have no idea about what is going on, but we let them vote anyways. Their votes all cancel each other out.

Random Forest Voting

Theorem (Bad Predictors Cancel Out)

Willow + Cartman + StayPuff + ProfCat + Rainbowdash $=$ AccutatePrediction

Boosting and Bagging Technique

Bagging decision trees, an early ensemble method, builds multiple decision trees by repeatedly resampling training data with replacement, and voting the trees for a consensus prediction.

(8) Decision Trees

(1) There are a lot of tree algorithm choices in R.

Trees in R

- rpart (CART)
- tree (CART)
- ctree (conditional inference tree)
- CHAID (chi-squared automatic interaction detection)
- evtree (evolutionary algorithm)
- mvpart (multivariate CART)
- knnTree (nearest-neighbor-based trees)
- RWeka (J4.8, M50, LMT)
- LogicReg (Logic Regression)
- BayesTree
- TWIX (with extra splits)
- party (conditional inference trees, model-based trees)

4. There are a lot of forest algorithm choices in R.

Forests in R

- randomForest(CART-based random forests)
- randomSurvivalForest(for censored responses)
- party(conditional random forests)
- gbm(tree-based gradient boosting)
- mboost(model-based and tree-based gradient boosting)

4. There are a lot of other ensemble methods and useful packages in R.

Other Useful R Packages

- library(rattle) \#Fancy tree plot, nice graphical interface
- library(rpart.plot) \#Enhanced tree plots
- library(RColorBrewer) \#Color selection for fancy tree plot
- library(party) \#Alternative decision tree algorithm
- library(partykit) \#Convert rpart object to BinaryTree
- library(doParallel)
- library(caret)
- library(ROCR)
- library(Metrics)
- library(GA) \#genetic algorithm, this is the most popular EA

R Code

Example (Useful Commands)

1 \#summary functions
2 dim(ds)
3 head(ds)
4 tail(ds)
5 summary(ds)
6 str(ds)

8 \#list functions in package party
9 ls (package:party)
10
\#save plots as pdf
pdf("plot.pdf")
13 fancyRpartPlot(model)
14 dev.off()

(8) Knowing your Algorithm

Classification and Regression Tree

Choose the best split from among the candidate set. Rank order each splitting rule on the basis of some quality-of-split criterion 'purity' function. The most frequently used ones are:

- Entropy reduction (nominal / binary targets)
- Gini-index (nominal / binary targets)
- Chi-square tests (nominal / binary targets)
- F-test (interval targets)
- Variance reduction (interval targets)

Locally-Optimal Trees
Commonly use a greedy heuristic, where split rules are selected in a forward stepwise search. The split rule at each internal node is selected to maximize the homogeneity of only its child nodes.

(8) Example Code in R

Example Code in R

Example (R Packages Used for Example Code)

1 library(rpart) \#Popular decision tree algorithm
2 library (rattle) \#Fancy tree plot, nice graphical interface
3 library (rpart.plot) \#Enhanced tree plots
4 library(RColorBrewer) \#Color selection for fancy tree plot
5 library (party) \#Alternative decision tree algorithm
6 library (partykit) \#Convert rpart object to BinaryTree
7 library(RWeka) \#Weka decision tree J48
8 library (evtree) \#Evolutionary Algorithm, builds the tree from the bottom
9 library (randomForest)
10 library (doParallel)
11 library (CHAID) \#Chi-squared automatic interaction detection tree
12 library (tree)
13 library (caret)

R Code

Example (Data Prep)

1 data(weather)
2 dsname <- "weather"
3 target <- "RainTomorrow"
4 risk <- "RISK_MM"
5 ds <- get(dsname)
6 vars <- colnames (ds)
7 (ignore <- vars [c(1, 2, if (exists("risk")) which(risk==vars))])
\#names (ds) [1]==' 'Date')
\#names (ds) [2]==' 'Location''

