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Abstract. Many real world data mining applications involve learning from im-
balanced data sets. Learning from data sets that contain very few instances of 
the minority (or interesting) class usually produces biased classifiers that have a 
higher predictive accuracy over the majority class(es), but poorer predictive ac-
curacy over the minority class. SMOTE (Synthetic Minority Over-sampling 
TEchnique) is specifically designed for learning from imbalanced data sets. 
This paper presents a novel approach for learning from imbalanced data sets, 
based on a combination of the SMOTE algorithm and the boosting procedure. 
Unlike standard boosting where all misclassified examples are given equal 
weights, SMOTEBoost creates synthetic examples from the rare or minority 
class, thus indirectly changing the updating weights and compensating for 
skewed distributions. SMOTEBoost applied to several highly and moderately 
imbalanced data sets shows improvement in prediction performance on the mi-
nority class and overall improved F-values. 

1   Motivation and Introduction 

Rare events are events that occur very infrequently, i.e. whose frequency ranges from 
say 5% to less than 0.1%, depending on the application. Classification of rare events 
is a common problem in many domains, such as detecting fraudulent transactions, 
network intrusion detection, Web mining, direct marketing, and medical diagnostics. 
For example, in the network intrusion detection domain, the number of intrusions on 
the network is typically a very small fraction of the total network traffic. In medical 
databases, when classifying the pixels in mammogram images as cancerous or not [1], 
abnormal (cancerous) pixels represent only a very small fraction of the entire image. 
The nature of the application requires a fairly high detection rate of the minority class 



and allows for a small error rate in the majority class since the cost of misclassifying 
a cancerous patient as non-cancerous can be very high. 

In all these scenarios when the majority class typically represents 98-99% of the 
entire population, a trivial classifier that labels everything with the majority class can 
achieve high accuracy. It is apparent that for domains with imbalanced and/or skewed 
distributions, classification accuracy is not sufficient as a standard performance meas-
ure. ROC analysis [2] and metrics such as precision, recall and F-value [3, 4] have 
been used to understand the performance of the learning algorithm on the minority 
class.  The prevalence of class imbalance in various scenarios has caused a surge in 
research dealing with the minority classes. Several approaches for dealing with 
imbalanced data sets were recently introduced [1, 2, 4, 9-15]. 

A confusion matrix as shown in Table 1 is typically used to evaluate performance 
of a machine learning algorithm for rare class problems. In classification problems, 
assuming class “C” as the minority class of the interest, and “NC” as a conjunction of 
all the other classes, there are four possible outcomes when detecting class “C”. 

Table 1. Confusion matrix defines four possible scenarios when classifying class “C” 

 Predicted Class “C” Predicted Class “NC” 
Actual class “C” True Positives (TP) False Negatives (FN) 
Actual class “NC” False Positives (FP) True Negatives (TN) 

 
From Table 1, recall, precision and F-value may be defined as follows: 

Precision =  TP / (TP + FP) 
Recall   =  TP / (TP + FN) 

F-value  =  
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where β corresponds to relative importance of precision vs. recall and it is usually set 
to 1. The main focus of all learning algorithms is to improve the recall, without sacri-
ficing the precision. However, the recall and precision goals are often conflicting and 
attacking them simultaneously may not work well, especially when one class is rare.  
The F-value incorporates both precision and recall, and the “goodness” of a learning 
algorithm for the minority class can be measured by the F-value. While ROC curves 
represent the trade-off between values of TP and FP, the F-value basically incorpo-
rates the relative effects/costs of recall and precision into a single number. 

It is well known in machine learning that a combination of classifiers can be an ef-
fective technique for improving prediction accuracy. As one of the most popular com-
bining techniques, boosting [5] uses adaptive sampling of instances to generate a 
highly accurate ensemble of classifiers whose individual global accuracy is only mod-
erate. There has been significant interest in the recent literature for embedding cost-
sensitivities in the boosting algorithm. CSB [6] and AdaCost boosting algorithms [7] 
update the weights of examples according to the misclassification costs. Karakoulas 
and Shawe-Taylor’s ThetaBoost adjusts the margins in the presence of unequal loss 
functions [8]. Alternatively, Rare-Boost [4, 9] updates the weights of the examples 
differently for all four entries shown in Table 1. 



