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Yellow	
  balls	
  are	
  flat!!	
  

Observa$on	
  	
  
Feature	
  	
  

Color	
  	
  

N1 	
  N2 	
  N3 	
  N4 	
  N5 	
  N6 	
  N7 	
  N8 	
  	
  N9 	
  	
  

Roundness	
  	
  

yellow	
   yellow	
   yellow	
   yellow	
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   green	
  

flat	
   round	
   flat	
   flat	
  round	
   round	
  

Nice	
  problem:	
  
•  Features	
  are	
  interpretable.	
  	
  
	
  	
  	
  	
  	
  We	
  understand	
  color	
  and	
  roundness	
  
•  More	
  observa-ons	
  than	
  features.	
  
•  No	
  inherent	
  correla-on	
  btw	
  features	
  	
  	
  

green	
  

flat	
  



Observa$on	
  	
  
Feature	
  	
  

zz1	
  	
  

N1 	
  N2 	
  N3 	
  N4 	
  N5 	
  N6 	
  N7 	
  N8 	
  	
  N9 	
  	
  

zz2	
  

zz20000	
  

.	
  

.	
  

.	
  

.	
  

Not	
  so	
  nice	
  problem:	
  
•  Features	
  are	
  uninterpretable.	
  	
  
	
  	
  	
  	
  	
  No	
  idea	
  zz8	
  means	
  to	
  zz93	
  
•  More	
  features	
  than	
  observa$ons.	
  
•  And	
  what	
  if	
  there	
  are	
  deep	
  rela$onships	
  
within	
  this	
  feature	
  set	
  



What	
  rela$onships	
  could	
  be	
  
underlying	
  the	
  data?	
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  Human	
  Embryonic	
  Stem	
  Cells	
  





Feature	
  	
  

p53	
  	
  

Met	
  

zz20000	
  

.	
  

.	
  

.	
  

.	
  

Take	
  this	
  to	
  research	
  oncologist	
  or	
  
immunologist..	
  	
  
Response	
  this	
  makes	
  no	
  sense	
  
	
  
	
  
	
  
	
  
	
  
	
  
The	
  data	
  scien$st	
  is	
  an	
  ar$st	
  and	
  must	
  
provide	
  interpretable	
  context	
  for	
  the	
  data	
  

When	
  the	
  experts	
  don’t	
  know?	
  

NFkB	
  	
  



Pathway	
  analysis	
  methods	
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Over-­‐Representa$on	
  Analysis	
  (ORA)	
  
	
  
What	
  does	
  it	
  do?	
  Evaluates	
  the	
  frac$on	
  
of	
  genes	
  in	
  a	
  par$cular	
  pathway	
  
	
  
What	
  measurements	
  are	
  used?:	
  
Hypergeometric,	
  chi-­‐square,	
  or	
  binomial	
  
distribu$on	
  
	
  

	
  

	
  Input	
  list	
  w/	
  
threshold	
  

Overlap	
  genes	
  in	
  
pathway	
  and	
  gene	
  set	
  	
   Background	
  

	
  (all	
  genes)	
  

‘Measurement’	
  
of	
  sta$s$cal	
  
significance	
  

What	
  are	
  the	
  limita-ons?	
  
1.  The	
  ‘measurement’	
  of	
  significance	
  is	
  independent	
  of	
  the	
  measured	
  

changes.	
  	
  Ignores	
  probe	
  intensi$es.	
  
	
  
2.  Uses	
  only	
  the	
  most	
  significant	
  genes	
  and	
  discards	
  all	
  others.	
  Marginally	
  

less	
  significant	
  genes	
  	
  fold	
  change	
  =	
  1.999	
  or	
  p-­‐value	
  =	
  0.51	
  disregarded.	
  



