5 Department of Computer Science UNIVERSITY OF COLORADO BOULDER

Machine Learning Shouldn't Be a Black Box

Jordan Boyd-Graber
University of Colorado Boulder
2016

$$
0
$$

Algorithms that ...

Inform

Collaborate with

Compete with

Understand
their Human Users

Algorithms that ...

Inform
Collaborate with

Understand

The Challenge of Big Data

Every second ...

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

The Challenge of Big Data

Every second ...

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

The Challenge of Big Data

Every second ...

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

Common task: what's going on in this dataset.

- Intelligence analysts
- Brand monitoring
- Journalists
- Humanists

The Challenge of Big Data

Every second . . .

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

Common task: what's going on in this dataset.

- Intelligence analysts
- Brand monitoring
- Journalists
- Humanists

Common solution: topic models

What does a Topic Model do?

From an input corpus and number of topics $K \rightarrow$ words to topics

What does a Topic Model do?

From an input corpus and number of topics $K \rightarrow$ words to topics

TOPIC 1 TOPIC 2
 TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine

Evaluating Topic Models

Reading Tea Leaves: How Humans Interpret Topic Models
Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. Neural Information Processing Systems, 2009.

Evaluation

Evaluation

Qualitative Evaluation of the Latent Space

"segment 1"	"segment 2"	"matrix 1"	"matrix 2"	"line 1"	"line 2"	"power 1"	power 2"
imag	speaker	robust	manufactur	constraint	alpha	POWER	load
SEGMENT	speech	MATRIX	cell	LINE	redshift	spectrum	memori
texture	recogni	eigenvalu	part	match	LINE	omega	vlsi
color	signal	uncertainti	MATRIX	locat	galaxi	mpc	POWER
tissue	train	plane	cellular	imag	quasar	hsup	systolic
brain	hmm	linear	famili	geometr	absorp	larg	input
slice	source	condition	design	impos	high	redshift	complex
cluster	speakerind.	perturb	machinepart	segment	ssup	galaxi	arrai
mri	SEGMENT	root	format	fundament	densiti	standard	present
volume	sound	suffici	group	recogn	veloc	model	implement

Figure 3: Eight selected factors from a 128 factor decomposition. The displayed word stems are the 10 most probable words in the class-conditional distribution $P(w \mid z)$, from top to bottom in descending order.
[Hofmann 1999]

Qualitative Evaluation of the Latent Space

Qualitative Evaluation of the Latent Space

DA centralbank europæiske ecb s lån centralbanks
DE zentralbank ezb bank europäischen investitionsbank darlehen

EN bank central ecb banks european monetary
ES banco central europeo bce bancos centrales
FI keskuspankin ekp n euroopan keskuspankki eip
FR banque centrale bce européenne banques monétaire
IT banca centrale bce europea banche prestiti
NL bank centrale ecb europese banken leningen
PT banco central europeu bce bancos empréstimos
SV centralbanken europeiska ecb centralbankens s lån
[Mimno et al. 2009]

Qualitative Evaluation of the Latent Space

(a) Topic labeled as SSL		(b) Topic labeled as Logging	
Keyword	Probability	Keyword	Probability
ssl	0.373722	\log	0.141733
expr	0.042501	request	. 036017
init	0.033207	mod	0.0311
engine	0.026447	config	0.029871
var	0.022222	name	0.023725
ctx	0.023067	headers	0.021266
ptemp	0.017153	autoindex	0.020037
mctx	0.013773	format	0.017578
lookup	0.012083	cmd	0.01512
modssl	0.011238	header	0.013891
ca	0.009548	add	0.012661

Table 2: Sample Topics extracted from Apache source code
[Maskeri et al. 2008]

Qualitative Evaluation of the Latent Space

Probabilistic Models
Prosody
Semantic Roles*
Yale School Semantics
Sentiment
Speech Recognition Spell Correction Statistical MT
Statistical Parsing
Summarization
Syntactic Structure
TAG Grammars*
Unification
WSD*
Word Segmentation WordNet*

model word probability set data number algorithm language corpus method prosodic speech pitch boundary prosody phrase boundaries accent repairs intonation semantic verb frame argument verbs role roles predicate arguments
knowledge system semantic language concept representation information network concepts base subjective opinion sentiment negative polarity positive wiebe reviews sentence opinions speech recognition word system language data speaker error test spoken errors error correction spelling ocr correct corrections checker basque corrected detection english word alignment language source target sentence machine bilingual mt dependency parsing treebank parser tree parse head model al np sentence text evaluation document topic summary summarization human summaries score verb noun syntactic sentence phrase $n p$ subject structure case clause tree node trees nodes derivation tag root figure adjoining grammar feature structure grammar lexical constraints unification constraint type structures rule word senses wordnet disambiguation lexical semantic context similarity dictionary chinese word character segmentation corpus dictionary korean language table system synset wordnet synsets hypernym ili wordnets hypernyms eurowordnet hyponym ewn wn

Table 2: Top 10 words for 43 of the topics. Starred topics are hand-seeded.

