

Machine Learning Shouldn't Be a Black Box

Jordan Boyd-Graber University of Colorado Boulder 2016

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

Common task: what's going on in this dataset.

- Intelligence analysts
- Brand monitoring
- Journalists
- Humanists

- 600 new blog posts appear
- 34,000 tweets are tweeted
- 30 GB of data uploaded to Facebook

Unstructured

No XML, no semantic web, no annotation. Often just raw text.

Common task: what's going on in this dataset.

- Intelligence analysts
- Brand monitoring
- Journalists
- Humanists

Common solution: topic models

From an **input corpus** and number of topics $K \rightarrow$ words to topics

From an input corpus and number of topics $K \rightarrow$ words to topics

TOPIC 2

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

sell, sale, store, product, business, advertising, market, consumer play, film, movie, theater, production, star, director, stage

TOPIC 3

Reading Tea Leaves: How Humans Interpret Topic Models

Jonathan Chang, Jordan Boyd-Graber, Chong Wang, Sean Gerrish, and David M. Blei. Reading Tea Leaves: How Humans Interpret Topic Models. Neural Information Processing Systems, 2009.

Evaluation

Evaluation

Measures predictive power (likelihood / perplexity)

"segment 1"	"segment 2"	"matrix 1"	"matrix 2"	"line 1"	"line 2"	"power 1"	power 2"
imag	speaker	robust	manufactur	constraint	alpha	POWER	load
SEGMENT	speech	MATRIX	cell	LINE	redshift	spectrum	memori
texture	recogni	eigenvalu	part	match	LINE	omega	vlsi
color	signal	uncertainti	MATRIX	locat	galaxi	mpc	POWER
tissue	train	plane	cellular	imag	quasar	hsup	systolic
brain	hmm	linear	famili	geometr	absorp	larg	input
slice	source	condition	design	impos	high	redshift	complex
cluster	speakerind.	perturb	machinepart	segment	ssup	galaxi	arrai
mri	SEGMENT	root	format	fundament	densiti	standard	present
volume	sound	suffici	group	recogn	veloc	model	implement

Figure 3: Eight selected factors from a 128 factor decomposition. The displayed word stems are the 10 most probable words in the class-conditional distribution P(w|z), from top to bottom in descending order.

[Hofmann 1999]

FILM TAX WOMEN ST SHOW PROGRAM PEOPLE SO	
MOVIEBILLIONYEARSTIPLAYFEDERALFAMILIESHIMUSICALYEARWORKPIBESTSPENDINGPARENTSTIACTORNEWSAYSBIFIRSTSTATEFAMILYMYORKPLANWELFARENAOPERAMONEYMENST	CHOOL FUDENTS CHOOLS DUCATION EACHERS IGH UBLIC EACHER ENNETT ANIGAT AMIPHY PATE DESTDENT
FIRSTSTATEFAMILYMYORKPLANWELFARENAOPERAMONEYMENSTTHEATERPROGRAMSPERCENTPIACTRESSGOVERNMENTCAREEI	AMPHY

[Blei et al. 2003]

- DA centralbank europæiske ecb s lån centralbanks
- DE zentralbank ezb bank europäischen investitionsbank darlehen
- EL τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες
- EN bank central ecb banks european monetary
- ES banco central europeo bce bancos centrales
- FI keskuspankin ekp n euroopan keskuspankki eip
- FR banque centrale bce européenne banques monétaire
- IT banca centrale bce europea banche prestiti
- NL bank centrale ecb europese banken leningen
- PT banco central europeu bce bancos empréstimos
- SV centralbanken europeiska ecb centralbankens s lån

[Mimno et al. 2009]

(a)	Topic	labeled	as	SSL
-----	-------	---------	----	-----

Keyword	Probability
ssl	0.373722
expr	0.042501
init	0.033207
engine	0.026447
var	0.022222
ctx	0.023067
ptemp	0.017153
mctx	0.013773
lookup	0.012083
modssl	0.011238
ca	0.009548

(b) Topic labeled as Logging

Keyword	Probability
log	0.141733
request	.036017
mod	0.0311
config	0.029871
name	0.023725
headers	0.021266
autoindex	0.020037
format	0.017578
cmd	0.01512
header	0.013891
add	0.012661