R Code

Example (Data Prep)

1 vars <- setdiff(vars, ignore)
2 (inputs <- setdiff(vars, target))
3 (nobs <- nrow(ds))
4 dim(ds[vars])
5
6 (form <- formula(paste(target, "~ .")))
7 set.seed (1426)
8 length(train <- sample(nobs, 0.7*nobs))
9 length(test <- setdiff(seq_len(nobs), train))

Note

d It is okay to split the data set like this if the outcome of interest is not rare. If the outcome of interest occurs in some small fraction of cases, use a different technique so that 30% or so of cases with the outcome are in the training set.

Example Code in R

```
Example (rpart Tree)
model <- rpart(formula=form, data=ds[train, vars])
```


Note

d The default parameter for predict is na.action = na.pass. If there are Na's in the data set, rpart will use surrogate splits.

Example Code in R

Example (rpart Tree Object)

1 print(model)
2 summary(model)

print(model)

$\mathrm{n}=256$
node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 25638 No ($0.85156250 \quad 0.14843750$)
2) Humidity3pm<71 23825 No (0.89495798 0.10504202)
3) Pressure3pm>=1010.25 20813 No (0.93750000 0.06250000) *
4) Pressure3pm<1010.25 3012 No (0.60000000 0.40000000) 10) Sunshine $>=9.95141$ No (0.92857143 0.07142857) * 11) Sunshine <9.95165 Yes (0.31250000 0.68750000) *
5) Humidity $3 \mathrm{pm}>=71185$ Yes (0.27777778 0.72222222) *

summary(model)

```
Call:
rpart(formula = form, data = ds[train, vars])
    n=256
\begin{tabular}{lrrrrr} 
& CP & nsplit & rel error & xerror & xstd \\
1 & 0.21052632 & 0 & 1.0000000 & 1.000000 & 0.1496982 \\
2 & 0.07894737 & 1 & 0.7894737 & 1.052632 & 0.1528809 \\
3 & 0.01000000 & 3 & 0.6315789 & 1.052632 & 0.1528809
\end{tabular}
Variable importance
\begin{tabular}{rrrrrr} 
Humidity 3 pm & Sunshine & Pressure3pm & Temp9am & Pressure9am & Temp3pm \\
25 & 17 & 14 & 9 & 8 & 8 \\
Cloud3pm & MaxTemp & MinTemp & & & \\
7 & 6 & 5 & &
\end{tabular}
```



```
    Surrogate splits:
        Sunshine < 0.75 to the right, agree=0.949, adj=0.278, (0 split)
        Pressure3pm < 1001.55 to the right, agree=0.938, adj=0.111, (0 split)
        Temp3pm < 7.6 to the right, agree=0.938, adj=0.111, (0 split)
        Pressure9am < 1005.3 to the right, agree=0.934, adj=0.056, (0 split)
```


Example Code in R

Example (rpart Tree Object)
 printcp(model) \#printcp for rpart objects plotcp(model)

plotcp(model)

size of tree

Example Code in R

Example (rpart Tree Object)
plot(model)
text (model)

plot(model) text(model)

Example Code in R

Example (rpart Tree Object)
 fancyRpartPlot(model)

fancyRpartPlot(model)

Example Code in R

```
Example (rpart Tree Object)
prp(model)
prp(model, type=2, extra=104, nn=TRUE, fallen.leaves=TRUE,
faclen=0, varlen=0, shadow.col="grey", branch.lty=3)
```


prp(model)

prp(model, type $=2$, extra $=104, \mathrm{nn}=$ TRUE, fallen.leaves=TRUE, faclen $=0$, varlen $=0$, shadow.col=" grey", branch.Ity=3)

Example Code in R

```
Example (rpart Tree Predictions)
pred <- predict(model, newdata=ds[test, vars], type="class")
pred.prob <- predict(model, newdata=ds[test, vars], type="prob")
```


Example Code in R

Example (Na values and pruning)