In this paper we propose a novel approach for learning from imbalanced data sets, 
SMOTEBoost, that embeds SMOTE [1], a technique for countering imbalance in a 
dataset, in the boosting procedure. After each boosting round, we apply the SMOTE 
algorithm in order to create new synthetic examples from the minority class. Experi-
ments performed on data sets from several domains (network intrusion detection, 
medical applications, etc.) have shown that SMOTEBoost is able to achieve a higher 
F-value than either SMOTE applied to a classifier or just the standard boosting algo-
rithm for all the datasets, while on the other hand both SMOTE applied to a classifier 
and SMOTEBoost achieve a higher F-value than a single classifier. We also provide 
a precision-recall analysis of the approaches. 

2   Synthetic Minority Oversampling Technique - SMOTE 

SMOTE (Synthetic Minority Oversampling Technique) was proposed to counter the 
effect of having few instances of the minority class in a data set [1]. SMOTE creates 
synthetic instances of the minority class by operating in the “feature space” rather 
than the “data space”. By synthetically generating more instances of the minority 
class, the inductive learners, such as decision trees (e.g. C4.5 [16]) or rule-learners 
(e.g. RIPPER [17]), are able to broaden their decision regions for the minority class. 
We deal with nominal (or discrete) and continuous attributes differently in SMOTE. 
In the nearest neighbor computations for the minority classes we use Euclidean dis-
tance for the continuous features and the Value Distance Metric (with the Euclidean 
assumption) for the nominal features [1, 18, 19]. The new synthetic minority samples 
are created as follows: 

• For the continuous features 
o Take the difference between a feature vector (minority class sample) and one 

of its k nearest neighbors (minority class samples). 
o Multiply this difference by a random number between 0 and 1. 
o Add this difference to the feature value of the original feature vector, thus 

creating a new feature vector 
• For the nominal features 
o Take majority vote between the feature vector under consideration and its k 

nearest neighbors for the nominal feature value. In the case of a tie, choose 
at random.  

o Assign that value to the new synthetic minority class sample. 
Using this technique, a new minority class sample is created in the neighborhood 

of the minority class sample under consideration. The neighbors are proportionately 
utilized depending upon the amount of SMOTE. Hence, using SMOTE, more general 
regions are learned for the minority class, allowing the classifiers to better predict 
unseen examples belonging to the minority class. A combination of SMOTE and 
under-sampling creates potentially optimal classifiers as a majority of points from the 
SMOTE and under-sampling combination lie on the convex hull of the family of 
ROC curves [1, 2]. 



3   SMOTEBoost algorithm 

In this paper, we propose a SMOTEBoost algorithm that combines the Synthetic 
Minority Oversampling Technique (SMOTE) and the standard boosting procedure. 
We want to utilize SMOTE for improving the prediction of the minority classes, and 
we want to utilize boosting to not sacrifice accuracy over the entire data set. Our goal 
is to better model the minority class in the data set, by providing the learner not only 
with the minority class instances that were misclassified in previous boosting itera-
tions, but also with a broader representation of those instances, and with minimal 
accuracy of the majority class. We want to improve the overall accuracy of the en-
semble by focusing on the difficult minority (positive) class cases, as we want to 
model this class better. The goal is to improve our True Positives (TP).  

The standard boosting procedure gives equal weights to all misclassified examples. 
Since boosting algorithm samples from a pool of data that predominantly consists of 
the majority class, subsequent samplings of the training set may still be skewed to-
wards the majority class. Although boosting reduces the variance and the bias in the 
final ensemble, it might not be as effective for data sets with skewed class distribu-
tions. There is a very strong learning bias towards the majority class cases in a 
skewed data set, and subsequent iterations of boosting can lead to a broader sampling 
from the majority class. Boosting algorithm (Adaboost) treats both kinds of errors (FP 
and FN) in a similar fashion, and therefore sampling distributions in subsequent 
boosting iterations could have a larger composition of majority class cases.  