Few	
  “Mountains”	
  many	
  “hills”	
  	
  
1st	
  to	
  2nd	
  genera$on	
  pathway	
  analysis	
  

Volgelstein	
  et	
  al.	
  Science	
  2013	
  

Hypothesis:	
  Although	
  large	
  changes	
  in	
  individual	
  genes	
  can	
  have	
  significant	
  
effects	
   on	
   pathways,	
   weaker	
   but	
   coordinated	
   changes	
   in	
   sets	
   of	
  
func$onally	
  related	
  genes	
  (i.e.	
  ,	
  pathways)	
  can	
  also	
  have	
  significant	
  effects	
  

CHRM3	
  
GRIA2	
  
NRGN	
  
SLC1A2	
  
HOMER1	
  
EPHA4	
  

Over-­‐Representa-on	
  
Analysis	
  (ORA)	
  

Khatri	
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  Bio	
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CHRM3	
  
GRIA2	
  

SLC1A2	
  

GPR51	
  

HOMER1	
  

EPHA4	
  
HTR2A	
  

THY1	
  

Func-onal	
  Class	
  
Scoring	
  (FCS)	
  



Gene	
  Set	
  Enrichment	
  Analysis	
  
1.   Calculate	
  an	
  Enrichment	
  Score	
  
	
  	
  Increasing	
  a	
  running-­‐sum	
  sta$s$c	
  
when	
  encounter	
  a	
  gene	
  in	
  S	
  and	
  
decreasing	
  it	
  otherwise	
  

Null	
  distribu$on:	
  
Randomly	
  shuffle	
  
phenotype	
  labels	
  

3.	
  Adjustment	
  for	
  Mul-ple	
  
Hypothesis	
  Tes-ng	
  Compute	
  

normalized	
  ES	
  (NES)	
  for	
  each	
  gene	
  set	
  
then	
  determine	
  FDR	
  for	
  NES.	
  

2.	
  Es-mate	
  the	
  significance	
  
Level	
  of	
  ES.	
  Pathway	
  
distribu$on	
  vs.	
  Null	
  distribu$on	
  
(self-­‐contained)	
  

Subramanian	
  et	
  al.	
  PNAS	
  2005	
  

Mootha	
  et	
  al.	
  Nat	
  Genet	
  2003	
  

Ranked	
  list	
  

g1	
  
g2	
  
g3	
  
g4	
  
.	
  
.	
  
.	
  
.	
  
.	
  
gn	
  

Pathway	
  A	
  

g2	
  
g4	
  
g9	
  
g12	
  

Pathway	
  B	
  
g6	
  
g25	
  
g32	
  
g59	
  

GSEA	
  

Running	
  sum:	
  
	
  	
  when	
  gene	
  is	
  in	
  set	
  

otherwise	
  

Novelty	
  of	
  GSEA	
  method	
  comes	
  from	
  thinking	
  of	
  
genes	
  in	
  terms	
  of	
  sets	
  or	
  distribu$on	
  instead	
  of	
  
lists.	
  

Kolmogorov–Smirnov-­‐
like	
  sta$s$c	
  



Func$onal	
  Class	
  Scoring	
  (FCS)	
  

	
  
What	
  does	
  it	
  do?	
  Evaluates	
  the	
  distribu$on	
  of	
  genes	
  in	
  a	
  
pathway	
  that	
  are	
  differen$ally	
  expressed	
  
	
  
What	
  measurements	
  are	
  used?:	
  
Gene	
  Level	
  sta$s$c:	
  1)	
  Univariate:	
  ANOVA,	
  Q-­‐sta$s$c,	
  
signal-­‐to-­‐noise	
  ra$o,	
  t-­‐test,	
  and	
  Z-­‐score.	
  2)	
  Mul$variate:	
  
GlobalANOVA,	
  and	
  Hotelling	
  T2.	
  
Pathway	
  Level	
  sta$s$c:	
  Kolmogorov-­‐Smirnov	
  sta$s$c,	
  sum,	
  
mean,	
  or	
  median	
  of	
  gene	
  level	
  sta$s$c,	
  the	
  Wilcoxon	
  rank	
  
sum,	
  and	
  the	
  maxmean	
  sta$s$c.	
  
	
  
	
  

	
  

	
  Input	
  list	
  w/	
  
values	
  

Compute	
  gene-­‐level	
  
sta$s$c	
  from	
  
measurement	
  

Background	
  
	
  permuta$ons	
  

Use	
  gene	
  level	
  
sta$s$c	
  to	
  

compute	
  pathway-­‐
level	
  sta$s$c	
  

‘Measurement’	
  	
  of	
  
pathway	
  level	
  sta$s$c	
  	
  

How	
  is	
  sta-s-cal	
  significance	
  determined?	
  Compute	
  the	
  null	
  distribu$on:	
  	
  
1)  Compe$$ve	
  null	
  hypothesis	
  permutes	
  gene	
  labels	
  for	
  each	
  pathway,	
  and	
  compares	
  the	
  

set	
  of	
  genes	
  in	
  the	
  pathway	
  with	
  a	
  set	
  of	
  genes	
  not	
  in	
  the	
  pathway.	
  