1 table(is.na(ds))
2 ds.complete <- ds[complete.cases(ds),]
3 (nobs <- nrow(ds.complete))
4 set.seed (1426)
5 length(train. complete <- sample(nobs, $0.7 *$ nobs))
6 length(test.complete <- setdiff(seq_len(nobs), train.complete))

8 \#Prune tree
9 model\$cptable[which.min(model\$cptable[,"xerror"]),"CP"]
10 model <- rpart (formula=form, data=ds[train. complete, vars], $c p=0$)
11 printcp(model)
12 prune <- prune(model, $c p=.01)$
13 printcp(prune)

Example Code in R

Example (Random Forest)

\#Random Forest from library (randomForest)
2 table(is.na(ds))
3 table(is.na(ds.complete))
\#subset(ds, select=-c(Humidity3pm, Humidity9am, Cloud9am, Cloud3pm))
setnum <- colnames (ds.complete) [16:19]
ds.complete[, setnum] <- lapply(ds.complete[,setnum], function(x) as.numeric(x))
ds. complete\$Humidity3pm <- as.numeric(ds.complete\$Humidity3pm)
ds.complete\$Humidity9am <- as.numeric(ds.complete\$Humidity9am)

Note

d) Variables in the randomForest algorithm must be either factor or numeric, factors can not have more than 32 levels.

Example Code in R

Example (Random Forest)

1 begTime <- Sys.time()
2 set.seed (1426)
3 model <- randomForest(formula=form, data=ds.complete[train.complete,vars])
4 runTime <- Sys.time()-begTime
5 runTime
6 \#Time difference of 0.3833725 secs

Note

f) Na values must be imputed, removed or otherwise fixed.

Random Forest

Bagging

Given a standard training set D of size n, bagging generates m new training sets D_i, each of size n', by sampling from D uniformly and with replacement. By sampling with replacement, some observations may be repeated in each D_i. If $\mathrm{n}^{\prime}=\mathrm{n}$, then for large n the set D_i is expected to have the fraction (1-1/e) (63.2) of the unique examples of D, the rest being duplicates.

Random Forest

Sampling with replacement (default)

VS

Sampling without replacement (sample size equals $1-1 / \mathrm{e}=.632$)

Example Code in R

Example (Random Forest, sampling without replacement)

1 begTime <- Sys.time()
2 set.seed (1426)
3 model <- randomForest (formula=form, data=ds.complete[train, vars], ntree $=500$, replace $=$ FALSE, sampsize $=.632 * .7 *$ nrow (ds),
5 na.action=na.omit)
6 runTime <- Sys.time()-begTime
7 runTime
8 \#Time difference of 0.2392061 secs

print(model)

Call:
randomForest(formula $=$ form, data $=$ ds.complete[train, vars], ntree $=500$, replace $=$ FALSE, sampsize $=0.632 * 0.7 *$ nrow (ds), na.action $=$ na.omit)

Type of random forest: classification Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 11.35%
Confusion matrix:
No Yes class.error
No 18640.02105263
$\begin{array}{llll}\text { Yes } & 22 & 17 & 0.56410256\end{array}$

summary(model)

```
call
type
predicted
err.rate
confusion
votes
oob.times
classes
importance
importanceSD
locallmportance
proximity
ntree
mtry
forest
y
test
inbag
terms
\begin{tabular}{cl} 
Length & Class Mode \\
7 & -none- call \\
1 & -none- character \\
229 & factor numeric \\
1500 & -none- numeric \\
6 & -none- numeric \\
458 & matrix numeric \\
229 & -none- numeric \\
2 & -none- character \\
20 & -none- numeric \\
0 & -none- NULL \\
0 & -none- NULL \\
0 & -none- NULL \\
1 & -none- numeric \\
1 & -none- numeric \\
14 & -none- list \\
229 & factor numeric \\
0 & -none- NULL \\
0 & -none- NULL \\
3 & terms call
\end{tabular}
```