 Table 2: Sample Topics extracted from Apache source code

[Maskeri et al. 2008]

Probabilistic Models Prosody	model word probability set data number algorithm language corpus method prosodic speech pitch boundary prosody phrase boundaries accent repairs intonation
Semantic Roles*	semantic verb frame argument verbs role roles predicate arguments
Yale School Semantics	knowledge system semantic language concept representation information network concepts base
Sentiment	subjective opinion sentiment negative polarity positive wiebe reviews sentence opinions
Speech Recognition	speech recognition word system language data speaker error test spoken
Spell Correction	errors error correction spelling ocr correct corrections checker basque corrected detection
Statistical MT	english word alignment language source target sentence machine bilingual mt
Statistical Parsing	dependency parsing treebank parser tree parse head model al np
Summarization	sentence text evaluation document topic summary summarization human summaries score
Syntactic Structure	verb noun syntactic sentence phrase np subject structure case clause
TAG Grammars*	tree node trees nodes derivation tag root figure adjoining grammar
Unification	feature structure grammar lexical constraints unification constraint type structures rule
WSD*	word senses wordnet disambiguation lexical semantic context similarity dictionary
Word Segmentation	chinese word character segmentation corpus dictionary korean language table system
WordNet*	synset wordnet synsets hypernym ili wordnets hypernyms eurowordnet hyponym ewn wn

Table 2: Top 10 words for 43 of the topics. Starred topics are hand-seeded.

[Hall et al. 2008]

1. Take the highest probability words from a topic

Original Topic dog, cat, horse, pig, cow 1. Take the highest probability words from a topic

Original Topic dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

1. Take the highest probability words from a topic

Original Topic dog, cat, horse, pig, cow

2. Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

3. We ask users to find the word that doesn't belong

Hypothesis If the topics are interpretable, users will consistently choose true intruder

Number of topics

Within a model, higher likelihood \neq higher interpretability

- A way to get at an evaluation that matches what we care about
- A necessary step to improving topic models for navigating large datasets [Talley et al. 2011]
- Others have discovered automatic methods that uncover the same properties [Newman et al. 2010, Mimno et al. 2011]
- And extended the technique to structured topics and phrases [Lindsey et al. 2012, Weninger et al. 2012]

Algorithms that ... Collaborate with their Human Users

bladder spinal_cord sci spinal_cord_injury spinal urinary urothelial cervical injury recovery urinary_tract locomotor lumbar

bladder spinal_cord sci spinal_cord_injury spinal urinary urothelial cervical injury recovery urinary_tract locomotor lumbar

Interactive Topic Modeling

Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff. Association for Computational Linguistics, 2011.

Topic Before

election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military
new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david
nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, inter- national, military, see
:

soviet, lead, gorbachev, union, west, mikhail, reform, change, europe, leaders, poland, communist, know, old, right, human, washington, western, bring, party

1

2

3

4

20

Topic Before

1	election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing
4	president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, inter- national, military, see
	:
20	soviet, lead, gorbachev, union, west, mikhail, re- form, change, europe, leaders, poland, commu- nist, know, old, right, human, washington, west- ern, bring, party

Topic	Before	
1	election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military	
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david	
2	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would,	Suggesti
3	control, korea, intelligence, test, nation, country, testing	boris, cor
	president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic,	mikhail, i
4	iraq, congress, america, iraqi, policy, aid, inter- national, military, see	union, ye
20	soviet, lead, gorbachev, union, west, mikhail, re- form, change, europe, leaders, poland, commu- nist, know, old, right, human, washington, west- ern, bring, party	

ion

mmunist, gorbachev, russia, russian, soviet, eltsin

Topic	Before	_Topic	After
1	election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military	1	election, democratic, south, country, president, party, africa, lead, even, democracy, leader, pres- idential, week, politics, minister, percent, voter, last, month, years
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david	2	new, york, city, state, mayor, budget, council, giuliani, gov, cuomo, year, rudolph, dinkins, leg- islature, plan, david, governor, pataki, need, cut
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing	3	nuclear, arms, weapon, treaty, defense, war, mis- sile, may, come, test, american, world, would, need, lead, get, join, yet, clinton, nation
4	president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, inter- national, military, see	4	president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan
20	soviet, lead, gorbachev, union, west, mikhail, re- form, change, europe, leaders, poland, commu- nist, know, old, right, human, washington, west- ern, bring, party	20	soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, commu- nist, power, relations