	
  
2)	
  	
  	
  Self-­‐contained	
  null	
  hypothesis	
  permutes	
  class	
  labels	
  for	
  each	
  sample	
  and	
  compares	
  the	
  set	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
of	
  genes	
  in	
  a	
  given	
  pathway	
  with	
  itself.	
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Univariate	
  vs.	
  Mul$variate	
  FCS	
  

Ranked	
  list	
  

g1	
  
g2	
  
g3	
  
g4	
  
.	
  
.	
  
.	
  
.	
  
.	
  
gn	
  

Pathway	
  A	
  

g2	
  
g4	
  
g9	
  
g12	
  

GSEA	
  

Running	
  sum:	
  
	
  	
  when	
  gene	
  is	
  in	
  
set	
  otherwise	
  

Doesn’t	
  consider	
  gene	
  
set	
  correla$ons	
  

Hotelling’s	
  T2	
  sta$s$c	
  
PCOT2	
  

w/	
  pooled	
  covariance	
  matrix	
  	
  S	
  

Sampling	
  distribu$on	
  of	
  T2	
  will	
  follow	
  	
  

Subramanian	
  et	
  al.	
  PNAS	
  2005	
  

Kong	
  et	
  al.	
  Bioinforma-cs	
  2006	
  

Gene	
  list	
  

g1	
  
g2	
  
g3	
  
g4	
  
.	
  
.	
  
.	
  
.	
  
gn	
  

Pathway	
  A	
  

g2	
  
g4	
  
g9	
  
g12	
  

Mul-variate	
  

Univariate	
  



Benefits	
  and	
  Limita$ons	
  of	
  FCS	
  
•  What	
  are	
  the	
  benefits	
  over	
  ORA?	
  

1.  They	
  do	
  not	
  require	
  an	
  arbitrary	
  threshold	
  for	
  dividing	
  expression	
  
data	
  into	
  significant	
  and	
  non-­‐significant	
  pools.	
  

2.  ORA	
  completely	
  ignores	
  measurements	
  when	
  iden$fying	
  significant	
  
pathways.	
  

3.  Considering	
  the	
  coordinated	
  changes	
  in	
  gene	
  expression,	
  FCS	
  methods	
  
account	
  for	
  dependence	
  between	
  genes	
  in	
  a	
  pathway.	
  ORA	
  does	
  not	
  

•  What	
  are	
  the	
  limita-ons?	
  
1.  FCS	
  analyzes	
  each	
  pathway	
  independently.	
  
2.  Many	
  FCS	
  methods	
  use	
  changes	
  in	
  gene	
  expression	
  to	
  rank	
  genes	
  in	
  a	
  

given	
  pathway	
  and	
  discard	
  changes	
  from	
  further	
  analysis.	
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Leveraging	
  Pathway	
  Structure	
  	
  

Type	
  and	
  Localiza-on	
  	
  
Interac-on	
  

Pathway	
  Topology	
  
(PT)	
  

Hypothesis:	
  Knowledge	
  bases	
  providing	
  informa$on	
  about	
  gene	
  product	
  
interac-ons,	
  type	
  of	
  interac-on	
  (e.g.,	
  ac$va$on,	
  inhibi$on),	
  and	
  where	
  they	
  
interact	
  (e.g.,	
  cytoplasm,	
  nucleus)	
  could	
  be	
  leveraged	
  in	
  pathway	
  analysis.	
  

CHRM3	
  
GRIA2	
  

SLC1A2	
  

GPR51	
  

HOMER1	
  

EPHA4	
  
HTR2A	
  

THY1	
  

Coordinated	
  Gene	
  Interac-ons	
  

Func-onal	
  Class	
  Scoring	
  
(FCS)	
  

CHRM3	
  
GRIA2	
  

SLC1A2	
  

GPR51	
  
HOMER1	
  

EPHA4	
  
HTR2A	
  

THY1	
  

plasma	
  
membrane	
  

nucleus	
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Pathway	
  Topology	
  (PT)	
  

What	
  does	
  it	
  do?	
  Measures	
  significance	
  of	
  gene	
  level	
  
interac$ons	
  with	
  respect	
  to	
  pathway	
  topology	
  
	
  