str(model)

```
List of 19
    $ call : language randomForest(formula = form, data = ds.complete[train, vars],
replace = FALSE, sampsize = 0.632 * 0.7 * nrow(ds), na.action = na.omit)
    $ type : chr "classification"
    $ predicted : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 1 1 2 1 ...
    ..- attr (*, "names")= chr [1:229] "1" "305" " 299" "161"
    $ err.rate : num [1:500, 1:3] 0.25 0.197 0.197 0.203 0.193 \ldots..
        ..- attr(*, "dimnames")=List of 2
    .. ..$ : NULL
    .. .. $ : chr [1:3] "OOB" "No" "Yes"
$ confusion : num [1:2, 1:3] 186 22 4 17 0.0211 \ldots..
    .. - attr(*, "dimnames")=List of 2
    .. .. $ : chr [1:2] "No" "Yes"
    .. .. $ : chr [1:3] "No" "Yes" "class.error"
$ votes : matrix [1:229, 1:2] 0.821 0.373 0.993 0.938 0.648 \ldots.
    .. - attr(*, "dimnames")=List of 2
    .. .. $ : chr [1:229] "1" "305" "299" "161" ...
    .. .. $ : chr [1:2] "No" "Yes"
    ..- attr(*, "class")= chr [1:2] "matrix" "votes"
$ oob.times : num [1:229] 156 158 153 162 145 163 144 140 162 156 ...
$ classes : chr [1:2] "No" "Yes"
$ importance : num [1:20, 1] 1.942 2.219 0.812 1.66 4.223 ...
    .. - attr(*, "dimnames")=List of 2
    .. .. $ : chr [1:20] "MinTemp" "MaxTemp" "Rainfall" "Evaporation" ...
    .. ..$ : chr "MeanDecreaseGini"
$ importanceSD: NULL
$ locallmportance: NULL
$ proximity : NULL
$ ntree : num 500
$ mtry : num 4
$ forest :List of 14
        $ ndbigtree : int [1:500] 55 59 47 41 45 45 41 45 45 53
        $ nodestatuc: int [[1.67 1.500] 1 1 1 1 1 1 1 1 1 1 1 

\section*{importance(model)}

MeanDecreaseGini
\begin{tabular}{ll} 
MinTemp & 1.94218091 \\
MaxTemp & 2.21923946 \\
Rainfall & 0.81216780 \\
Evaporation & 1.65985367 \\
Sunshine & 4.22307365 \\
WindGustDir & 1.28737544 \\
WindGustSpeed & 2.86639513 \\
WindDir9am & 1.32291299 \\
WindDir3pm & 0.98640540 \\
WindSpeed9am & 1.45308318 \\
WindSpeed3pm & 2.03903384 \\
Humidity9am & 2.57789758 \\
Humidity3pm & 4.01479068 \\
Pressure9am & 3.39200505 \\
Pressure3pm & 5.47003943 \\
Cloud9am & 1.19459943 \\
Cloud3pm & 3.52867349 \\
Temp9am & 1.87205125 \\
Temp3pm & 2.43780114
\end{tabular}

\section*{Example Code in R}

\section*{Example (Random Forest, predictions)}

1 pred <- predict(model, newdata=ds.complete[test.complete, vars])

\section*{Note}

\section*{(e) Random Forest in parallel.}

\section*{Example Code in R}

\section*{Example (Random Forest in parallel)}
\#Random Forest in parallel
2 library (doParallel)
rf <- foreach(ntree=rep(rep, numCore), .combine=combine, .packages='randomForest') \%dopar\%