Our goal is to reduce the bias inherent in the learning procedure due to the class 
imbalance, and increase the sampling weights for the minority class. Introducing 
SMOTE in each round of boosting will enable each learner to be able to sample more 
of the minority class cases, and also learn better and broader decision regions for the 
minority class. By introducing SMOTE in each round of boosting, we increase the 
number of minority class samples for the learner, and focus on these cases in distribu-
tion Dt in each boosting round. The error-estimate after each boosting iteration is on 
the original training set. Thus, we try to maximize the margin for the skewed class 
dataset, by adding new minority class cases during learning a classifier in a boosting 
iteration. We also conjecture that introducing the SMOTE procedure also increases 
the diversity amongst the classifiers in the ensemble, as in each iteration we produce a 
different set of synthetic examples, and therefore different classifiers. The amount of 
SMOTE is a parameter that can vary for each data set. It will be useful to know a 
priori the amount of SMOTE to be introduced for each data set. We observe that it is 
not really a feature of the class imbalance, and is more dependent on the distribution 
in the feature space. We believe that utilizing a validation set to set the amount of 
SMOTE before the boosting iterations can be useful. 

The combination of SMOTE and the boosting procedure that we present here is a 
variant of the AdaBoost.M2 procedure [5]. The proposed SMOTEBoost algorithm, 
shown in Fig. 1, proceeds in a series of T rounds. In every round a weak learning 
algorithm is called and presented with a different distribution Dt altered by emphasiz-
ing particular training examples. The distribution is updated to give wrong classifica-
tions higher weights than correct classifications. Unlike standard boosting, where the 
distribution Dt is updated uniformly for examples from both the majority and minority 



classes, in the SMOTEBoost technique the distribution Dt is updated such that the 
examples from the minority class are oversampled by creating synthetic minority 
class examples (See Line 1, Fig. 1). The entire weighted training set is given to the 
weak learner to compute the weak hypothesis ht. At the end, the different hypotheses 
are combined into a final hypothesis hfn. 

Fig. 1. The SMOTEBoost algorithm 

We used RIPPER [17], a learning algorithm that builds a set of rules for identify-
ing the classes while minimizing the amount of error, as the classifier in our 
SMOTEBoost experiments. RIPPER is a rule-learning algorithm based on the sepa-
rate-and-conquer strategy. It gives comparable results to a decision tree learning algo-
rithmwhile being more efficient. The SMOTE was applied with different values for 
the parameter N that specifies the amount of synthetically generated examples. As 
mentioned earlier, one of the goals of this paper is identifying a priori the amount of 
SMOTE applicable for each data set, before initiating the boosting procedure. 

4   Experiments 

Our experiments were performed on the four data sets summarized in Table 2. For 
all data sets, except for the KDD Cup-99 intrusion detection data set [20, 21], the 
reported values for recall, precision and F-value were obtained by performing 10-
fold cross-validation. For the KDDCup-99 data set however, the separate intrusion 
detection test set was used to evaluate the performance of proposed algorithms. Since 
the original training and test data sets have totally different distributions due to novel 
intrusions introduced in the test data, for the purposes of this paper, we modified the 

• Given: Set S {(x1, y1), … , (xm, ym)} xi ∈X, with labels yi ∈Y = {1, …, C}, 
where Cm, (Cm < C) corresponds to a minority class. 

• Let B = {(i, y): i = 1,…,m, y ≠ yi} 
• Initialize the distribution D1 over the examples, such that D1(i) = 1/m. 
• For t = 1, 2, 3, 4, … T 

1. Modify distribution Dt by creating N synthetic examples from minority class 
Cm using the SMOTE algorithm 

2. Train a weak learner using distribution Dt  
3. Compute weak hypothesis ht: X × Y → [0, 1] 
4. Compute the pseudo-loss of hypothesis ht:   
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∈
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data sets in order to have similar distributions in the training and test data. Therefore, 
we first merged the original training and test data sets and then sampled 69,980 net-
work connections from this merged data set in order to reduce the size of the data set. 
The sampling was performed only from majority classes (normal background traffic 
and the DoS attack category), while other classes (Probe, U2R, R2L) remained intact. 
Finally, the new train and test data sets used in our experiments were obtained by 
randomly splitting the sampled data set into equal size subsets. The distribution of 
network connections in the new test data set is given in Table 2. Unlike the KDDCup-
99 intrusion data set that has a mixture of both nominal and continuous features, the 
remaining data sets (mammography [1], satimage [22], phoneme [23]) have all 
continuous features. For the satimage data set we chose the smallest class as the 
minority class and collapsed the remaining classes into one class as was done in [24]. 
This procedure gave us a skewed 2-class dataset, with 5809 majority class examples 
and 626 minority class examples. 

