1 SARS-CoV-2, SARS-CoV-1 and MERS-CoV viral load dynamics, duration of viral shedding

2 and infectiousness – a living systematic review and meta-analysis

- 3
- 4 **Author:** Muge Cevik^{1,2}, Matthew Tate³, Ollie Lloyd^{2,4}, Alberto Enrico Maraolo⁵, Jenna
- 5 Schafers², Antonia Ho⁶
- 6

7 Affiliations:

- 8 1. Division of Infection and Global Health Research, School of Medicine, University of St
- 9 Andrews, UK
- 10 2. NHS Lothian Infection Service, Regional Infectious Diseases Unit, Western General
- 11 Hospital, Edinburgh, U.K.
- 12 3. Respiratory Medicine, University Hospital Wishaw, Wishaw, UK
- 13 4. Edinburgh Medical School, College of Medicine & Veterinary Medicine, University of
- 14 Edinburgh, UK
- 15 5. First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, Naples, Italy.
- 16 6. MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,
- 17 UK
- 18
- 19 Corresponding author:
- 20 Dr Muge Cevik
- 21 Division of Infection and Global Health Research,
- 22 School of Medicine, University of St Andrews, Fife, KY16 9TF
- 23 Telephone number: +447732800814
- 24 Email address: mc349@st-andrews.ac.uk
- 25
- 26 Keywords: SARS-CoV-2, COVID-19, SARS-CoV-1, MERS-CoV, viral shedding, viral dynamics,
- 27 infectiousness

28 ABSTRACT

29 Background: Viral load kinetics and the duration of viral shedding are important determinants 30 for disease transmission. We aim i) to characterize viral load dynamics, duration of viral RNA, and viable virus shedding of SARS-CoV-2 in various body fluids and ii) to compare SARS-CoV-2 31 32 viral dynamics with SARS-CoV-1 and MERS-CoV. 33 Methods: Medline, EMBASE, Europe PMC, preprint servers and grey literature were searched 34 to retrieve all articles reporting viral dynamics and duration of SARS-CoV-2, SARS-CoV-1 and 35 MERS-CoV shedding. We excluded case reports and case series with < 5 patients, or studies 36 that did not report shedding duration from symptom onset. PROSPERO registration: 37 CRD42020181914. Findings: Seventy-nine studies on SARS-CoV-2, 8 on SARS-CoV-1, and 11 on MERS-CoV 38 39 were included. Mean SARS-CoV-2 RNA shedding duration in upper respiratory tract, lower 40 respiratory tract, stool and serum were 17.0, 14.6, 17.2 and 16.6 days, respectively. Maximum duration of SARS-CoV-2 RNA shedding reported in URT, LRT, stool and serum were 83, 59, 35 41 42 and 60 days, respectively. Pooled mean duration of SARS-CoV-2 RNA shedding was positively 43 associated with age (p=0.002), but not gender (p = 0.277). No study to date has cultured live

virus beyond day nine of illness despite persistently high viral loads. SARS-CoV-2 viral load in
the upper respiratory tract appears to peak in the first week of illness, while SARS-CoV-1 and
MERS-CoV peak later.

Conclusion: Although SARS-CoV-2 RNA shedding in respiratory and stool can be prolonged, duration of viable virus is relatively short-lived. Thus, detection of viral RNA cannot be used to infer infectiousness. High SARS-CoV-2 titers are detectable in the first week of illness with an early peak observed at symptom onset to day 5 of illness. This review underscores the importance of early case finding and isolation, as well as public education on the spectrum of illness. However, given potential delays in the isolation of patients, effective containment of SARS-CoV-2 may be challenging even with an early detection and isolation strategy.

54 **Funding**: No funding was received.

55 INTRODUCTION

Viral load kinetics and the duration of viral shedding are important determinants for disease 56 transmission. They determine the duration of infectiousness which is a critical parameter to inform 57 58 effective control measures and disease modelling. While a number of studies have evaluated 59 SARS-CoV-2 shedding, viral load dynamics and duration of viral shedding reported across studies so far have been heterogenous.¹ In several case series with serial respiratory sampling, peak viral 60 load was observed just before, or at the time of symptom onset.²⁻⁴ Viral ribonucleic acid (RNA) 61 62 shedding was reported to be persistent in the upper respiratory tract and in feces, for over one month after illness onset.¹ However, the duration of SARS-CoV-2 RNA detection has not been well 63 64 characterized. A comprehensive understanding of viral load dynamics, length of viral shedding, and how these relate to other factors, such as age and disease severity is lacking. 65

The aim of this systematic review and meta-analysis was to i) characterize the viral load dynamics of SARS-CoV-2, duration of viral RNA shedding by reverse transcriptase polymerase chain reaction (RT-PCR) and viable virus shedding in various body fluids and ii) compare SARS-CoV-2 viral dynamics with that of SARS-CoV-1 and MERS-CoV.