randomForest (formula=form, data=ds.complete[train.complete, vars], ntree=ntree, mtry=6, importance=TRUE, na.action=na.roughfix, \#can also use na.action = na.omit replace=FALSE)
runTime <- Sys.time()-begTime
runTime
\#Time difference of 0.1990662 secs

\section*{Note}
\(\int\) mtry in model is 4 , mtry in rf is 6 , length(vars) is 24

\section*{importance(model)}

MeanDecreaseGini
\begin{tabular}{ll} 
MinTemp & 1.94218091 \\
MaxTemp & 2.21923946 \\
Rainfall & 0.81216780 \\
Evaporation & 1.65985367 \\
Sunshine & 4.22307365 \\
WindGustDir & 1.28737544 \\
WindGustSpeed & 2.86639513 \\
WindDir9am & 1.32291299 \\
WindDir3pm & 0.98640540 \\
WindSpeed9am & 1.45308318 \\
WindSpeed3pm & 2.03903384 \\
Humidity9am & 2.57789758 \\
Humidity3pm & 4.01479068 \\
Pressure9am & 3.39200505 \\
Pressure3pm & 5.47003943 \\
Cloud9am & 1.19459943 \\
Cloud3pm & 3.52867349 \\
Temp9am & 1.87205125 \\
Temp3pm & 2.43780114
\end{tabular}

\section*{importance(rf)}
\begin{tabular}{lrrrr} 
& No & Yes & MeanDecreaseAccuracy & MeanDecreaseGini \\
MinTemp & 4.3267184 & 1.95155029 & 4.99442421 & 2.86155742 \\
MaxTemp & 3.9312878 & -0.09780772 & 3.90547258 & 1.48849836 \\
Rainfall & 2.2855083 & -2.20735885 & 0.98774887 & 0.90515978 \\
Evaporation & 1.2689707 & 0.10371215 & 1.15792468 & 1.35614483 \\
Sunshine & 6.8039998 & 5.93794031 & 8.24985824 & 4.45780922 \\
WindGustDir & 1.5872508 & 1.27680275 & 1.89144917 & 1.54086784 \\
WindGustSpeed & 3.0957164 & 0.70399353 & 3.06926945 & 1.97903808 \\
WindDir9am & 0.5213394 & -0.57654051 & 0.02179805 & 0.88987541 \\
WindDir3pm & 0.1040497 & -1.44770324 & -0.54034743 & 0.89222294 \\
WindSpeed9am & -0.1505080 & 0.02852706 & -0.13462800 & 1.04935574 \\
WindSpeed3pm & 0.1366695 & -0.31714524 & -0.09851747 & 1.41884397 \\
Humidity9am & 1.5489961 & 1.33257660 & 2.02454227 & 2.08965160 \\
Humidity3pm & 4.4863077 & 1.80261751 & 4.87818606 & 3.16858964 \\
Pressure9am & 4.2958737 & -0.24148691 & 3.86763218 & 3.11008464 \\
Pressure3pm & 5.4833604 & 3.71822295 & 6.42073201 & 4.27664751 \\
Cloud9am & 1.0693219 & 1.13917891 & 1.48230288 & 0.80992904 \\
Cloud3pm & 4.9937359 & 4.99596404 & 6.86041634 & 4.23660266 \\
Temp9am & 3.1110895 & 0.65377234 & 3.15007711 & 1.77972882 \\
Temp3pm & 4.6953725 & -0.93099648 & 4.11704265 & 1.54411562 \\
RainToday & 1.2889082 & -0.69026060 & 0.95731681 & 0.07791137
\end{tabular}

\section*{Example Code in R}

\section*{Example (Random Forest)}
pred <- predict(rf, newdata=ds.complete[test.complete, vars]) confusionMatrix(pred, ds.complete[test.complete, target])

\section*{confusionMatrix(pred, ds.complete[test.complete, target])}
```