Table 2. Summary of data sets used in experiments 

Data set Number of majority  
class instances 

Number of minority  
class instances 

Number of 
classes 

DoS Probe Normal U2R R2L KDDCup-99 
Intrusion 13027 2445 17400 136 1982 

5 

Mammography 10923 260 2 
Satimage 5809 626 2 
Phoneme 3818 1586 2 
 
When experimenting with SMOTE and the SMOTEBoost algorithm, different val-

ues for the SMOTE parameter N, ranging between 100 and 500, were used for the 
minority classes. Since the KDD Cup’99 data set has two minority classes U2R and 
R2L that are not equally represented in the data set, different combinations of 
SMOTE parameters were investigated for these two minority classes (values 100, 
300, and 500 were used for the U2R class while the value 100 was used for the R2L 
class). The values of the SMOTE parameters for U2R class were higher than the 
SMOTE parameter values for R2L class, since the U2R class is rarer than the R2L 
class in KDD-Cup 1999 data set (R2L has a larger number of examples). Our experi-
mental results showed that the higher values of SMOTE parameters for the R2L class 
could lead to over-fitting and decreasing the prediction performance on that class 
(since SMOTEBoost achieved only minor improvements for the R2L class, these 
results are not reported here due to space limitations). 

The experimental results for all four data sets are presented in Tables 3 to 6 and in 
Figures 2 to 4. It is important to note that these tables report only the prediction per-
formance for the minority classes from four data sets, since prediction of the majority 
class was not of interest in this study and no decrease in prediction performance of 
the majority class was observed. Due to space limitations, the figures with precision 
and recall trends over the boosting iterations, along with the F-value trends for the 
representative SMOTE parameter were not shown for the R2L class fromKDDCup 



data as well as for the satimage data set. In addition, the left and the right parts of the 
reported figures do not have the same scale due to the fact that the range of changes 
in recall and precision shown in the same graph is much larger than the change of the 
F-value. 

Table 3: Final values for recall, precision and F-value for minority U2R class when proposed 
methods are applied on KDDCup-99 intrusion data set. (Nu2r corresponds to the SMOTE 
parameter for U2R class, while Nr2l corresponds to the SMOTE parameter for R2L class). 

Method Recall Precision F-value Method Recall Precision F-value 

Standard RIPPER 57.35 84.78 68.42 Standard Boosting 80.15 90.083 84.83 
 Nu2r Nr2l Recall Precision F-value  Nu2r Nr2l Recall Precision F-value 

100 100 80.15 88.62 84.17 100 100 84.2 93.9 88.8 
300 100 74.26 92.66 82.58 300 100 87.5 88.8 88.15 SMOTE 
500 100 68.38 86.11 71.32 

SMOTE
-Boost 

500 100 84.6 92.0 88.1 

Nu2r Nr2l Recall Precision F-value
100 100 81.6 90.92 86.01 

Cost 
factor 

Recall Precision F-value 

300 100 82.5 89.30 85.77 c = 2 83.1 96.6 89.3 

First 
SMOTE 

then 
Boost 500 100 82.9 89.12 85.90 

Ada-
Cost 

c = 5 83.45 95.29 88.98 

Table 4: Final values for recall, precision and F-value for minority class when proposed 
methods are applied on mammography data set 

Method Recall Precision F-value Method Recall Precision F-value 

Standard RIPPER 48.12 74.68 58.11 Standard Boosting 59.09 77.05 66.89 
N = 100 58.04 64.96 61.31 N = 100 61.73 76.59 68.36 
N = 200 62.16 60.53 60.45 N = 200 62.63 74.54 68.07 
N = 300 62.55 56.57 58.41 N = 300 64.16 69.92 66.92 

SMOTE  

N = 500 64.51 53.81 58.68 

SMOTE
-Boost 

N = 500 61.37 70.41 65.58 

N = 100 60.22 76.16 67.25 
N = 200 62.61 72.10 67.02 

Cost 
factor 

Recall Precision F-value 

N = 300 63.92 70.26 66.94 2 59.83 69.07 63.01 

First 
SMOTE  

then 
Boost N = 500 64.14 69.80 66.85 

Ada-
Cost 

5 68.45 55.12 59.36 

Table 5: Final values for recall, precision and F-value for minority class when proposed 
methods are applied on Satimage data set 