> [Hall et al. 2008]

Word Intrusion

1. Take the highest probability words from a topic

Original Topic
dog, cat, horse, pig, cow

Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow
2. Take a high-probability word from another topic and add it

Topic with Intruder
dog, cat, apple, horse, pig, cow

Word Intrusion

1. Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow
2. Take a high-probability word from another topic and add it

Topic with Intruder
dog, cat, apple, horse, pig, cow
3. We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

Interpretability and Likelihood (NYT)

Number of topics

Interpretability and Likelihood (NYT)

Number of topics50
100
150

Traditional Evaluation

Interpretability and Likelihood (NYT)

Model

Number of topics

50
100
$\square 150$

Traditional Evaluation

Interpretability and Likelihood (NYT)

Within a model, higher likelihood \neq higher interpretability

Since then ...

- A way to get at an evaluation that matches what we care about
- A necessary step to improving topic models for navigating large datasets [Talley et al. 2011]
- Others have discovered automatic methods that uncover the same properties [Newman et al. 2010, Mimno et al. 2011]
- And extended the technique to structured topics and phrases [Lindsey et al. 2012, Weninger et al. 2012]

Algorithms that ...
Inform
Collaborate with
their Human Users

The Problem: User Perspective

bladder
spinal_cord
sci
spinal_cord_injury
spinal
urinary
urothelial
cervical
injury
recovery
urinary_tract
locomotor
lumbar

These words don't belong together!

The Problem: User Perspective

The Problem: User Perspective
spinal_cord bladder

sci
spinal_cord_injury
spinal
urothelial

These words don't be-
long together!

injury
recovery
urinary_tract
locomotor

lumbar

Interactive Topic Modeling
Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff. Association for Computational Linguistics, 2011.

How to fix it?

bagel

phone constitution
tea
nasa
president

space

month

bladder

shuttle

greece

How to fix it?

bagel

phone constitution

god spinal_cord
president
month
bladder
greece

How to fix it?

bagel

constitution

Topic

Before

election, yeltsin, russian, political, party, democratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see
soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, washington, western, bring, party

Topic	Before		
$\mathbf{2}$	$\begin{array}{l}\text { election, yeltsin, russian, political, party, demo- } \\ \text { cratic, russia, president, democracy, boris, coun- } \\ \text { try, south, years, month, government, vote, } \\ \text { since, leader, presidential, military }\end{array}$		
new, york, city, state, mayor, budget, giuliani,			
council, cuomo, gov, plan, year, rudolph, dinkins,			
lead, need, governor, legislature, pataki, david		$\}$	nuclear, arms, weapon, defense, treaty, missile,
:---			
world, unite, yet, soviet, lead, secretary, would,			
control, korea, intelligence, test, nation, country,			
testing		president, bush, administration, clinton, ameri-	
:---			
can, force, reagan, war, unite, lead, economic,			
iraq, congress, america, iraqi, policy, aid, inter-			
national, military, see			

Topic

Before

election, yeltsin, russian, political, party, democratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david
nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see

Suggestion

boris, communist, gorbachev, mikhail, russia, russian, soviet, union, yeltsin
soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, washington, western, bring, party
election, yeltsin, russian, political, party, demo-
soviet, lead, gorbachev, union, west, mikhail, recratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see
form, change, europe, leaders, poland, communist, know, old, right, human, washington, west- ern, bring, party

Topic
 After

1

president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan
soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, communist, power, relations
election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see
soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, washington, western, bring, party

After
president, administration, bush, clinton, war,
unite, force, reagan, american, america, make,
nation, military, iraq, iraqi, troops, international,
country, yesterday, plan
soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, communist, power, relations
election, yeltsin, russian, political, party, demo-
soviet, lead, gorbachev, union, west, mikhail, recratic, russia, president, democracy, boris, country, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
president, bush, administration, clinton, american, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, international, military, see
form, change, europe, leaders, poland, communist, know, old, right, human, washington, west- ern, bring, party

