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Background In a famous article, Simpson described a hypothetical data example
that led to apparently paradoxical results.

Methods We make the causal structure of Simpson’s example explicit.

Results We show how the paradox disappears when the statistical analysis
is appropriately guided by subject-matter knowledge. We also
review previous explanations of Simpson’s paradox that attributed
it to two distinct phenomena: confounding and non-collapsibility.

Conclusion Analytical errors may occur when the problem is stripped of its
causal context and analyzed merely in statistical terms.
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Introduction
In 1951, E.H. Simpson1 published an article on the
analysis of 2� 2 tables. The last part of the article
included a hypothetical example that involved three
dichotomous variables, and that resulted in appar-
ently surprising results. This hypothetical example
inspired what was later referred to as Simpson’s para-
dox,2 reversal paradox3 and amalgamation paradox.4

Here, we argue that the apparent paradox originally
described by Simpson is the result of disregarding
the causal structure of the research problem. In fact,
any hint of a paradox disappears when the causal
structure is made explicit. We also review previous
explanations of Simpson’s paradox that attributed
it to two distinct phenomena—confounding and
non-collapsibility. First, let us review Simpson’s
famous example.

Simpson’s example
Simpson presented the following numerical example.
Let A, B and C be three dichotomous variables mea-
sured in a population of N¼ 52 individuals. The data

can be summarized via the following three 2� 2 con-
tingency tables:

The odds ratio (OR) that measures the association
between A and B is ORAB ¼ 20� 6=20� 6 ¼ 1 in the
first table, and ORABjC¼1 ¼ ORABjC¼0 ¼ ORABjC ¼ 5=6 in
each of the two tables stratified by C. That is, even
though the conditional odds ratio is the same within
both levels of C, the conditional and marginal (uncon-
ditional) associations are not equal. We say that A
and B are marginally (unconditionally) independent,
AqB, and that A and B are conditionally dependent
given C, A 6 qBjC.

Which odds ratio is the most sensible measure of
association between A and B? The marginal ORAB or
the conditional ORABjC? Simpson designed his ex-
ample to show that the answer to this question
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depends on the research setting. He considered two
sets of labels for variables A, B and C.

First, suppose that ‘An investigator wished to exam-
ine whether in a pack of [52] cards the proportion of
court cards (King, Queen, Knave) was associated with
colour (Red, Black). It happened that the pack which
he examined was one with which Baby had been
playing, and some of the cards were dirty.’ Let A be
the type of card (1: plain, 0: court), B the card’s
colour (1: black, 0: red) and C whether the card
was dirty (1: yes, 0: no). In this setting, the investi-
gator would be interested in the marginal odds ratio
ORAB, which is obviously 1 as a cards deck contains
the same number of black and red court cards.

Secondly, suppose that A represents some medical
treatment (1: yes, 0: no), B represents death (1: yes,
0: no) and C represents chromosomic sex (1: male, 0:
female). In this setting, the investigator would be
interested in the conditional odds ratio ORABjC,
which shows that the treatment is associated with a
lower risk of death in both men and women.

Hence, the apparent paradox to which Simpson
drew attention: even if the conditional A–B associ-
ation measure is homogeneous within levels of C,
the sensible answer is sometimes the conditional as-
sociation measure and other times the marginal one.
From a purely statistical standpoint, no general rule
seems to exist as to whether the conditional associ-
ation or the marginal association should be preferred.

A causal interpretation of
Simpson’s example
The causal diagram in Figure 1 depicts the variables
court card (A), card colour (B) and dirty card (C).
There is no arrow between A and B because card
type and colour do not cause each other. There is an
arrow from A to C because, according to the example
above, the baby had a strong predilection for court
cards (ORAC¼ 0.34). Similarly, there is an arrow
from B to C because the baby preferred the red
cards (ORBC¼ 0.52).

The common effect C in Figure 1 is referred to as a
collider because two arrowheads collide into it. Graph
theory shows that conditioning on a collider C gener-
ally introduces an association between its causes A
and B even if the causes are marginally independ-
ent.5,6 Therefore, the association that appears between
A and B only when the analysis is conditional on C is
not surprising but expected. Informally, if we select a
court card that is known to be dirty, then it is less
likely that the card is red. In fact, the only surprising
fact is that the baby managed to get cards dirty in
such a way that the odds ratio ORABjC¼1 among the
dirty was exactly equal to the odds ratio ORABjC¼0

among the clean. The baby was either mathematically

gifted or quite lucky. The association created between
two variables by conditioning on, or selecting a stra-
tum of, their common effect is often referred to as
selection bias by epidemiologists.7 Epidemiological ex-
amples with the same structure as Figure 1 are ubi-
quitous. For example, when estimating the effect of
genetic factor A on diabetes B, one would generally
introduce selection bias by conditioning on the history
of heart disease C.