Topic	Before	_Topic	After
1	election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military	1	election, democratic, south, country, president, party, africa, lead, even, democracy, leader, pres- idential, week, politics, minister, percent, voter, last, month, years
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david	2	new, york, city, state, mayor, budget, council, giuliani, gov, cuomo, year, rudolph, dinkins, leg- islature, plan, david, governor, pataki, need, cut
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing	3	nuclear, arms, weapon, treaty, defense, war, mis- sile, may, come, test, american, world, would, need, lead, get, join, yet, clinton, nation
4	president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, inter- national, military, see	4	president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan
20	soviet, lead, gorbachev, union, west, mikhail, re- form, change, europe, leaders, poland, commu- nist, know, old, right, human, washington, west- ern, bring, party	20	soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, commu- nist, power, relations

Topic	Before	_Topic	After
1	election, yeltsin, russian, political, party, demo- cratic, russia, president, democracy, boris, coun- try, south, years, month, government, vote, since, leader, presidential, military	1	election, democratic, south, country, president, party, africa, lead, even, democracy, leader, pres- idential, week, politics, minister, percent, voter, last, month, years
2	new, york, city, state, mayor, budget, giuliani, council, cuomo, gov, plan, year, rudolph, dinkins, lead, need, governor, legislature, pataki, david	2	new, york, city, state, mayor, budget, council, giuliani, gov, cuomo, year, rudolph, dinkins, leg- islature, plan, david, governor, pataki, need, cut
3	nuclear, arms, weapon, defense, treaty, missile, world, unite, yet, soviet, lead, secretary, would, control, korea, intelligence, test, nation, country, testing	3	nuclear, arms, weapon, treaty, defense, war, mis- sile, may, come, test, american, world, would, need, lead, get, join, yet, clinton, nation
4	president, bush, administration, clinton, ameri- can, force, reagan, war, unite, lead, economic, iraq, congress, america, iraqi, policy, aid, inter- national, military, see	4	president, administration, bush, clinton, war, unite, force, reagan, american, america, make, nation, military, iraq, iraqi, troops, international, country, yesterday, plan
20	soviet, lead, gorbachev, union, west, mikhail, re- form, change, europe, leaders, poland, commu- nist, know, old, right, human, washington, west- ern, bring, party	20	soviet, union, economic, reform, yeltsin, russian, lead, russia, gorbachev, leaders, west, president, boris, moscow, europe, poland, mikhail, commu- nist, power, relations

Topic Words 318 bladder, sci, spinal.cord, spinal.cord.injury, spinal, urimary, urinary.tract, urothelial,injury, motor, recovery, reflex, cervical, urothelium, functional.recovery

Topic Words 318 bladder, sci, spinal_cord_injury, spinal, urinary, urinary_tract, urothelial,injury, motor, recovery, ereflex, cervical, urothelium, functional_recovery

Negative Constraint spinal_cord, bladder

Topic	Words	Topic	Words
318	bladder, sci, spinal_cord, spinal_cord_injury, spinal, uri- nary, urinary_tract, urothelial,injury, motor, recovery, reflex, cervical, urothelium, functional_recovery	318	sci, spinal_cord, spinal_cord_injury, spinal, injury, recovery, motor, reflex, urothelial, injured, functional_recovery, plasticity, locomotor, cervical, locomo- tion
Negativ	ve Constraint		

spinal_cord, bladder

ALTO: Active Learning with Topic Overviews for Speeding Label Induction and Document Labeling

Forough Poursabzi-Sangdeh, Jordan Boyd-Graber, Leah Findlater, and Kevin Seppi. Association for Computational Linguistics, 2016.