What	
  measurements	
  are	
  used?:	
  
Gene	
  Level	
  sta$s$c:	
  1)	
  ANOVA,	
  Q-­‐sta$$c,	
  signal-­‐to-­‐noise	
  
ra$o,	
  t-­‐test,	
  Z-­‐score,	
  	
  
Pathway	
  Level	
  sta$s$c:	
  Univariate/Mul$variate,	
  disregards/
considers	
  gene	
  dependences	
  Univariate:	
  sum,	
  mean,	
  or	
  
median	
  of	
  gene	
  level	
  Mul$variate:	
  Global	
  ANOVA,	
  Hotelling	
  
T2,	
  Kolmorgorov-­‐Smirnov	
  sta$s$c	
  
	
  
	
  

	
  Input	
  list	
  w/	
  
values	
  

Use	
  pathway	
  topology	
  
to	
  compute	
  gene-­‐level	
  

sta$s$c	
  

Background	
  
	
  permuta$ons	
  

Use	
  gene	
  level	
  
sta$s$c	
  to	
  

compute	
  pathway-­‐
level	
  sta$s$c	
  

‘Measurement’	
  	
  of	
  
pathway	
  level	
  sta$s$c	
  	
  

How	
  is	
  sta-s-cal	
  significance	
  determined?	
  Compute	
  the	
  null	
  distribu$on:	
  	
  
1)  Compe$$ve	
  null	
  hypothesis	
  permutes	
  gene	
  labels.	
  
	
  
2)	
  	
  	
  Self-­‐contained	
  null	
  hypothesis	
  permutes	
  class	
  labels.	
  	
  	
  

Khatri	
  et	
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  PLoS	
  Comp	
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Combines	
  two	
  metrics:	
  
1)  Overpresenta$on	
  of	
  DE	
  features	
  in	
  

pathway	
  
2)  Abnormal	
  perturba$on	
  of	
  pathway	
  	
  

Signaling	
  pathway	
  impact	
  analysis	
  (SPIA)	
  	
  

A.L.Tarca et al.

junction pathway as one of the many receptor protein tyrosine
kinases. However, if the expression of INSR changes, this pathway is
not likely to be heavily perturbed because INSR is just one of many
receptors on this pathway. All these aspects are not considered by
any of the existing approaches aiming at assessing the impact of
a condition on a given signaling pathway. There is a very recent
technique (Efroni et al., 2007), however, which takes into account
some topological information but this technique aims at phenotype
prediction rather than the assessment of given condition which is our
primary goal here. Third, and probably the most important current
limitation is that the knowledge embedded in these pathways about
how various genes interact with each other is largely unexploited.
The very purpose of these pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various
pathways. However, the existing analysis approaches consider only
the sets of genes involved on these pathways, without taking into
consideration their topology. Our understanding of various pathways
is expected to improve as more data are gathered. Pathways will be
modified by adding, removing or redirecting links on the pathway
diagrams. Most existing techniques are completely unable to even
sense such changes. Thus, these techniques will provide identical
results as long as the pathway diagram involves the same genes, even
if the interactions between them are completely redefined over time.
Finally, until now, the expression changes measured in these high-
throughput experiments have been used only to identify pathways
with unexpectedly high number of DE genes (ORA approaches)
or pathways whose genes are clustered in the ranked list of DE
genes (FCS methods), but not to directly estimate the impact of such
changes on specific pathways. This is also an important limitation.
For instance, ORA techniques will see no difference between a
situation in which a subset of genes is DE just above the detection
threshold (e.g. 2-fold) and the situation in which the same genes are
changing by many orders of magnitude (e.g. 100-fold). Similarly,
FCS techniques can provide the same rankings for entire ranges
of expression values, if the correlations between the genes and
the phenotypes remain similar. Even though analyzing this type of
information in a pathway and system context would be extremely
meaningful from a biological perspective, currently there is no
technique or tool able to do this.