Method Recall Precision F-value Method Recall Precision F-value 

Standard RIPPER 47.43 67.92 55.50 Standard Boosting 58.74 80.12 67.78 
N = 100 65.17 55.88 59.97 N = 100 63.88 77.71 70.12 
N = 200 74.89 48.08 58.26 N = 200 65.35 73.17 69.04 
N = 300 76.32 47.17 57.72 N = 300 67.87 72.68 70.19 

SMOTE  

N = 500 77.96 44.51 56.54 

SMOTE
-Boost 

N = 500 67.73 69.5 68.6 

N = 100 64.69 72.53 68.65 
N = 200 69.23 67.10 68.15 

Cost 
factor 

Recall Precision F-value 

N = 300 67.25 69.92 68.56 2 64.85 54.58 58.2 

First 
SMOTE  

then 
Boost N = 500 67.84 68.02 67.93 

Ada-
Cost 

5 60.85 56.01 57.6 



Table 6: Final values for recall, precision and F-value for minority class when proposed 
methods are applied on phoneme data set 

Method Recall Precision F-value Method Recall Precision F-value 

Standard RIPPER 62.28 69.13 65.15 Standard Boosting 76.1 77.07 76.55 
N = 100 82.18 59.91 68.89 N = 100 81.86 73.66 77.37 
N = 200 85.88 58.51 69.59 N = 200 84.86 76.47 76.47 
N = 300 89.79 56.15 69.04 N = 300 86 66.76 75.16 

SMOTE  

N = 500 94.2 50.22 65.49 

SMOTE
-Boost 

N = 500 88.46 65.16 75.04 

N = 100 82.05 72.34 76.89 
N = 200 85.25 68.97 76.25 

Cost 
factor 

Recall Precision F-value 

N = 300 87.37 66.38 75.44 2 76.83 75.71 75.99 

First 
SMOTE  

then 
Boost N = 500 89.21 64.73 75.03 

Ada-
Cost 

5 85.05 68.71 75.9 

Fig. 2. Precision, Recall, and F-values for the minority U2R class when the SMOTEBoost 
algorithm is applied on the KDDCup 1999 data set  
 

Fig. 3. Precision, Recall, and F-values for the minority class when the SMOTEBoost algorithm 
is applied on the Mammography data set 
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Fig. 4. Precision, Recall, and F-values for the minority class when the SMOTEBoost algorithm 
is applied on the Satimage data set  
 

Analyzing Figures 2 to 4 and Tables 3 to 6, it is apparent that SMOTEBoost 
achieved higher F-values than the other presented methods including standard boost-
ing, AdaCost, SMOTE with the RIPPER classifier and the standard RIPPER classi-
fier, although the improvement varied with different data sets.  We have also com-
pared SMOTEBoost to the procedure “First SMOTE, then Boost” when we first ap-
ply SMOTE and then perform boosting in two separate steps. It is SMOTEBoost’s 
apparent improvement in recall, while not causing a significant degradation in preci-
sion that improves the over-all F-value.  Tables 3 to 6 include the precision, recall, 
and F-value for the various methods at different amounts of SMOTE (best values are 
given in bold). These reported values indicate that SMOTE applied with the RIPPER 
classifier has the effect of improving the recall of the minority class due to improved 
coverage of the minority class examples, while at the same time SMOTE causes a 
decrease in precision due to an increased number of false positive examples. Thus, 
SMOTE is more targeted to the minority class than standard boosting or RIPPER. On 
the other hand, the standard boosting is able to improve both the recall and precision 
of a single classifier, since it gives all errors equal weights (false positives are as 
important as false negatives in boosting). SMOTE embedded within the boosting 
procedure additionally improved the recall achieved by the boosting procedure, and 
did not cause a significant degradation in precision, thus increasing the F-value. 
SMOTE as a part of SMOTEBoost allows the learners to broaden the minority class 
scope, while the boosting on the other hand aims at reducing the number of false 
positives.  