Topic
 After

president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan
soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, communist, power, relations

Example: Negative Constraint

Example: Negative Constraint

Topic	Words
318	

Negative Constraint spinal_cord, bladder

Example: Negative Constraint

Topic	Words
318	bladder, sci, spinal_cord, spinal_cord_injury, spinal, urinary, urinary_tract, urothelial,injury, motor, recovery, reflex, cervical, urothelium, functional_recovery

Topic
$\mathbf{3 1 8}$
sci, spinal_cord, spinal_cord_injury, spinal, injury, recovery, motor, reflex, urothelial, injured, functional_recovery, plasticity, locomotor, cervical, locomo- tion,

Negative Constraint spinal_cord, bladder

ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document Labeling

Forough Poursabzi-Sangdeh, Jordan Boyd-Graber, Leah Findlater, and Kevin Seppi.
Association for Computational Linguistics, 2016.

Real-World Use Cases

Algorithms that ...
Inform
Collaborate with
their Human Users

When you at the dark side look, careful you must be.

ich bin mit dem Zug nach Ulm gefahren
I am with the train to Ulm traveled
I (.......waiting.) traveled by train to Ulm

Learning from Interpreters

- What tricks do they use?
- How can we teach machines to use them?
- How do we know when to use them?
- Giving back to interpreters

Don't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation

 Alvin Grissom II, Jordan Boyd-Graber, He He, John Morgan, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2014Iou auto-comglete me.
Tousube not a robot
Tou are not sunsinine lysies

Predict the Verb

- Predicting the verb "unlocks" sentence
- Language models are good at word prediction
- But instead, we'll predict the verb

Language Models of Verbs

Apple ist zum wertvollsten Konzern aller Zeiten avanciert

Nein, mit dem Virus ist es noch lange nicht getan

Eine vielbefahrene Brücke in New Jersey wurde grundlos gesperrt

Mit Drohen und Interpretieren ist es nicht getan

Frankfurter Flughafen für Passagiere weitgehend gesperrt

Als ruppiger Bad Boy mit Herz namens Daryl ist er zum Superstar der Besetzung avanciert

Language Models of Verbs

[^0]Als ruppiger Bad Boy mit Herz namens Daryl ist er zum Superstar der Besetzung avanciert

Language Models of Verbs

Predicting the Verb

- Build language model for every verb
- Then, for any input text x we can make a prediction of the verb

$$
\begin{equation*}
\arg \max _{v} p(v) \prod_{i=1}^{t} p\left(x_{i} \mid v, x_{i-n+1: i-1}\right) \tag{1}
\end{equation*}
$$

Predicting the Verb

- Build language model for every verb
- Then, for any input text x we can make a prediction of the verb

$$
\begin{equation*}
\arg \max _{v} p(v) \prod_{i=1}^{t} p\left(x_{i} \mid v, x_{i-n+1: i-1}\right) \tag{1}
\end{equation*}
$$

- Most of these predictions will be totally wrong (18% accuracy) ...
- leading to horrible translations

Scoring one Translation

Bilingual Evaluation Understudy (BLEU)

The U.S. island of Guam is maintaining h high state of alert after the Guam airport and its offices
both received and e-mail from someone calling himself the Saudi Arabian! Osama Bin Laden land threatening abiological/chemicalattackpgainst public places such ass the airport.

The U.S. island of Guam is maintaininga statdof alert after the Guam airport and its two offices and reception of e-mail from someone calling hìmself Saudi Arabia, Osama Bin Laden and bio and chemical attacks against public places such as airport.

Scoring one Translation

Bilingual Evaluation Understudy (BLEU)

Scoring a series of Translations

Bilingual Evaluation Understudy (BLEU)

Scoring a series of Translations

Bilingual Evaluation Understudy (BLEU)

Comparing Policies

Comparing Policies

Source Sentence

Good Translation

Comparing Policies

Comparing Policies

Source Sentence

Good Translation

Bad Translation

Comparing Policies

Source Sentence

Comparing Policies

Source Sentence

Comparing Policies

Source Sentence

Comparing Policies

Comparing Policies

Source Sentence

Comparing Policies

Imitation Learning

- Given all the predictions that we make (and the resulting translations) ...
- Discover the optimal in hindsight policies
- Goal: Teach our algorithm to think on its feet
- Challenge: Represent states in a way that will generalize

How do we find a good policy?

How do we find a good policy?