The causal diagram in Figure 2 depicts the variables
treatment (A), death (B) and sex (C). There is an
arrow from C to A because men were less likely to
receive treatment (ORAC¼ 0.34), which implies that
treatment A was not randomly assigned in the study
population. Similarly, there is an arrow from C to B
because men were less likely to die (ORBC¼ 0.52). The
arrow from A to B represents the direct effect that is
responsible for the conditional association observed
between treatment and death within the levels of sex.

Graph theory5,6 shows that a common cause like C
will create an association between its effects A and B.
This association does not reflect the causal effect of A
on B and is commonly referred to as confounding.
Conditioning on variable C removes the confounding
(i.e. the assignment of treatment A is ignorable given
C8). We say that a variable is a confounder when it
can help eliminate confounding,9 so C is a confounder
in Figure 2 but not in Figure 1. In Simpson’s example,
the confounding results in a positive (OR41) associ-
ation between A and B because men are less likely to
be treated and also less likely to die.10 Thus, there are
two sources of association between treatment A and
death B: the positive association due to confounding
by C and the negative association presumably due to
the protective effect of treatment A on the risk of
death B. The marginal odds ratio (ORAB¼ 1) measures
the combination of these two associations. Again, the
only surprising aspect of these data is that both
sources of association, each in one direction, cancel
out each other exactly and result in marginal inde-
pendence. In general, one would expect that the mar-
ginal odds ratio would be different from 1: ORAB41 if
the association due to confounding is greater than the
association due to the effect of treatment on death,
and ORAB < 1 otherwise.

The above discussion of Simpson’s example relies on
a crucial fact: the direction of the causal arrows in

Figure 1 A collider C

Figure 2 A confounder C
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Figures 1 and 2 is determined by the causal structure
of the problem, not by statistical considerations. In
Figure 1, card type and colour affect the risk of the
card being dirty, but getting the card dirty does not
affect its type and colour. In Figure 2, sex may affect
death or treatment, but death or treatment cannot
affect sex. The data and the odds ratios, however,
look exactly the same in both cases. Thus, a treatment
of Simpson’s example that ignores the causal struc-
ture does not contain sufficient information to deter-
mine the appropriateness of the marginal vs the
conditional association measure.

On the other hand, a data analyst with enough
expert knowledge will correctly identify the causal
structure of the problem, and therefore will make
the correct decision. Under Figure 1, one will use
the marginal association to prevent selection bias.
Under Figure 2, one will use the conditional associ-
ation to eliminate confounding. So there is a general
recommendation—albeit not a purely statistical one
because it requires correct expert knowledge—for
2� 2 tables after all: condition only on confounders.
In practice, this recommendation needs to be tem-
pered by the possibility of introducing finite sample
bias, and cannot be generalized to complex longitu-
dinal settings with time-varying treatments and con-
founders. Robins and Hernán11 review alternative
methods for confounding adjustment in those
settings.

Simpson’s paradox and
confounding
Some authors have explained Simpson’s paradox in
causal terms.12–14 These explanations, however, have
been restricted to the structure depicted in Figure 2.
That is, Simpson’s paradox was presented as an ex-
ample of confounding. Others preferred to reserve the
term ‘Simpson’s paradox’ for extreme examples of
confounding in which the marginal and conditional
association measures have opposite directions, i.e.
ORAB < 1 and ORABjC¼c41 for all c¼ 0, 1 or vice
versa.2,3,15–17 This reversal of association, though not
present in Simpson’s article, has become the hallmark
of Simpson’s paradox for many.

The papers cited in the previous paragraph include
some thoughtful discussions on confounding or
equivalent concepts. However, equating Simpson’s
paradox with confounding misses Simpson’s main
point: statistical reasoning is insufficient to choose
between the marginal and the conditional association
measure. Of course, in the presence of confounding in
a 2� 2 table, one always prefers the conditional asso-
ciation measure so Simpson’s question—marginal or
conditional?—becomes moot.

There are also historical reasons why the Simpson’s
paradox should not be equated with the expected dis-
crepancy between marginal and conditional

associations in the presence of confounding. Such dis-
crepancy had been already noted, formally described
and explained in causal terms half a century before
the publication of Simpson’s article by Pearson et al.18

for continuous variables and by Yule19 for discrete vari-
ables. See also the examples presented by Cohen and
Nagel20 (p. 449), Greenwood21 (pp. 84–5) and Hill22

(pp. 125–7). Equating Simpson’s paradox and con-
founding not only takes credit away from earlier au-
thors, but also detracts from Simpson’s most
important message: the realization that statistical infor-
mation needs to be supplemented with expert know-
ledge for causal inference from observational data.