Tables 3 to 6 show the precision, recall, and F-values achieved by varying the 
amount of SMOTE for each of the minority classes for all four data sets used in our 
experiments. We report the aggregated result of 25 boosting iterations in the tables. 
The improvement was generally higher for the data sets where the skew among the 
classes was also higher. Comparing SMOTEBoost and AdaBoost.M1, for the KDD-
Cup’99 data set, the (relative) improvement in F-value for the U2R class (~4%) was 
drastically higher than for the R2L class (0.61%). The U2R class was significantly 
less represented in the data set than the R2L class (the number of U2R examples was 
around 15 times smaller than the number of examples from the R2L class). In addi-
tion, the (relative) improvements in F-value for the mammography (2.2%) and sati-
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mage (3.4%) data sets were better than for the phoneme data set (1.4%), which had 
much less imbalanced classes. For phoneme data, boosting and SMOTE Boost were 
comparable to each other, while for higher values of the SMOTE parameter N, boost-
ing was even better than SMOTEBoost. In this data set the number of majority class 
examples is only twice the number of minority class examples, and increasing the 
SMOTE parameter N to values larger than 200 causes the minority class to become 
the majority. Hence, the classifiers in the SMOTEBoost ensemble will now tend to 
over-learn the minority class, causing a higher degradation in precision for the minor-
ity class and therefore a reduction in F-value. 

We have also shown that SMOTEBoost gives higher F-values than the AdaCost 
algorithm [7]. The cost-adjustment functions from the AdaCost algorithm were cho-
sen as follows: β- = 0.5*c + 0.5 and β+ = -0.5*c + 0.5, where β- and β+ are the func-
tions for mislabeled and correctly labeled examples, respectively. AdaCost causes a 
greater sampling from the minority class examples due to the β function in the boost-
ing distribution. This implicitly has an effect of over-sampling with replication. 
SMOTEBoost on the other hand constructs new examples at each round of boosting, 
thus avoiding overfitting and achieving higher minority class classification perform-
ances than AdaCost. Although AdaCost improves the recall over AdaBoost, it signifi-
cantly reduces the precision thus causing a reduction in F-value. It is also interesting 
to note that SMOTEBoost achieves better F-values than the procedure “First 
SMOTE, then Boost” since in every boosting iteration new examples from minority 
class are generated, and thus, more diverse classifiers are created in the boosting 
ensemble. Finally, SMOTEBoost particularly focuses on the examples selected in the 
Dt, which are potentially misclassified or are on the classification boundaries. 

5   Conclusions 

A novel approach for learning from imbalanced data sets is presented. The proposed 
SMOTEBoost algorithm is based on the integration of the SMOTE algorithm within 
the standard boosting procedure. Experimental results from several imbalanced data 
sets indicate that the proposed SMOTEBoost algorithm can result in better prediction 
of minority classes than AdaBoost, AdaCost, “First SMOTE then Boost” procedure 
and a single classifier. Data sets used in our experiments contained different degrees 
of imbalance and different sizes, thus providing a diverse test bed. 

The SMOTEBoost algorithm successfully utilizes the benefits from both boosting 
and the SMOTE algorithm. While boosting improves the predictive accuracy of clas-
sifiers by focusing on difficult examples that belong to all the classes, the SMOTE 
algorithm improves the performance of a classifier only on the minority class exam-
ples. Therefore, the embedded SMOTE algorithm forces the boosting algorithm to 
focus more on difficult examples that belong to the minority class than to the majority 
class. SMOTEBoost implicitly increases the weights of the misclassified minority 
class instances (false negatives) in the distribution Dt by increasing the number of 
minority class instances using the SMOTE algorithm. Therefore, in the subsequent 
boosting iterations SMOTEBoost is able to create broader decision regions for the 
minority class compared to the standard boosting. We conclude that SMOTEBoost 



can construct an ensemble of diverse classifiers and reduce the bias of the classifiers. 
SMOTEBoost combines the power of SMOTE in vastly improving the recall with the 
power of boosting in improving the precision. The overall effect is a better F-value. 

Our experiments have also shown that SMOTEBoost is able to achieve higher F-
values than AdaCost, due to SMOTE's ability to improve the coverage of the minority 
class when compared to the indirect effect of oversampling with replication in AdaCost. 

Although the experiments have provided evidence that the proposed method can 
be successful for learning from imbalanced data sets, future work is needed to address 
its possible drawbacks. First, automatic determination of the amount of SMOTE will 
not only be useful when deploying SMOTE as an independent approach, but also for 
combining SMOTE and boosting. Second, our future work will also focus on investi-
gating the effect of mislabeling noise on the performance of SMOTEBoost, since it is 
known that boosting does not perform well in the presence of noise. 
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