Confusion Matrix and Statistics
Reference
Prediction No Yes
No 73 11
Yes 4 11
Accuracy : 0.8485
95% CI : (0.7624, 0.9126)
No Information Rate : 0.7778
P-Value [Acc > NIR] : 0.05355
Mappa : 0.5055
Sensitivity : 0.9481
Specificity : 0.5000
Pos Pred Value : 0.8690
Neg Pred Value : 0.7333
Prevalence : 0.7778
Detection Rate : 0.7374
Detection Prevalence : 0.8485
'Positive' Class : No

```

\section*{Example Code in R}
```

Example (Random Forest)
\#Factor Levels
id <- which(!(ds$var.name %in% levels(ds$var.name)))
ds\$var.name[id] <- NA

```

\section*{DANGER!!}

\section*{How to draw a Random Forest?}

\section*{Random Forest Visualization}


\section*{Evaluating the Model}

\section*{Evaluating the Model}

\section*{Methods and Metrics to Evaluate Model Performance}
(1) Resubstitution Estimate (internal estimate, biased)
(2) Confusion matrix
(3) ROC
(9) Test Sample Estimation (independent estimate)
(5) V-fold and N -fold Cross-Validation (resampling techniques)
(6) RMSLE library(Metrics)
(3) lift

\section*{Example Code in R}

\section*{Example (ctree in package party)}

\section*{\#Conditional Inference Tree}
model <- ctree(formula=form, data=ds[train, vars])

\section*{ctree: plot(model)}


\section*{print(model)}
```

Model formula:
RainTomorrow ~ MinTemp + MaxTemp + Rainfall + Evaporation + Sunshine +
WindGustDir + WindGustSpeed + WindDir9am + WindDir3pm + WindSpeed9am +
WindSpeed3pm + Humidity9am + Humidity3pm + Pressure9am +
Pressure3pm + Cloud9am + Cloud3pm + Temp9am + Temp3pm + RainToday
Fitted party:
[1] root
[2] Sunshine $<=6.4$
[3] Pressure3pm < = 1015.9: Yes ($n=29$, err $=24.1 \%$)
[4] Pressure3pm > 1015.9: No ($n=36$, err $=8.3 \%$)
[5] Sunshine >6.4
[6] Cloud3pm <= 6
[7] Pressure3pm $<=1009.8:$ No ($n=18$, err $=22.2 \%$)
[8] Pressure3pm > 1009.8: No ($n=147$, err $=1.4 \%$)
[9] Cloud3pm >6 : No $(\mathrm{n}=26$, err $=26.9 \%)$
Number of inner nodes: 4
Number of terminal nodes: 5

```

\section*{Difference between ctree and rpart}

Both rpart and ctree recursively perform univariate splits of the dependent variable based on values on a set of covariates.
rpart employs information measures (such as the Gini coefficient) for selecting the current covariate.
ctree uses a significance test procedure in order to select variables instead of selecting the variable that maximizes an information measure. This may avoid some selection bias.

\section*{Example Code in R}

\section*{Example (ctree in package party)}

1 \#For class predictions:
2 library (caret)
3 pred <- predict(model, newdata=ds[test, vars])
4 confusionMatrix(pred, ds[test, target])
5 mc <- table(pred, ds[test, target])
6 err <- \(1.0-(m c[1,1]+m c[2,2]) / \operatorname{sum}(m c)\) \#resubstitution error rate

\section*{ctree}
```

Confusion Matrix and Statistics
Reference
Prediction No Yes
No }741
Yes 8 12
Accuracy : 0.7818
95% Cl : (0.693, 0.8549)
No Information Rate : 0.7455
P-Value [Acc > NIR] : 0.2241
Kappa : 0.3654
Mcnemar's Test P-Value : 0.1530
Sensitivity : 0.9024
Specificity : 0.4286
Pos Pred Value : 0.8222
Neg Pred Value : 0.6000
Prevalence : 0.7455
Detection Rate : 0.6727
Detection Prevalence : 0.8182
'Positive' Class : No

```

\section*{Example Code in R}

\section*{Example (ctree in package party)}
\#For class probabilities:
pred.prob <- predict(model, newdata=ds[test, vars], type="prob")

\section*{ctree}
```