Simpson’s paradox and
non-collapsibility
Suppose C does not confound the effect of A on B.
This is the expected situation in a large randomized
experiment in which treatment A is assigned to indi-
viduals by flipping a coin (e.g. treated if heads, not
treated if tails) regardless of their values of C.
Figure 3 depicts such randomized experiment because
no arrow from C to A exists.

Under Figure 3, the marginal association between A
and B can be causally interpreted as an unconfounded
estimate of the effect of A on B in the entire study
population, and the conditional association between A
and B in the stratum C¼ c can be causally interpreted
as an unconfounded estimate of the effect of A on B
in the stratum C¼ c. That is, the decision as to
whether to report the marginal or the conditional as-
sociations depends only on which target population—
the entire study population or a subset—is of greater
substantive interest. Some investigators will report all
of them.

As an aside, when the conditional association meas-
ures in the stratum C¼ 1 and the stratum C¼ 0 are
equal, we will say that there is no modification of the
effect of A on B by C . Epidemiologists use the term
effect-measure modification to emphasize that the
presence of effect modification depends on the par-
ticular association measure under consideration (e.g.
risk ratio, risk difference, odds ratio).

We now review the concept of non-collapsibility and
its relation with Simpson’s paradox. See Reference 23
for an overview of non-collapsibility. Consider again
the unconfounded study depicted by Figure 3. In the
absence of effect modification, one might intuitively
expect that the two conditional measures would equal
the marginal measure; in the presence of effect modi-
fication, one might intuitively expect that the numer-
ical value of the marginal measure would be in

Figure 3 A prognostic factor C
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between that of the two conditional measures. Such
intuition is correct when the association measure is
collapsible, i.e. when the marginal measure can be
expressed as a weighted average of the two condition-
al measures. Some examples of collapsible measures
are the risk ratio and the risk difference. However, the
intuition is not generally correct when the association
measure is not collapsible, i.e. when the marginal
measure cannot be expressed as a weighted average
of the two conditional measures.

A well-known example of a non-collapsible associ-
ation measure is the odds ratio. Suppose there is
neither confounding (as depicted in Figure 3) nor
effect modification on the odds ratio scale, i.e.
ORABjC¼0¼ORABjC¼1, then there is no guarantee that
ORAB¼ORABjC¼1. That is, the conditional odds ratios
may be equal to each other and still different from
the marginal odds ratio, even in the absence of
confounding. Now suppose there is effect modifica-
tion, i.e. ORABjC¼0 6¼ORABjC¼1, then there is no
guarantee that either ORABjC¼04ORAB4ORABjC¼1 or
ORABjC¼0 < ORAB < ORABjC¼1. That is, the marginal
odds ratio is not bounded by the two conditional
odds ratios.

This counterintuitive behaviour is the result of the
non-collapsibility of the odds ratio, which arises from
the failure of group odds to equal a weighted average
of subgroup odds.24 This non-collapsibility and its dir-
ection—in the absence of effect modification, the con-
ditional odds ratios ORABjC always move away from
the null—can be seen as a special case of Jensen’s
inequality,12 and is also an immediate consequence
of the results by Robinson and Jewell.25 The distinc-
tion between confounding and non-collapsibility was
explicitly made by Miettinen and Cook26 and
Samuels,12 and formally explicated by Greenland
and Robins27 using a deterministic counterfactual
model; Greenland24 replicated the distinction for the
more general case allowing stochastic counterfactuals.

In summary, a quantitative difference between con-
ditional and marginal odds ratios in the absence of
confounding is a mathematical oddity (no pun in-
tended), not a reflection of bias. Such difference is
irrelevant for the purposes of confounding adjustment
because, in the absence of confounding by C, both the
conditional and marginal odds ratios are valid. They
just happen to be different.

Prior to the publication of Simpson’s paper, Norton28

and Snedecor29 had stated that, in randomized experi-
ments without effect modification by C, it was appro-
priate to report the marginal association between A and
B. Simpson states that his example ‘shows that this is
false,’ but does not offer an unambiguous explanation
of why he thought his example proves these authors
wrong. The vagueness of Simpson’s statement resulted
in some additional confusion regarding the meaning of
the term ‘Simpson’s paradox’.