This article describes a radically different approach that attempts
to capture all aspects above. A global probability value, PG, is
calculated for each pathway, incorporating parameters, such as
the log fold-change of the DE genes, the statistical significance
of the set of pathway genes and the topology of the signaling
pathway. We recently proposed a technique that combines the
pathway topology with the over-representation evidence with very
good results (Draghici et al., 2007). However, in this analysis, the
evidence measure captured from the pathway topology was not
completely independent from the over-representation evidence. In
turn, this made the statistic used to rank the pathways more sensitive
to noise in the expression data putting too much emphasis on the
magnitude of changes. Also, the false positive rates of this method
was higher than expected by chance for short lists of DE genes. The
approach described here remedies these weaknesses, while retaining
the very novel capability of incorporating the pathway topology.
The capabilities of the proposed impact analysis are illustrated on
a number of real datasets and simulations. We also show that in
this technique, the two types of evidence considered are indeed
completely independent.

2 SYSTEM AND METHODS
The impact analysis combines two types of evidence: (i) the over-
representation of DE genes in a given pathway and (ii) the abnormal
perturbation of that pathway, as measured by propagating measured
expression changes across the pathway topology. These two aspects are
captured by two independent probability values, PNDE and PPERT .

The first probability, PNDE =P(X ≥Nde |H0), captures the significance of
the given pathway Pi as provided by an over-representation analysis of the
number of DE genes (NDE ) observed on the pathway. In the equation above,
H0 stands for the null hypothesis, that the genes that appear as DE on a given
pathway are completely random. From a biological perspective this would
mean that the pathway is not relevant to the condition under study. The PNDE

value represents the probability of obtaining a number of DE genes on the
given pathway at least as large as the observed one, NDE. These PNDE values
were obtained assuming that NDE (the number of DE genes on the pathway
analyzed) follows a hypergeometric distribution with three parameters: m—
the number of all pathway genes present on the array, n—the number of
genes on the array not belonging to the pathway, k—total number of DE
genes. Any of the existing ORA or FCS approaches can be used to calculate
PNDE , as long as this probability remains independent of the magnitudes of
the fold-changes.

The second probability, PPERT , is calculated based on the amount of
perturbation measured in each pathway. We define a gene perturbation
factor as:

PF(gi)=!E(gi)+
n∑

j=1

βij ·
PF(gj)
Nds(gj)

(1)

In Equation (1), the term !E(gi) represents the signed normalized measured
expression change of the gene gi (log fold-change if two conditions are
compared). The second term in Equation (1) is the sum of perturbation factors
of the genes gj directly upstream of the target gene gi, normalized by the
number of downstream genes of each such gene Nds(gj). The absolute value
of βij quantifies the strength of the interaction between genes gj and gi.
These weights have been introduced in order to allow the model to capture
the properties of various types of relationships. The results presented in this
article are obtained using all |β|=1 in order to minimize the number of model
parameters. The sign of β reflects the type of interaction: +1 for induction
(activation), −1 for repression and inhibition, as described by each pathway.
Note that β will have non-zero value only for the genes that directly interact
with the gene gi according to the pathway description. The work described
here used human signaling pathways from KEGG (Ogata et al., 1999). These
pathways contain nodes, representing genes/proteins, and directed edges,
representing gene signals or interactions such as activation or repression.
Given an edge directed from gene/protein A to gene/protein B, we say A is
upstream of B, or B is downstream of A.

Equation (1) essentially describes the perturbation factor PF for a gene
gi as a linear function of the perturbation factors of all genes in a given
pathway. In the stable state of the system, all relationships must hold, so the
set of all equations defining the impact factors for all genes form a system
of simultaneous equations whose solution will provide the values for the
gene perturbation factors PFgi (details are provided in the Supplementary
Material). Subsequently, we calculate the net perturbation accumulation at
the level of each gene, Accg, as the difference between the perturbation factor
PF of a gene and its observed log fold-change:

Acc(gi)=PF(gi)−!E(gi) (2)

This subtraction is needed to ensure that DE genes not connected with any
other genes will not contribute to the second type of evidence since such
genes are already taken into consideration in the ORA and captured by PNDE .
In can be shown (see Supplementary Material) that the vector of perturbation
accumulations Acc can be obtained using the matrix equation:

Acc=B ·
(
I −B

)−1 ·!E (3)
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junction pathway as one of the many receptor protein tyrosine
kinases. However, if the expression of INSR changes, this pathway is
not likely to be heavily perturbed because INSR is just one of many
receptors on this pathway. All these aspects are not considered by
any of the existing approaches aiming at assessing the impact of
a condition on a given signaling pathway. There is a very recent
technique (Efroni et al., 2007), however, which takes into account
some topological information but this technique aims at phenotype
prediction rather than the assessment of given condition which is our
primary goal here. Third, and probably the most important current
limitation is that the knowledge embedded in these pathways about
how various genes interact with each other is largely unexploited.
The very purpose of these pathway diagrams is to capture our current
knowledge of how genes interact and regulate each other on various
pathways. However, the existing analysis approaches consider only
the sets of genes involved on these pathways, without taking into
consideration their topology. Our understanding of various pathways
is expected to improve as more data are gathered. Pathways will be
modified by adding, removing or redirecting links on the pathway
diagrams. Most existing techniques are completely unable to even
sense such changes. Thus, these techniques will provide identical
results as long as the pathway diagram involves the same genes, even
if the interactions between them are completely redefined over time.
Finally, until now, the expression changes measured in these high-
throughput experiments have been used only to identify pathways
with unexpectedly high number of DE genes (ORA approaches)
or pathways whose genes are clustered in the ranked list of DE
genes (FCS methods), but not to directly estimate the impact of such
changes on specific pathways. This is also an important limitation.
For instance, ORA techniques will see no difference between a
situation in which a subset of genes is DE just above the detection
threshold (e.g. 2-fold) and the situation in which the same genes are
changing by many orders of magnitude (e.g. 100-fold). Similarly,
FCS techniques can provide the same rankings for entire ranges
of expression values, if the correlations between the genes and
the phenotypes remain similar. Even though analyzing this type of
information in a pathway and system context would be extremely
meaningful from a biological perspective, currently there is no
technique or tool able to do this.

This article describes a radically different approach that attempts
to capture all aspects above. A global probability value, PG, is
calculated for each pathway, incorporating parameters, such as
the log fold-change of the DE genes, the statistical significance
of the set of pathway genes and the topology of the signaling
pathway. We recently proposed a technique that combines the
pathway topology with the over-representation evidence with very
good results (Draghici et al., 2007). However, in this analysis, the
evidence measure captured from the pathway topology was not
completely independent from the over-representation evidence. In
turn, this made the statistic used to rank the pathways more sensitive
to noise in the expression data putting too much emphasis on the
magnitude of changes. Also, the false positive rates of this method
was higher than expected by chance for short lists of DE genes. The
approach described here remedies these weaknesses, while retaining
the very novel capability of incorporating the pathway topology.
The capabilities of the proposed impact analysis are illustrated on
a number of real datasets and simulations. We also show that in
this technique, the two types of evidence considered are indeed
completely independent.

2 SYSTEM AND METHODS
The impact analysis combines two types of evidence: (i) the over-
representation of DE genes in a given pathway and (ii) the abnormal
perturbation of that pathway, as measured by propagating measured
expression changes across the pathway topology. These two aspects are
captured by two independent probability values, PNDE and PPERT .

The first probability, PNDE =P(X ≥Nde |H0), captures the significance of
the given pathway Pi as provided by an over-representation analysis of the
number of DE genes (NDE ) observed on the pathway. In the equation above,
H0 stands for the null hypothesis, that the genes that appear as DE on a given
pathway are completely random. From a biological perspective this would
mean that the pathway is not relevant to the condition under study. The PNDE

value represents the probability of obtaining a number of DE genes on the
given pathway at least as large as the observed one, NDE. These PNDE values
were obtained assuming that NDE (the number of DE genes on the pathway
analyzed) follows a hypergeometric distribution with three parameters: m—
the number of all pathway genes present on the array, n—the number of
genes on the array not belonging to the pathway, k—total number of DE
genes. Any of the existing ORA or FCS approaches can be used to calculate
PNDE , as long as this probability remains independent of the magnitudes of
the fold-changes.

The second probability, PPERT , is calculated based on the amount of
perturbation measured in each pathway. We define a gene perturbation
factor as:

PF(gi)=!E(gi)+
n∑

j=1

βij ·
PF(gj)
Nds(gj)

(1)

In Equation (1), the term !E(gi) represents the signed normalized measured
expression change of the gene gi (log fold-change if two conditions are
compared). The second term in Equation (1) is the sum of perturbation factors
of the genes gj directly upstream of the target gene gi, normalized by the
number of downstream genes of each such gene Nds(gj). The absolute value
of βij quantifies the strength of the interaction between genes gj and gi.
These weights have been introduced in order to allow the model to capture
the properties of various types of relationships. The results presented in this
article are obtained using all |β|=1 in order to minimize the number of model
parameters. The sign of β reflects the type of interaction: +1 for induction
(activation), −1 for repression and inhibition, as described by each pathway.
Note that β will have non-zero value only for the genes that directly interact
with the gene gi according to the pathway description. The work described
here used human signaling pathways from KEGG (Ogata et al., 1999). These
pathways contain nodes, representing genes/proteins, and directed edges,
representing gene signals or interactions such as activation or repression.
Given an edge directed from gene/protein A to gene/protein B, we say A is
upstream of B, or B is downstream of A.