summary(pred)
No Yes
90 20
summary(pred.prob)
No
Yes
Min. :0.2414 Min. :0.01361
1st Qu.:0.7308 1st Qu.:0.01361
Median :0.9167 Median :0.08333
Mean :0.7965 Mean :0.20353
3rd Qu.:0.9864 3rd Qu.:0.26923
Max. :0.9864 Max. :0.75862
err
[1] 0.2

```

\section*{Example Code in R}

\section*{Example (ctree in package party)}

1 \#For a roc curve:
2 library (ROCR)
3 pred <- do.call(rbind, as.list(pred))
4 summary (pred)
5 roc <- prediction(pred[,1], ds[test, target])
6 plot(performance(roc, measure="tpr", x.measure="fpr"), colorize=TRUE)

8 \#For a lift curve:
9 plot(performance(roc, measure="lift", x.measure="rpp"), colorize=TRUE)
\#Sensitivity/Specificity Curve and Precision/Recall Curve:
12 \#Sensitivity(i.e True Positives/Actual Positives)
13 \#Specifcity(i.e True Negatives/Actual Negatives)
14 plot (performance(roc, measure="sens", x.measure="spec"), colorize=TRUE)
15 plot(performance(roc, measure="prec", x.measure="rec"), colorize=TRUE)


\section*{Example Code in R}

\section*{Example (crossvalidation)}
\#Example of using 10-fold cross-validation to evaluation your model
model <- train(ds[, vars], ds[,target], method='rpart', tuneLength=10)
\#cross validation
    \#example
    n <- nrow (ds) \#nobs
    K <- 10 \#for 10 validation cross sections
    taille <- n\%/\%K
    set.seed(5)
    alea <- runif(n)
    rang <- rank(alea)
    bloc <- (rang-1) \%/\%taille +1
    bloc <- as.factor(bloc)
    print(summary(bloc))

\section*{Example Code in R}

\section*{Example (cross validation continued)}

1 all.err <- numeric (0)
2 for \((k\) in 1:K) \{
model <- rpart(formula=form, data = ds[train,vars], method="class")
pred <- predict(model, newdata=ds[test,vars], type="class")
\(\mathrm{mc}<-\) table (ds[test,target], pred)
err <- 1.0 - (mc[1,1] +mc[2,2]) / sum(mc)
all.err <- rbind(all.err,err)
\}
print(all.err)
(err.cv <- mean(all.err))
```

print(all.err)
[,1]
err 0.2
(err.cv <- mean(all.err))
[1] 0.2

```

\section*{caret Package}

Check out the caret package if you're building predictive models in R .
It implements a number of out-of-sample evaluation schemes, including bootstrap sampling, cross-validation, and multiple train/test splits.
caret is really nice because it provides a unified interface to all the models, so you don't have to remember, e.g., that treeresponse is the function to get class probabilities from a ctree model.

\section*{Example Code in R}
```

Example (Random Forest - cforest)
\#Random Forest from library(party)
model <- cforest(formula=form, data=ds.complete[train.complete, vars])

```

\section*{cforest}
```

Confusion Matrix and Statistics
Reference
Prediction No Yes
No }741
Yes 3 6
Accuracy : 0.8081
95% Cl : (0.7166, 0.8803)
No Information Rate : 0.7778
P-Value [Acc > NIR] : 0.277720
Kappa : 0.2963
Mcnemar's Test P-Value : 0.005905
Sensitivity : 0.9610
Specificity : 0.2727
Pos Pred Value : 0.8222
Neg Pred Value : 0.6667
Prevalence : 0.7778
Detection Rate : 0.7475
Detection Prevalence : 0.9091
'Positive' Class : No

```

\section*{Best Model: randomForest with mty=4}
```