Algorithms that ... Collaborate with their Human Users

When you at the dark side **look**, careful you must **be**.

ich bin mit dem Zug nach Ulm **gefahren** I am with the train to Ulm **traveled** I (..... waiting.....) **traveled** by train to Ulm

Learning from Interpreters

- What tricks do they use?
- How can we teach machines to use them?
- How do we know when to use them?
- Giving back to interpreters

Don't Until the Final Verb Wait: Reinforcement Learning for Simultaneous Machine Translation Alvin Grissom II, Jordan Boyd-Graber, He He, John Morgan, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2014

Predict the Verb

- Predicting the verb "unlocks" sentence
- Language models are good at word prediction
- But instead, we'll predict the verb

Apple ist zum wertvollsten Konzern aller Zeiten avanciert Nein, mit dem Virus ist es noch lange nicht getan Eine vielbefahrene Brücke in New Jersey wurde grundlos gesperrt Mit Drohen und Interpretieren ist es nicht getan Frankfurter Flughafen für Passagiere weitgehend gesperrt

Als ruppiger Bad Boy mit Herz namens Daryl ist er zum Superstar der Besetzung avanciert

Apple ist zum wertvollsten Konzern aller Zeiten avanciert

Nein, mit dem Virus ist es noch lange nicht getan

Eine vielbefahrene Brücke in New Jersey wurde grundlos gesperrt

Mit Drohen und Interpretieren ist es nicht getan

Frankfurter Flughafen für Passagiere weitgehend gesperrt

Als ruppiger Bad Boy mit Herz namens Daryl ist er zum Superstar der Besetzung avanciert

- Build language model for every verb
- Then, for any input text x we can make a prediction of the verb

$$\arg\max_{v} p(v) \prod_{i=1}^{t} p(x_i | v, x_{i-n+1:i-1})$$
(1)

- Build language model for every verb
- Then, for any input text x we can make a prediction of the verb

$$\arg\max_{v} p(v) \prod_{i=1}^{t} p(x_i \mid v, x_{i-n+1:i-1})$$
(1)

- Most of these predictions will be totally wrong (18% accuracy) ...
- leading to horrible translations

Human Judgments

Good Translation

Bad Translation

Good Translation

Bad Translation

Imitation Learning

- Given all the predictions that we make (and the resulting translations) . . .
- Discover the optimal in hindsight policies
- Goal: Teach our algorithm to think on its feet
- Challenge: Represent states in a way that will generalize

SEARN: Searching to Learn (Daumé & Marcu, 2006)

Jordan Boyd-Graber

Interpretese vs. Translationese: The Uniqueness of Human Strategies in Simultaneous Interpretation

He He, **Jordan Boyd-Graber**, and Hal Daumé III. *North American Association for Computational Linguistics*, 2016

- Predictions [Levy and Keller 2013, Momma et al. 2015]
- Passivization
- Segmentation [Camayd-Freixas 2011, Shimizu et al. 2013]
- Generalize [Dell and O'Seaghdha 1992, Cuetos et al. 2006]
- Summarize

Syntax-based Rewriting for Simultaneous Machine Translation He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2015

Syntax-based Rewriting for Simultaneous Machine Translation He He, Alvin Grissom II, Jordan Boyd-Graber, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2015

	Translation			
	GD	RW	RW+GD	Gold ref
# of verbs	1971	2050	2224	2731

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

With Leo Szilard, he invented a doubly-eponymous

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the special and general theories of relativity?

With Leo Szilard, he invented a doubly-eponymous refrigerator with no moving parts. He did not take interaction with neighbors into account when formulating his theory of heat capacity, so Debye adjusted the theory for low temperatures. His summation convention automatically sums repeated indices in tensor products. His name is attached to the A and B coefficients for spontaneous and stimulated emission, the subject of one of his multiple groundbreaking 1905 papers. He further developed the model of statistics sent to him by Bose to describe particles with integer spin. For 10 points, who is this German physicist best known for formulating the special and general theories of relativity?

Albert Einstein

This is not Jeopardy [Ferrucci et al. 2010]

- Jeopardy: must decide to answer once, after complete question
- Quiz Bowl: decide after each word

How to approach this problem ...

How to approach this problem ...

A Neural Network for Factoid Question Answering over Paragraphs Mohit lyyer, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2014

Qatar

From Wikipedia, the free encyclopedia

For other places with the same name, see Qatar (disambiguation).