Equation (1) essentially describes the perturbation factor PF for a gene
gi as a linear function of the perturbation factors of all genes in a given
pathway. In the stable state of the system, all relationships must hold, so the
set of all equations defining the impact factors for all genes form a system
of simultaneous equations whose solution will provide the values for the
gene perturbation factors PFgi (details are provided in the Supplementary
Material). Subsequently, we calculate the net perturbation accumulation at
the level of each gene, Accg, as the difference between the perturbation factor
PF of a gene and its observed log fold-change:

Acc(gi)=PF(gi)−!E(gi) (2)

This subtraction is needed to ensure that DE genes not connected with any
other genes will not contribute to the second type of evidence since such
genes are already taken into consideration in the ORA and captured by PNDE .
In can be shown (see Supplementary Material) that the vector of perturbation
accumulations Acc can be obtained using the matrix equation:

Acc=B ·
(
I −B

)−1 ·!E (3)
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where B represents the normalized weighted directed adjacency matrix of
the graph describing the gene signaling network:

B=





β11
Nds(g1)

β12
Nds(g2)

··· β1n
Nds(gn )

β21
Nds(g1)

β22
Nds(g2)

··· β2n
Nds(gn )

··· ··· ··· ···
βn1

Nds(g1)

βn2
Nds(g2)

··· βnn
Nds(gn )




(4)

I is the identity matrix, and

"E =





"E(g1)
"E(g2)

···
"E(gn)



 (5)

Only the pathways with non-null determinant of I −B matrix were
considered for analysis, even though simple, yet reasonable, transformations
of B can be performed to avoid such singularities. Out of the 64 human gene
signaling pathways available in KEGG, the majority (52 pathways) satisfy
this requirement without any other transformations. The situations in which
pathways yield a singular matrix and how these situations can be addressed
will be described elsewhere. The total net accumulated perturbation in the
pathway is computed as tA =∑

i Acc(gi). The second probability, PPERT , will
be the probability to observe a total accumulated perturbation of the pathway,
TA, more extreme than tA just by chance:

PPERT =P(TA ≥ tA |H0) (6)

This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able

Fig. 1. Capturing the topology of the pathways and the position of the gene
through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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where B represents the normalized weighted directed adjacency matrix of
the graph describing the gene signaling network:

B=




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Only the pathways with non-null determinant of I −B matrix were
considered for analysis, even though simple, yet reasonable, transformations
of B can be performed to avoid such singularities. Out of the 64 human gene
signaling pathways available in KEGG, the majority (52 pathways) satisfy
this requirement without any other transformations. The situations in which
pathways yield a singular matrix and how these situations can be addressed
will be described elsewhere. The total net accumulated perturbation in the
pathway is computed as tA =∑

i Acc(gi). The second probability, PPERT , will
be the probability to observe a total accumulated perturbation of the pathway,
TA, more extreme than tA just by chance:

PPERT =P(TA ≥ tA |H0) (6)

This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able

Fig. 1. Capturing the topology of the pathways and the position of the gene
through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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where B represents the normalized weighted directed adjacency matrix of
the graph describing the gene signaling network:
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Only the pathways with non-null determinant of I −B matrix were
considered for analysis, even though simple, yet reasonable, transformations
of B can be performed to avoid such singularities. Out of the 64 human gene
signaling pathways available in KEGG, the majority (52 pathways) satisfy
this requirement without any other transformations. The situations in which
pathways yield a singular matrix and how these situations can be addressed
will be described elsewhere. The total net accumulated perturbation in the
pathway is computed as tA =∑

i Acc(gi). The second probability, PPERT , will
be the probability to observe a total accumulated perturbation of the pathway,
TA, more extreme than tA just by chance:

PPERT =P(TA ≥ tA |H0) (6)