Classifier N
$\pi: s \mapsto a$

SEARN: Searching to Learn (Daumé \& Marcu, 2006)

Comparing Policies

Optimal

Learned

Batch

Motone

Cumulative Reward

Learned Policy with Accumulated Reward

\rightarrow Batch

Learned Policy with Accumulated Reward

\rightarrow Batch \simeq Monotone

Learned Policy with Accumulated Reward

\rightarrow Batch \rightarrow Monotone \rightarrow Optimal

Learned Policy with Accumulated Reward

\rightarrow Batch \rightarrow Monotone - Optimal + Searn

Example Sentence

INPUT

What tricks do interpreters use?

Interpretese vs.
 Translationese: The Uniqueness of Human Strategies in Simultaneous Interpretation

He He, Jordan Boyd-Graber, and Hal Daumé III. North American
Association for Computational
Linguistics, 2016

- Predictions [Levy and Keller 2013, Momma et al. 2015]
- Passivization
- Segmentation [Camayd-Freixas 2011, Shimizu et al. 2013]
- Generalize [Dell and O'Seaghdha 1992, Cuetos et al. 2006]
- Summarize

Syntax-based Rewriting for Simultaneous Machine Translation

He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2015

Syntax-based Rewriting for Simultaneous Machine Translation

He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2015

	Translation			
		GD	RW	RW+GD
Gold ref				
\# of verbs	1971	2050	$\mathbf{2 2 2 4}$	2731

Cladib:Amoos

Algorithms that ...

Collaborate with

Compete with
Understand
their Human Users

Sample Question

With Leo Szilard, he invented a doubly-eponymous

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the special and general theories of relativity?

Sample Question

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the special and general theories of relativity?

Albert Einstein

This is not Jeopardy [Ferrucci et al. 2010]

- Jeopardy: must decide to answer once, after complete question
- Quiz Bowl: decide after each word

How to approach this problem ...

How to approach this problem ...

A Neural Network for Factoid Question Answering over Paragraphs

Mohit lyyer, Jordan
Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2014

Vector Space Model

Qatar

From Wikipedia, the free encyclopedia

For other places with the same name, see Qatar (disambiguation).
 the State of Qatar (Arabic: دولة قطر Dawlat Qatar), is a sovereign Arab the small Qatar Peninsula on the northeastern coast of the Arabian Penir to the south, with the rest of its territory surrounded by the Persian Gulf. , from the nearby island kingdom of Bahrain. In 2013, Qatar's total populat and 1.5 million expatriates. ${ }^{[8]}$

Vector Space Model

Qatar

From Wikipedia, the free encyclopedia
For other places with the same name, see Qatar (disambiguation).
 the State of Qatar (Arabic: دولةة قطر Dawlat Qatar), is a sovereign Arab the small Qatar Peninsula on the northeastern coast of the Arabian Penir to the south, with the rest of its territory surrounded by the Persian Gulf. , from the nearby island kingdom of Bahrain. In 2013, Qatar's total populat and 1.5 million expatriates. ${ }^{[8]}$
arabian
persian
gulf
kingdom
expatriates

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to AI-Jazeera which is near Bahrain and juts into the Persian Gulf.

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

?

Vector Space Model

This country invested heavily in liquefied natural gas technologies, which it exports from its undersea North Dome field. This home of CENTCOM is currently led by a man who took power in a 1995 familial coup, Sheik Hamad bin Khalifa alThani. Wikileaks revealed that this country may have used its control over television programming as a diplomatic bargaining chip and this country pledged to use solar power to cool stadiums en route to being awarded a bid by FIFA in December 2010. For 10 points, identify this country home to Al-Jazeera which is near Bahrain and juts into the Persian Gulf.

How can we do better?

- Use relationship between questions ("China" and "Taiwan")
- Use learned features and dimensions, not the words we start with

Deep Averaging Networks

Deep Averaging Networks

Deep Averaging Networks

Deep Averaging Networks

Training

- Initialize embeddings from word2vec
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance

Training

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance
- Look where it lands

Training

- Initialize embeddings from word2vEC
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance
- Look where it lands

Training

- Initialize embeddings from word2vec
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance
- Look where it lands
- Has a correct answer

Training

- Initialize embeddings from word2vec
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance
- Look where it lands
- Has a correct answer
- Wrong answers may be closer

Training

- Initialize embeddings from word2vec
- Randomly initialize composition matrices
- Update using WARP
- Randomly choose an instance
- Look where it lands
- Has a correct answer
- Wrong answers may be closer
- Push away wrong answers
- Bring correct answers closer

Embedding

How to approach this problem ...