Qatar (ه// لامعند , الإمعند / المعند , الافتار) معند (مراجع) ومعند (مراجع) ومند (مراجع) ومعند (مراجع) ومعند (م the State of Qatar (Arabic: مولية قطر) *Dawlat Qatar*), is a sovereign Arab the small Qatar Peninsula on the northeastern coast of the Arabian Penir to the south, with the rest of its territory surrounded by the Persian Gulf. J from the nearby island kingdom of Bahrain. In 2013, Qatar's total populat and 1.5 million expatriates.^[8]

Qatar

From Wikipedia, the free encyclopedia	arabian
For other places with the same name, see Qatar (disambiguation).	persian
كمtar (مِا/َلمَتْ لَمَتْ المَّارَةِ مَعْلَى: مَعْلَى كَمَانَ المَعْلَى مَعْلَى المَّارِيةِ المَّارِيةِ مَعْلَى the State of Qatar (Arabic: بولية قطر Dawlat Qatar), is a sovereign Arab	gulf
the small Qatar Peninsula on the northeastern coast of the Arabian Penir to the south, with the rest of its territory surrounded by the Persian Gulf. /	kingdom
from the nearby island kingdom of Bahrain. In 2013, Qatar's total populat and 1.5 million expatriates. $^{[8]}$	expatriates

arabian	
persian	_
gulf	
kingdom	
expatriates	

- Use relationship between questions ("China" and "Taiwan")
- Use learned features and dimensions, not the words we start with

Deep Averaging Networks

Deep Averaging Networks

Deep Averaging Networks

Deep Averaging Networks

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance
 - Look where it lands

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance
 - Look where it lands

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance
 - Look where it lands
 - Has a correct answer

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance
 - Look where it lands
 - Has a correct answer
 - Wrong answers may be closer

- Initialize embeddings from WORD2VEC
- Randomly initialize composition matrices
- Update using WARP
 - Randomly choose an instance
 - Look where it lands
 - Has a correct answer
 - Wrong answers may be closer
 - Push away wrong answers
 - Bring correct answers closer

Embedding

How to approach this problem ...

How to approach this problem ...

Besting the Quiz Master: Crowdsourcing Incremental Classification Games Jordan Boyd-Graber, He He, and Hal Daumé III. Empirical Methods in Natural Language Processing, 2012

Interface

Answering questions as: User

You have answered 0 questions.

Category: Unknown

Question from 2009 Minnesota Open

Don't show questions from this tournament

Don't show questions from this category

Show all questions

Text Reveal Speed:

One poem by this author relates how Betty flies from her master's bed to muss up her own, and "schoolboys lag with satchels in their hands" while debt-collectors gather in front of his lordship's

Interface

Answering questions as: User

You have answered 0 questions.

Category: Unknown

Question from 2009 Minnesota Open

Don't show questions from this tournament

Don't show questions from this category

Show all questions

Text Reveal Speed:

One poem by this author relates how Betty flies from her master's bed to muss up her own, and "schoolboys lag with satchels in their hands" while debt-collectors gather in front of his lordship's

- 7000 questions: first day
- 43000 questions: two weeks
- 461 unique users
- Imitated . . .

Submit (or press enter) (S)kip question

Observation: This man won the Battle

Observation: This man won the Battle of Zela over Pontus. He wrote about his victory at Alesia in his Commentaries on the

0.11 Mithridates 0.09 Julius Caesar 0.08 Alexander the Great 0.07 Sulla

Observation: This man won the Battle of Zela over Pontus. He wrote about his victory at Alesia in his Commentaries on the Gallic Wars. FTP, name this Roman

0.89 Julius Caesar 0.02 Augustus 0.01 Sulla 0.01 Pompey

Examining vectors

Experiment 1

 Colby Burnett:
 Ben Ingram:
 Alex Jacobs:

 \$375,000
 \$427,534
 \$151,802

Kristin Sausville: \$95,201

Experiment 1

Colby Burnett:	Ben Ingram:	Alex Jacobs:	Kristin Sausville:
\$375,000	\$427,534	\$151,802	\$95,201

End result: 200-200 tie!