Confusion Matrix and Statistics
Reference
Prediction No Yes
No }75
Yes 2 21
Accuracy : 0.9697
95% Cl : (0.914, 0.9937)
No Information Rate : 0.7778
P-Value [Acc > NIR] : 6.393e-08
Kappa : 0.9137
mar s Test P-Value : 1
Sensitivity : 0.9740
Specificity : 0.9545
Pos Pred Value : 0.9868
Neg Pred Value : 0.9130
Prevalence : 0.7778
Detection Rate : 0.7576
Detection Prevalence : 0.7677
'Positive' Class : No

```

\section*{Example Code in R}


\section*{Example Code in R}
```

Example (Random Forest - cforest)
> (predict(model, newdata=Today))
[1] Yes
Levels: No Yes
> (predict(model, newdata=Today, type="prob"))
\$'50'
RainTomorrow.No RainTomorrow.Yes
[1,] 0.3942876 0.6057124

```

\section*{Example Code in R}
```

Example (Random Forest - randomForest)
> predict(model, newdata=Today)
50
Yes
Levels: No Yes
> predict(model, newdata=Today, type="prob")
No Yes
500.096 0.904
attr(,"class")
[1] "matrix" "votes"

```

\section*{Will it Rain Tomorrow?}

Yes, it will rain tomorrow. There is a ninety percent chance of rain, and we are ninety-five percent confident that we have a five percent chance of being wrong.

\section*{Evaluating the Business Questions}

\section*{Evaluating the Business Questions}
- Is this of value?
- Is it understandable?
- How to communicate this to the business?
- Are you answering the question asked...?
"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem."
~John Tukey

\section*{- - Kaggle and Random Forest}

\section*{Tip}

Get the advantage with creativity, understanding the data, data munging and meta data creation.
"The best way to have a good idea is to have a lot of ideas."

\author{
~Linus Pauling
}

\section*{Tip}
\(-{ }^{-}-\)A lot of the data munging is done for you, you are given a nice flat file to work with. Knowing and uderstanding this process will enable you to find data leaks and holes in the data set. What did their data scientists miss?

\section*{Tip}

\section*{\(-\stackrel{\prime}{-1}\) Use some type of version control, write notes to yourself, read the forum comments.}

\section*{Pie Chart}

\section*{Visualization (Sometimes you really just need a Pie Chart)}


\section*{Recommended Reading}

E Christopher M. Bishop (2006)
Pattern Recognition and Machine Learning, Information Science and Statistics
圊 Leo Breiman (1999)
Random Forest, http://www.stat.berkeley.edu/ breiman/random-forests.pdf
George Casella and Roger L. Berger
Statistical Inference
Rachel Schutt and Cathy O'Neil (2013)
Doing Data Science, Straight Talk from the Frontline

Q. Ethan McCallum (2013)

Bad Data Handbook, Mapping the World of Data Problems
8
Graham Williams (2013)
Decision Trees in R, http://onepager.togaware.com/DTreesR.pdf

\section*{References}

虚 Hothorn，Hornik，and Zeileis（2006）
party：：A Laboratory for Recursive Partytioning，
http：／／cran．r－project．org／web／packages／party／vignettes／party．pdf
Torsten Hothorn and Achim Zeileis（2009）
A Toolbox for Recursive Partytioning，
http：／／www．r－project．org／conferences／useR－2009／slides／Hothorn＋Zeileis．pdf
圊 Torsten Hothorn（2013）
Machine Learning and Statistical Learning
http：／／cran．r－project．org／web／views／MachineLearning．html
－Other Sources
StackExchange http：／／stackexchange．com
StackOverFlow http：／／stackoverflow．com
PackageDocumentation http：／／cran．r－project．org

\section*{Acknowledgment}

\section*{Ken McGuire}

\section*{Robert Bagley}

\section*{Questions}

Twitter Account: Jen@JenniferE_CF
Website for R Code: www.clickfox.com/ds_rcode Email: jennifer.evans@clickfox.com```