How to approach this problem ...

Besting the Quiz Master: Crowdsourcing Incremental Classification Games
 Jordan Boyd-Graber, He He , and Hal Daumé III. Empirical Methods in Natural Language Processing, 2012

Interface

```
Answering questions as: User
You have answered 0 questions.
Category: Unknown
Question from 2009 Minnesota Open
Don't show questions from this tournament
Don't show questions from this category)
Show all questions
Text Reveal Speed:
One poem by this author relates how Betty flies from her
master's bed to muss up her own, and "schoolboys lag with
satchels in their hands" while debt-collectors gather in front
of his lordship's
I
Submit (or press enter)
(S)kip question
```


Interface

- 7000 questions: first day
- 43000 questions: two weeks

461 unique users

- Imitated ...

Protobowl doning ano thing and dixing it accoptably wat

It looks like Protobow is taking a whie to connect to the server. This might not mean amything more than It looks like Prolobow is taking a whie to connect to the sarver. This might not mean anylhing more than a siow connecticn, or th could be a sign of several possible issues. You coud enter offine mode wif drawbeck of being offline and only being able to eccoss a limited pool of questions.

If you walt a littie bit, Protobowl will keep on trying to conrect using different transports until it finds something that works.

Observation: This man won the Battle

```
\(\pm 0.02\) Tokugawa
0.01 Erwin Rommel
0.01 Joan of Arc
0.01 Stephen Crane
```


Observation: This man won the Battle of Zela over Pontus. He wrote about his victory at Alesia in his Commentaries on the

```
0.11 Mithridates
0.09 Julius Caesar
0.08 Alexander the Great
0.07 Sulla
```


Observation: This man won the Battle of Zela over Pontus. He wrote about his victory at Alesia in his Commentaries on the Gallic Wars. FTP, name this Roman

```
0.89 Julius Caesar
0.02 Augustus
0.01 Sulla
0.01 Pompey
```


Answer: Julius Caesar

Examining vectors

Experiment 1

Colby Burnett: \$375,000

Ben Ingram:
\$427,534

Alex Jacobs: \$151,802

Kristin Sausville: \$95,201

Experiment 1

Colby Burnett: \$375,000

Ben Ingram: \$427,534

Alex Jacobs: \$151,802

Kristin Sausville: \$95,201

End result: 200-200 tie!

23. October 2015, Seattle

Humans 345-145

Humans 190-155

Where we have problems

Out of Date

Although he won the California primary in 2000, he distanced himself from fellow reform presidential candidate Pat Buchanan by comparing him to Attila the Hun. After being called a jackass, he prompted Lindsey Graham to destroy his phone by giving out his number during a speech. The slogan (*) Make America Great Again has been used by this politician, who claimed he didn't like people who were captured as a slight to John McCain and kicked off his 2016 presidential bid with some inflammatory remarks about Mexicans. For 10 points, name this Republican candidate and real estate mogul.

Where we have problems

Out of Date

Although he won the California primary in 2000, he distanced himself from fellow reform presidential candidate Pat Buchanan by comparing him to Attila the Hun. After being called a jackass, he prompted Lindsey Graham to destroy his phone by giving out his number during a speech. The slogan (*) Make America Great Again has been used by this politician, who claimed he didn't like people who were captured as a slight to John McCain and kicked off his 2016 presidential bid with some inflammatory remarks about Mexicans. For 10 points, name this Republican candidate and real estate mogul.

Chris Christie?

Where we have problems

Out of Touch

This singer recently cancelled the Great Escape Tour, and, in one song, she claims that she will be "Eating crumpets with the sailors / On acres without the neighbors." She collaborated with Jennifer (*) Hudson on the song "Trouble," which was issued in her album update Reclassified. This artist of "Change Your Life" was inspired by scenes from the movie Clueless to make the music video for a song in which she collaborated with Charli XCX. For 10 points, name this Australian rapper whose album The New Classic contained "Fancy."

Where we have problems

Out of Touch

This singer recently cancelled the Great Escape Tour, and, in one song, she claims that she will be "Eating crumpets with the sailors / On acres without the neighbors." She collaborated with Jennifer (*) Hudson on the song "Trouble," which was issued in her album update Reclassified. This artist of "Change Your Life" was inspired by scenes from the movie Clueless to make the music video for a song in which she collaborated with Charli XCX. For 10 points, name this Australian rapper whose album The New Classic contained "Fancy."

Bruce Springsteen?

Algorithms that ...