This probability can be calculated using a bootstrap approach. In this
procedure, the same number of DE genes as the one observed on the pathway
are allowed to occupy any position in the pathway (random gene IDs) and
have any possible log fold-change in the range of those considered by the
experimenter to be DE. This allows empirical determination of the null
distribution of TA values (details of the bootstrap procedure are given in
the Supplementary Materials). Figure 1 illustrates the computation of PPERT

for a simple 6 gene pathway containing two DE genes. Unlike the classical
over-representation approach, the perturbation evidence is shown to be able

Fig. 1. Capturing the topology of the pathways and the position of the gene
through the perturbation analysis. The figure shows a six-gene pathway with
two DE genes (shown in gray) in two different situations. One of the two DE
genes is in common (gene B) while the second gene is either a leaf node (a), or
the entry point in the pathway (b). In (a), gene (F) cannot perturb the activity
of other genes; in (b) gene (A) has the ability to influence the activity of all
the remaining genes in the pathway, as the topology of the pathway indicates.
An ORA would find the two situations equally (in)significant (PNDE =0.48
for a set of 20 monitored genes, out of which five are found to be DE). The
perturbation evidence extracted by SPIA will give more significance to the
situation in (b) (PPERT =0.24), even though fold-changes in (b) are almost
twice as small as those in (a) (PPERT =0.57).

to capture the importance of the position of the DE genes in the pathway as
well as their fold-changes.

The two types of evidence, PNDE and PPERT , are finally combined into
one global probability value, PG, that is used to rank the pathways and test
the research hypothesis that the pathway is significantly perturbed in the
condition under the study. When the null hypothesis is true, the probability
of observing a pair of P-values whose product is at least as extreme (low)
as the one observed for a given pathway i, ci =PNDE (i)·PPERT (i), can be
shown to be (see Supplementary Materials):

PG =ci −ci ·ln(ci) (7)

Both components combined within PG, PNDE and PPERT , are independent
of the size of the pathways. PNDE is the probability of observing the given
number of DE genes or higher, just by chance. The number of genes expected
by chance will increase with the size of the pathway, much like the number
of black balls extracted from an urn containing black and white balls will
increase with the number of balls extracted in a given trial. Hence, PNDE will
be independent of the size of the pathway, much like the hypergeometric
probability of extracting a given number of black balls from the urn will
automatically take into consideration the number of balls extracted in that
particular trial. The second component, PPERT is calculated in a bootstrapping
process in which both the pathway and the number of DE genes per pathway
are fixed. PPERT will become significant only if the observed fold-changes in
the observed pathway nodes yield a significantly different impact compared
with what is observed on the same pathway when the same number of fake DE
genes are thrown in random locations throughout the same pathway. Again,
this bootstrap is calculated for each pathway and hence will be independent
of the pathway size.

Since PG is a combined probability value, it can be used not only to rank
the pathways, but also to choose a desired level of type I error. When several
tens of pathways are tested simultaneously, as is the case throughout this
study, small PG values can occur also by chance. Therefore, we suggest
controlling the false discovery rate (FDR) of the pathway analysis at 5% by
applying the popular FDR algorithm (Benjamini and Yekutieli, 2001).

3 RESULTS AND DISCUSSION

3.1 Absence of false positives under the null hypothesis
From the specificity perspective, an ideal pathway analysis method
should not find any significant pathway when a set of randomly
selected genes from the reference array are assigned random log
fold-changes, regardless of what type of distribution they are
drawn from. However, even if the data are completely random
(i.e. the null hypothesis is true), any statistical test will reject the
null hypothesis for a number of cases directly controlled by the
significance threshold, α. It is important, however, to verify that
a proposed test does not provide any false positives beyond this
expected proportion. In order to verify that signaling pathway impact
analysis (SPIA) does not provide a number of false positives above
the significance threshold, we performed a number of simulations
of the null hypothesis that can be divided into three scenarios.
A reasonable scenario in which one should not find significant
pathways is when the DE genes have random normal log fold-
changes, and the genes are selected at random. In this setup (further
referred to as scenario I), we select Nde random genes as DE from
a reference array of size 20 000. The reference array includes all
genes from all 52 pathways analyzed. The genes were assigned log
fold-changes from a random normal distribution, N(0,1). This is
illustrated in top left panel of Figure 2. An alternative model for the
null hypothesis is an experiment in which one compares two groups
of samples among which there are no real biological differences.
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