Simpson’s statement might have arisen from a mis-
reading of Norton and Snedecor’s work, which

involved randomized experiments in which no arrow
from C to A is expected (as depicted in Figure 3). Thus
their assertion is correct: in settings without con-
founding, reporting the marginal association measure
is appropriate. In contrast, Simpson’s example corres-
ponds to an observational cohort (panel) study, or a
conditionally randomized experiment, in which the
probability of receiving treatment A varies by levels
of C (as depicted by Figure 2). In this setting, the
marginal association measure is of course
confounded.

Alternatively, perhaps Simpson actually meant that
conditional association measures should be chosen
over the marginal one ‘even in the absence of con-
founding and effect modification’. Like others30 after
him, Simpson might have interpreted the
marginal-conditional differences in the odds ratio—
mathematically expected as the result of the
non-collapsibility of the odds ratio—as a sign of bias
even when no bias (i.e. confounding) existed.
Nonetheless, Simpson, realized that the marginal
odds ratio cannot be generally expressed as a
weighted average of the conditional odds ratios, and
identified two sufficient conditions for the equality of
the common conditional odds ratio and the marginal
odds ratio: (i) CqBjA or (ii) CqAjB. Condition (i) is
expected to hold when the variable C is not an inde-
pendent risk factor for the outcome B, as shown in
Figure 4a for an observational study and in Figure 4b
for a randomized experiment. Condition (ii) is ex-
pected to hold in randomized experiments like the
one represented in Figure 4b. See the work of Good
and Mittal4 and Shapiro31 for more on sufficient con-
ditions for collapsibility.

Whichever reason moved Simpson to declare that
conditional odds ratios are generally preferable to
marginal odds ratios, the concepts of confounding
and of non-collapsibility got intimately entangled in
subsequent discussions of the Simpson’s paradox.
Among later authors who distinguished these two
phenomena, some of them equated Simpson’s para-
dox with confounding,12,16,17 others with non-
collapsibility23 and yet others proposed to replace
the term Simpson’s paradox by the broader term
amalgamation paradox that encompasses both con-
founding and non-collapsibility.4

Discussion
The main goal of Simpson’s article was to characterize
the conditions under which one could conclude that
‘no second order interaction’—or, in modern

(a)

(b)

Figure 4 Conditions for collapsibility
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epidemiological parlance, no effect modification—
exists. His discussion, like ours, was implicitly re-
stricted to closed cohort studies, including rando-
mized experiments and observational studies. At the
end of the article, he identified two distinct phenom-
ena that could lead to apparently paradoxical
findings.

The first component of the paradox highlighted a
serious problem: identical data arising from different
causal structures need to be analysed differently.
Simpson provided an example that clearly shows the
need for causal information to guide the statistical
analysis when the goal is making causal inferences.
See Robins32 and Hernán et al.33 for other examples in
which identical datasets are consistent with several
causal structures.

The second component of the paradox was
non-collapsibility. Simpson favoured as ‘logically at-
tractive’, a definition of no effect modification that
is ‘symmetrical with respect to the three attributes’
A, B and C. Since the odds ratio satisfies the sym-
metry condition, he declared the odds ratio to be
the most appropriate scale to measure the degree of
association. Though perhaps logically attractive, sym-
metry is a misguided condition in causal inference
settings. When the inferential goal is to estimate the
causal effect of A on B within strata defined by C, one
is hard pressed to justify that all three variables play a
symmetric role in the analysis. Had Simpson chosen
to consider the risk ratio rather than the odds ratio as
a measure of the degree of association in randomized
experiments and observational cohort (panel) studies,
this component of his paradox would have never
arisen.

Simpson wanted to convince readers that the odds
ratio scale should be used to assess effect modifica-
tion. Ironically, his article was propelled to fame by
apparently paradoxical results that can be reproduced
for any effect measure besides the odds ratio, and
that are essentially independent of effect
modification.

In summary, Simpson was concerned by the ‘con-
siderable scope for paradox and error’ that derives
from the fact—proven by his example—that no gen-
eral statistical rule exists for data analysts to prefer
the conditional over the marginal association, or vice
versa. However, paradox and error arise only when
the problem is stripped of its causal context and ana-
lysed merely in statistical terms, or when non-causal
concepts like symmetry and collapsibility are allowed
to guide the analysis. Once the causal goal is made
explicit and causal considerations are incorporated
into the analysis, the course of action becomes crystal
clear.
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KEY MESSAGES

� Identical data arising from different causal structures need to be analysed differently.

� The Simpson’s paradox is an example of identical data from different causal structures.

� Causal analyses need to be guided by subject-matter knowledge.

� No purely statistical rules exist to guide causal analyses.
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