Collaborate with

Compete with
Understand
their Human Users

Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy Game
Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and Cristian Danescu-Niculescu-Mizil. Association for Computational Linguistics, 2015

The exciting game of international intigue

"The game that ruins friendships"

Un jeu fescinant
dintigues intermationales

The exciting game of international iningue

The game that ruins friendships

Un jeu fescinant
olintigues internationales

The exciting game of international intrigue

The game that ruins friendships

~6 months/game 145 k messages

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to
F simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to
F simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

What I would like you to do is keep Turkey busy and somehow get Russia and Turkey to engage. Meanwhile we need to take VIE, suggest you support me in there.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

E

Not really sure what to say, except that I regret you did what you did.

Curse your sudden but inevitable betrayal!

(Im)balance Over Time

Imbalance: f (betrayer) - f (victim). Looking only at betrayals.

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

(Im)balance Over Time

(Error bars show standard error.)

Algorithms that ...

Collaborate with
Compete with
Understand
their Human Users

Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application to Republican Legislators in the 112th Congress
Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik, and Kristina Miler. Association for Computational Linguistics, 2015

Evaluation: Tea Party in the House

The Tea Party

- American political movement for freedom, small government, lower tax
- Disrupting Republican Party and recent elections
- Organizations:
- Institutional: Tea Party Caucus
- Other: Tea Party Express, Tea Party Patriots, Freedom Works
- "Conventional views of ideology as a single-dimensional, left-right spectrum experience great difficulty in understanding or explaining the Tea Party."
[Carmines and D'Amico 2015, ARPS]

Goal

- Explain Tea Partiers in terms of issues and votes
- Identify Tea Partiers from their rhetoric

Not everyone has a voting record

- Ideal points estimated based on voting record
- Not all candidates have a voting record
- Governors
- Entertainers
- CEOs

Not everyone has a voting record

- Ideal points estimated based on voting record
- Not all candidates have a voting record
- Governors
- Entertainers
- CEOs
- But all politicians-by definition-talk

Let's use whatever data we have

Dr. Ben Carson @RealBenCarson - May 7
I'm pleased the Senate just passed the
Corker-Menendez bill requiring Congressional review of the administration's proposed treaty with Iran

4 $27333+662+0$ - +0

Dr. Ben Carson ©RealBenCarson • May 7
Met with some Pastors \& community leaders from the inner city \#OneBaltimore

A single model that uses:

- Bill text
- Votes
- Commentary
to map political actors to the same continuous space.

Let's use whatever data we have

N
Dr. Ben Carson @RealBenCarson - May 7
I'm pleased the Senate just passed the
Corker-Menendez bill requiring Congressional review of the administration's proposed treaty with Iran

4 $27333+662+0$ +00

Dr. Ben Carson @RealBenCarson - May 7
Met with some Pastors \& community leaders from the inner city \#OneBaltimore

A single model that uses:

- Bill text
- Votes
- Commentary
to map political actors to the same continuous space. This work: congressional floor speeches

Hierarchical Ideal Point Topic Model: Intuition

What are your thoughts on the issue of immigration?

Hierarchical Ideal Point Topic Model

Hierarchical Ideal Point Topic Model

Issue: Healthcare

Hierarchical Ideal Point Topic Model

Issue: Healthcare

patient, doctor, physician, hospital, insure

Hierarchical Ideal Point Topic Model

Issue: Healthcare

patient, doctor, physician, hospital, insure

Tea Party Caucus Membership Prediction

Experiment setup

- Task: Binary classification of whether a legislator is a member of the Tea Party Caucus
- Evaluation metric: AUC-ROC
- Classifier: SVM ${ }^{\text {light }}$
- Five-fold stratified cross-validation

Tea Party Caucus Membership Prediction

Experiment setup

- Task: Binary classification of whether a legislator is a member of the Tea Party Caucus
- Evaluation metric: AUC-ROC
- Classifier: SVM ${ }^{\text {light }}$
- Five-fold stratified cross-validation

Features

- Text-based features: normalized term frequency (TF) and TF-IDF
- Vote: binary features
- HIPTM: features extracted from our model including
- K-dim ideal point $u_{a, k}$ estimated from both votes and text
- K-dim ideal point estimated from text only $\boldsymbol{\eta}_{k}^{T} \hat{\boldsymbol{\psi}}_{\mathrm{a}, \mathrm{k}}$
- B probabilities estimating a's votes $\Phi\left(x_{b} \sum_{k=1}^{K} \vartheta_{b, k} u_{a, k}+y_{b}\right)$