23. October 2015, Seattle

Humans 345-145

Humans 190-155

Out of Date

Although he won the California primary in 2000, he distanced himself from fellow reform presidential candidate Pat Buchanan by comparing him to Attila the Hun. After being called a jackass, he prompted Lindsey Graham to destroy his phone by giving out his number during a speech. The slogan (*) Make America Great Again has been used by this politician, who claimed he didn't like people who were captured as a slight to John McCain and kicked off his 2016 presidential bid with some inflammatory remarks about Mexicans. For 10 points, name this Republican candidate and real estate mogul.

Out of Date

Although he won the California primary in 2000, he distanced himself from fellow reform presidential candidate Pat Buchanan by comparing him to Attila the Hun. After being called a jackass, he prompted Lindsey Graham to destroy his phone by giving out his number during a speech. The slogan (*) Make America Great Again has been used by this politician, who claimed he didn't like people who were captured as a slight to John McCain and kicked off his 2016 presidential bid with some inflammatory remarks about Mexicans. For 10 points, name this Republican candidate and real estate mogul.

Chris Christie?

Out of Touch

This singer recently cancelled the Great Escape Tour, and, in one song, she claims that she will be "Eating crumpets with the sailors / On acres without the neighbors." She collaborated with Jennifer (*) Hudson on the song "Trouble," which was issued in her album update Reclassified. This artist of "Change Your Life" was inspired by scenes from the movie Clueless to make the music video for a song in which she collaborated with Charli XCX. For 10 points, name this Australian rapper whose album The New Classic contained "Fancy."

Out of Touch

This singer recently cancelled the Great Escape Tour, and, in one song, she claims that she will be "Eating crumpets with the sailors / On acres without the neighbors." She collaborated with Jennifer (*) Hudson on the song "Trouble," which was issued in her album update Reclassified. This artist of "Change Your Life" was inspired by scenes from the movie Clueless to make the music video for a song in which she collaborated with Charli XCX. For 10 points, name this Australian rapper whose album The New Classic contained "Fancy."

Bruce Springsteen?

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

Linguistic Harbingers of Betrayal: A Case Study on an Online Strategy Game Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and Cristian Danescu-Niculescu-Mizil. Association for Computational Linguistics, 2015

The exciting game of international intrigue

"The game that ruins friendships"

0191emary

Díplomacy online! 249 games ~6 months/game 145k messages diplom.org; usak.asciiking.com

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

F

F

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

F

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

F

NOW STAND BACK,

I GOTTA PRACTICE MY STABBIN'

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

F

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

F

F

It's a sensible plan. I'll support you as requested. Please be sure to simultaneously attack SWE.

Not really sure what to say, except that I regret you did what you did.

F

Curse your sudden but inevitable betrayal!

Imbalance: f(betrayer) - f(victim). Looking only at betrayals.

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

Tea Party in the House: A Hierarchical Ideal Point Topic Model and Its Application to Republican Legislators in the 112th Congress

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik, and Kristina Miler. *Association for Computational Linguistics*, 2015

Evaluation: Tea Party in the House

The Tea Party

- American political movement for freedom, small government, lower tax
- Disrupting Republican Party and recent elections
- Organizations:
 - Institutional: Tea Party Caucus
 - Other: Tea Party Express, Tea Party Patriots, Freedom Works
- "Conventional views of ideology as a single-dimensional, left-right spectrum experience great difficulty in understanding or explaining the Tea Party."

[Carmines and D'Amico 2015, ARPS]

Goal

- Explain Tea Partiers in terms of issues and votes
- Identify Tea Partiers from their rhetoric

Not everyone has a voting record

- Ideal points estimated based on voting record
- Not all candidates have a voting record
 - Governors
 - Entertainers
 - CEOs

Not everyone has a voting record

- Ideal points estimated based on voting record
- Not all candidates have a voting record
 - Governors
 - Entertainers
 - CEOs
- But all politicians—by definition—talk

Let's use whatever data we have

Dr. Ben Carson @RealBenCarson · May 7

I'm pleased the Senate just passed the Corker-Menendez bill requiring Congressional review of the administration's proposed treaty with Iran

4 13 333 🛨 662 🐏 🚥

Dr. Ben Carson @RealBenCarson · May 7 Met with some Pastors & community leaders from the inner city #OneBaltimore

A single model that uses:

- Bill text
- Votes
- Commentary

to map political actors to the same continuous space.