Tea Party Caucus Membership Prediction: Votes \& Text

Tea Party Caucus Membership Prediction: Votes \& Text

Text-based
Features

Tea Party Caucus Membership Prediction: Votes \& Text

Tea Party Caucus Membership Prediction: Votes \& Text

Tea Party Caucus Membership Prediction: Votes \& Text

Tea Party Caucus Membership Prediction: Votes \& Text

Tea Party Caucus Membership Prediction: Text Only

Tea Party Caucus Membership Prediction: Text Only

Multi-dimensional Ideal Points

Most highly polarized dimensions are about government spending

Framing Macroeconomics

Polarization

Polarization

Polarization

Polarization

Algorithms that ...

Inform

Collaborate with

Compete with

Understand
their Human Users

$$
0
$$

We need ML that understands our gratitude and our fears

Thanks

Collaborators
NAQT, Hal Daumé III (UMD), Philip Resnik (UMD), Cristian Danescu-Niculescu-Mizil (Cornell), Leah Findlater (UMD), Kevin Seppi (BYU), Eric Ringger (BYU)

Funders

Supporters

References

David M. Blei, Andrew Ng, and Michael Jordan.
2003.

Latent Dirichlet allocation.
Journal of Machine Learning Research, 3.

Erik Camayd-Freixas.
2011.

Cognitive theory of simultaneous interpreting and training.
In Proceedings of the 52nd Conference of the American Translators Association.

Edward G Carmines and Nicholas J D'Amico.
2015.

The new look in political ideology research.
Annual Review of Political Science, 18(4).
F. Cuetos, B. Alvarez B, M. González-Nosti, A. Méot, and P. Bonin.
2006.

Determinants of lexical access in speech production: role of word frequency and age of acquisition. Mem Cognit, 34.

Hal Daumé III.
2004.

Notes on CG and LM-BFGS optimization of logistic regression.
Paper available at http://pub.hal3.name/~daume04cg-bfgs, implementation available at http://hal3.name/megam/.
G.S. Dell and P.G. O'Seaghdha.
1992.

Stages of lexical access in language production.

Using Compositionality

Using Compositionality

$$
f\left(W_{v} \cdot x_{w}+b+\sum_{k \in K(n)} W_{R(n, k)} \cdot h_{k}\right)=
$$

प| П | I attacked

Using Compositionality

$$
\begin{gathered}
f\left(W_{v} \cdot x_{w}+b+\sum_{k \in K(n)} W_{R(n, k)} \cdot h_{k}\right)= \\
\text { पापाए attackeg }
\end{gathered}
$$

Using Compositionality

$$
\begin{gathered}
f\left(W_{v} \cdot x_{w}+b+\sum_{k \in K(n)} W_{R(n, k)} \cdot h_{k}\right)=\square \\
\vdots \\
\vdots \\
\vdots
\end{gathered}
$$

Using Compositionality

Learning which Features are Useful

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label a and feature f is a function of the number of buzzes b and tf-idf [Salton 1968]

$$
\begin{equation*}
[\alpha \square[b(a, f)>0]+\beta b(a, f)+\gamma] \operatorname{tf-idf}(a, f) . \tag{2}
\end{equation*}
$$

- α, β, and $\gamma=0$: naïve zero prior
- α and $\beta=0$: linear transformation of the mean
- α and $\gamma=0$: number of buzzes times tf-idf value of the features

Learning which Features are Useful

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label a and feature f is a function of the number of buzzes b and tf-idf [Salton 1968]

$$
\begin{equation*}
[\alpha \square[b(a, f)>0]+\beta b(a, f)+\gamma] \operatorname{tf-idf}(a, f) . \tag{2}
\end{equation*}
$$

- α, β, and $\gamma=0$: naïve zero prior
- α and $\beta=0$: linear transformation of the mean
- α and $\gamma=0$: number of buzzes times tf-idf value of the features

Learning which Features are Useful

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label a and feature f is a function of the number of buzzes b and tf-idf [Salton 1968]

$$
\begin{equation*}
[\alpha \square[b(a, f)>0]+\beta b(a, f)+\gamma] \operatorname{tf-idf}(a, f) . \tag{2}
\end{equation*}
$$

- α, β, and $\gamma=0$: naïve zero prior
- α and $\beta=0$: linear transformation of the mean
- α and $\gamma=0$: number of buzzes times tf-idf value of the features