Let's use whatever data we have

I'm pleased the Senate just passed the Corker-Menendez bill requiring Congressional review of the administration's proposed treaty with Iran

4 13 333 🛨 662 🐏 🚥

Dr. Ben Carson @RealBenCarson · May 7

Met with some Pastors & community leaders from the inner city #OneBaltimore

A single model that uses:

- Bill text
- Votes
- Commentary

to map political actors to the same continuous space. This work: congressional floor speeches

Hierarchical Ideal Point Topic Model: Intuition

What are your thoughts on the issue of immigration?

Issue: Healthcare

Issue: Healthcare

patient, doctor, physician, hospital, insure

Issue: Healthcare

Tea Party Caucus Membership Prediction

Experiment setup

- Task: Binary classification of whether a legislator is a member of the Tea Party Caucus
- Evaluation metric: AUC-ROC
- Classifier: SVM^{light}
- Five-fold stratified cross-validation

Tea Party Caucus Membership Prediction

Experiment setup

- Task: Binary classification of whether a legislator is a member of the Tea Party Caucus
- Evaluation metric: AUC-ROC
- Classifier: SVM^{light}
- Five-fold stratified cross-validation

Features

- Text-based features: normalized term frequency (TF) and TF-IDF
- Vote: binary features
- HIPTM: features extracted from our model including
 - K-dim ideal point $u_{a,k}$ estimated from both votes and text
 - $\circ~$ K-dim ideal point estimated from text only $\eta_k^{\intercal} \hat{\psi}_{s,k}$
 - *B* probabilities estimating *a*'s votes $\Phi(x_b \sum_{k=1}^{K} \vartheta_{b,k} u_{a,k} + y_b)$

Tea Party Caucus Membership Prediction: Text Only

Tea Party Caucus Membership Prediction: Text Only

Multi-dimensional Ideal Points

Most highly polarized dimensions are about government spending

Framing Macroeconomics

Ideal Point Distributions		Not	Polarized
on of mes	Not	Civil Rights, Minority Issues, Civil Liberties	Banking and Finance; Transportation
Distribution of Issue Frames	Polarized	Health; Public Lands and Water Management	Macroeconomics; Government Operations
	S N	YES	NO

Ideal Point Distributions		Not	Polarized
on of mes	Not	Civil Rights, Minority Issues, Civil Liberties	Banking and Finance Transportation
Distribution of Issue Frames	Polarized	Health; Public Lands and Water Management	Macroeconomics; Government Operations
	S N	YES	NO

Ideal Point Distributions		Not	Polarized
on of mes	Not	Civil Rights, Minority Issues, Civil Liberties	Banking and Finance Transportation
Distribution of Issue Frames	Polarized	Health; Public Lands and Water Management	
		YES	NO

Algorithms that ...

Inform

Collaborate with

Compete with

Understand

their Human Users

We need ML that understands our gratitude and our fears

Thanks

Collaborators

NAQT, Hal Daumé III (UMD), Philip Resnik (UMD), Cristian Danescu-Niculescu-Mizil (Cornell), Leah Findlater (UMD), Kevin Seppi (BYU), Eric Ringger (BYU)

References

David M. Blei, Andrew Ng, and Michael Jordan.

2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3.

Erik Camayd-Freixas.

2011.

Cognitive theory of simultaneous interpreting and training. In Proceedings of the 52nd Conference of the American Translators Association.

Edward G Carmines and Nicholas J D'Amico.

2015.

The new look in political ideology research. Annual Review of Political Science, 18(4).

F. Cuetos, B. Alvarez B, M. González-Nosti, A. Méot, and P. Bonin.

2006.

Determinants of lexical access in speech production: role of word frequency and age of acquisition. Mem Cognit, 34.

Hal Daumé III.

2004.

Notes on CG and LM-BFCS optimization of logistic regression. Paper available at http://pub.hal3.name/-daume04cg-bfgs, implementation available at http://hal3.name/megam/.

G.S. Dell and P.G. O'Seaghdha.

1992.

Stages of lexical access in language production.