Learning which Features are Useful

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label a and feature f is a function of the number of buzzes b and tf-idf [Salton 1968]

$$
\begin{equation*}
[\alpha \square[b(a, f)>0]+\beta b(a, f)+\gamma] \operatorname{tf-idf}(a, f) . \tag{2}
\end{equation*}
$$

- α, β, and $\gamma=0$: naïve zero prior
- α and $\beta=0$: linear transformation of the mean
- α and $\gamma=0$: number of buzzes times tf-idf value of the features

Using buzzes as a prior

$$
[\alpha \square[b(a, f)>0]+\beta b(a, f)+\gamma] \operatorname{tf-idf}(a, f) .
$$

Answers	Weighting	α	β	γ	Error 1
100	zero	-	-	-	0.22
	tf-idf	-	-	8.3	0.08
	buzz-binary	10.7	-	-	$\mathbf{0 . 0 6}$
	buzz-linear	-	1.1	-	0.10
	buzz-tier	-	1.6	0.5	0.07

[^1]
(a) Buzzes over all Questions
(b) Wuthering Heights Question Text
(c) Buzzes on Wuthering Heights

Accuracy vs. Speed

How we could translate a sentence

```
Observation
    1. Mit dem Zug
```


How we could translate a sentence

```
Observation
0}V\mathrm{ Verb: gewesen
Next: und
```


How we could translate a sentence

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
& p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \pi_{d, n}\right) \underbrace{p\left(I_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {meaning and topic }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to concept }} \underbrace{\prod_{c}^{C}\left(p\left(\pi_{k, c} \mid \tau\right)\right)}_{\text {concept to word }}
\end{aligned}
$$

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
& p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \pi_{d, n}\right) \underbrace{p\left(I_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {meaning and topic }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to concept }} \underbrace{\prod_{c}^{C}\left(p\left(\pi_{k, c} \mid \tau\right)\right)}_{\text {concept to word }}
\end{aligned}
$$

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
& p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \pi_{d, n}\right) \underbrace{p\left(I_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {meaning and topic }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to concept }} \underbrace{\prod_{c}^{C}\left(p\left(\pi_{k, c} \mid \tau\right)\right)}_{\text {concept to word }}
\end{aligned}
$$

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
p(w)=\prod_{d} \prod_{n} \prod_{\text {Model }}^{N_{d}}(\underbrace{}_{\text {meaning and topic }} p\left(w_{d, n} \mid \pi_{/_{d, n}}\right) & \underbrace{p\left(/_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic to concept }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{K}_{\text {concept to word }} p\left(\phi_{k} \mid \eta\right)
\end{aligned}
$$

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
p(w)=\prod_{d} \prod_{n} \prod_{\text {Model }}^{N_{d}}(\underbrace{}_{\text {meaning and topic }} p\left(w_{d, n} \mid \pi_{/_{d, n}}\right) & \underbrace{p\left(/_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic to concept }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{K}_{\text {concept to word }} p\left(\phi_{k} \mid \eta\right)
\end{aligned}
$$

Adding meaning to topic models
Traditional Topic Models
$p(w)=\prod_{d} \prod_{n}^{N_{d}}(p\left(w_{d, n} \mid \phi_{z_{d, n}}\right) \underbrace{p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic }}) p\left(\theta_{d} \mid \alpha\right) \underbrace{\prod_{k}^{K} p\left(\phi_{k} \mid \eta\right)}_{\text {topic to words }}$
Our Model

$$
\begin{aligned}
p(w)=\prod_{d} \prod_{n} \prod_{\text {Model }}^{N_{d}}(\underbrace{}_{\text {meaning and topic }} p\left(w_{d, n} \mid \pi_{/_{d, n}}\right) & \underbrace{p\left(/_{d, n} \mid \phi_{d, n}\right) p\left(z_{d, n} \mid \theta_{d}\right)}_{\text {topic to concept }}) p\left(\theta_{d} \mid \alpha\right) \\
& \underbrace{K}_{\text {concept to word }} p\left(\phi_{k} \mid \eta\right)
\end{aligned}
$$

[^0]: Apple ist zum wertvollsten Konzern aller Zeiten avanciert
 Nein, mit dem Virus ist es noch lange nicht getan
 Eine vielbefahrene Brücke in New Jersey wurde grundlos gesperrt
 Mit Drohen und Interpretieren ist es nicht getan
 Frankfurter Flughafen für Passagiere weitgehend gesperrt

[^1]: ${ }^{1}$ Buzz and tf-idf computed on training data; grid search on dev data; error on test data