Using Compositionality

Conclusions

$$f(W_v \cdot x_w + b + \sum_{k \in K(n)} W_{R(n,k)} \cdot h_k) =$$

$$f(W_v \cdot x_w + b + \sum_{k \in K(n)} W_{R(n,k)} \cdot h_k) =$$

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label *a* and feature *f* is a function of the number of buzzes *b* and tf-idf [Salton 1968]

$$\left[\alpha \mathbb{I}\left[b(a,f)>0\right]+\beta b(a,f)+\gamma\right] \mathsf{tf-idf}(a,f). \tag{2}$$

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label *a* and feature *f* is a function of the number of buzzes *b* and tf-idf [Salton 1968]

$$\left[\alpha \mathbb{I}\left[b(a,f)>0\right]+\beta b(a,f)+\gamma\right]\mathsf{tf-idf}(a,f). \tag{2}$$

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label *a* and feature *f* is a function of the number of buzzes *b* and tf-idf [Salton 1968]

$$\left[\alpha \mathbb{I}\left[b(a,f)>0\right]+\beta b(a,f)+\gamma\right] \mathrm{tf-idf}(a,f). \tag{2}$$

- Use how humans these data as a prior for supervised maxent model [Daumé III 2004]
- Prior for label *a* and feature *f* is a function of the number of buzzes *b* and tf-idf [Salton 1968]

$$\left[\alpha \mathbb{I}\left[b(a,f) > 0\right] + \beta b(a,f) + \gamma\right] \text{tf-idf}(a,f).$$
(2)

Using buzzes as a prior

$$\left[\alpha \mathbb{I}\left[b(a,f)>0\right]+\beta b(a,f)+\gamma\right]\mathsf{tf-idf}(a,f).$$

Answers	Weighting	α	β	γ	Error ¹
100	zero	-	-	-	0.22
	tf-idf	-	-	8.3	0.08
	buzz-binary	10.7	-	-	0.06
	buzz-linear	-	1.1	-	0.10
	buzz-tier	-	1.6	0.5	0.07

 $^{^1\}mathsf{Buzz}$ and tf-idf computed on training data; grid search on dev data; error on test data

Conclusions

Accuracy vs. Speed

k

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$
Our Model

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{I_{d,n}}) \underbrace{p(I_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

$$\prod_{k}^{K} p(\phi_{k} | \eta) \prod_{k}^{C} (p(\pi_{k,c} | \tau))$$

C topic to concept concept to word

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$

Our Model

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{I_{d,n}}) \underbrace{p(I_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

$$\prod_{k}^{K} p(\phi_{k} | \eta) \prod_{c}^{C} (p(\pi_{k,c} | \tau))$$
topic to concept to word

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$
Our Model

$$p(w) = \prod_{k}^{N_{d}} \left(p(w_{d,n} | \pi_{l_{k-k}}) p(l_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d}) \right) p(\theta_{d} | \alpha)$$

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{I_{d,n}}) \underbrace{p(I_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

$$\underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to concept to concept to word}} \underbrace{\prod_{c}^{C} (p(\pi_{k,c} | \tau))}_{\text{concept to word}}$$

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$
Our Model

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{I_{d,n}}) \underbrace{p(I_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

$$\prod_{k}^{K} p(\phi_{k} | \eta) \prod_{k}^{C} (p(\pi_{k,c} | \tau))$$

topic to concept concept to word

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$
Our Model

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{I_{d,n}}) \underbrace{p(I_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

 $\prod p(\phi_k|\eta) \quad \prod (p(\pi_{k,c}|\tau))$

topic to concept concept to word

Traditional Topic Models

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \phi_{z_{d,n}}) \underbrace{p(z_{d,n} | \theta_{d})}_{\text{topic}} \right) p(\theta_{d} | \alpha) \underbrace{\prod_{k}^{K} p(\phi_{k} | \eta)}_{\text{topic to words}}$$
Our Model

$$p(w) = \prod_{d} \prod_{n}^{N_{d}} \left(p(w_{d,n} | \pi_{l_{d,n}}) \underbrace{p(l_{d,n} | \phi_{d,n}) p(z_{d,n} | \theta_{d})}_{\text{meaning and topic}} \right) p(\theta_{d} | \alpha)$$

$$\prod_{k}^{K} p(\phi_{k} | \eta) \underbrace{\prod_{c}^{C} (p(\pi_{k,c} | \tau))}_{c}$$

topic to concept concept to word