70 METHODS

71 Search Strategy

We retrieved all articles reporting viral dynamics and/or the duration of shedding of SARS-CoV-2, SARS-CoV-1 or MERS-CoV in various specimens through systematic searches of major databases including Medline, EMBASE, Europe PMC, pre-print databases (MedRxiv, BioRxiv) and the grey literature from 1 January 2003 to 6th June 2020 using Medical Subject Headings (MeSH) terms (Supplementary Material). We also manually screened the references of included original studies to obtain additional studies. Studies prior to 2003 were excluded since the first recognized case of SARS-CoV-1 was identified in March 2003.

This systematic review was registered in PROSPERO on 29th April 2020 (CRD42020181914) and
will be updated in three monthly intervals as a living systematic review.

81 Study Selection

Studies were eligible if they met the following inclusion criteria: (1) report on SARS-CoV-2, SARS-CoV-1 or MERS-CoV infection and (2) report viral load kinetics, duration of viral shedding or viable virus. We excluded: (1) review papers; (2) animal studies; (3) studies on environmental sampling; (4) case reports and case series with < 5 participants, due to likely reporting bias; (5) papers where the starting point of viral shedding was not clear or reported from post-discharge and (6) modelling studies with no original data.

88 Data Extraction

89 Two authors (MT and OL) screened and retrieved articles according to the eligibility criteria. Four 90 reviewers (MT, OL, JS, MC) performed full text review and final article selection. From each study, 91 the following variables were extracted as a minimum: name of first author, year of publication, city 92 and country, sample size, median age, sex ratio, time from symptom onset to viral clearance 93 detected by RT-PCR and culture in different specimens, and longest reported time to viral 94 clearance. If these data were not reported, we also contacted the authors to request the data. If 95 available, we extracted data on peak viral load, clinical outcome, and reported factors associated 96 with duration of viral shedding.

97 Risk of bias in included studies

98 Two authors (OL and JS) independently assessed study quality and risk of bias using the Joanna 99 Briggs Institute (JBI) Critical Appraisal Checklist tools,⁵ which comprise standardized checklists, 100 for the different study designs included in this review. Any disagreements regarding grading of 101 quality were resolved through discussion with a third author (MC).

102 Meta-Analysis

For every study included, mean duration of viral shedding and 95% confidence interval (CI) were calculated. The random-effects model (DerSimonian or Laird) was applied to estimate a pooled effect size. Forest plots illustrated the detailed representation of all studies based on the effect size and 95% CI. If not reported, means and standard deviations were derived from sample size, median, interquartile range (IQR), minimum and maximum values.⁶ Heterogeneity between studies were quantified by the I² index and Cochran's Q test. Publication bias was not assessed as usual appraisal methods are uninformative when meta-analysed studies do not include a test of significance. A weighted meta-regression using an unrestricted maximum likelihood model was performed to assess the impact of potential moderators on the pooled effect size (P-values <0.05 were considered significant). All statistical analyses were performed using Comprehensive Meta-

113 Analysis (CMA) version 3 software (Biostat, Englewood, mNJ).

114 **RESULTS**

The systematic search identified 1486 potentially relevant articles. Three hundred and fifty articles were retrieved for full text review. After reviewing the eligibility criteria, a total of 79 studies on SARS-CoV-2, eight on SARS-CoV-1, and 11 on MERS-CoV were included (Figure 1).

118 Summary of SARS-CoV-2 studies

Of the 79 papers included, 58 studies were conducted in China (Table 1). Six studies included outpatient or community cases, the remainder comprised hospitalized patients only. Six studies reported viral load dynamics exclusively in children.⁷⁻¹² Two additional studies included children, but data on viral load dynamics were presented in aggregate with adults.^{13,14} One study reported findings in renal transplant patients.¹⁵

124 Median duration of viral shedding

125 In total, 61 studies reported median or maximum viral RNA shedding in at least one body fluid 126 and six studies provided duration of shedding stratified by illness severity only. Of those, 43 127 (3229 individuals) reported duration of shedding in upper respiratory tract (URT), seven (260 128 individuals) in lower respiratory tract (LRT), 13 (586 individuals) in stool, and 2 studies (108 129 individuals) in serum samples were eligible for quantitative analysis. Means viral shedding durations were 17.0 days (95% CI, 15.5-18.6), 14.6 days (95% CI, 9.3-20.0), 17.2 days (95% CI, 130 131 14.4-20.1) and 16.6 days (95% CI, 3.6-29.7), respectively (Figures 2 to 5). Maximum duration of 132 RNA shedding reported in URT, LRT, stool and serum were 83, 59, 35 and 60 days, respectively. 133

Studies reporting duration of viral shedding in URT and stool samples were eligible for metaregression analysis. Pooled mean viral shedding duration was positively associated with age (slope: +0.304; 95% CI, +0.115 to +0.493; p = 0.002 Fig 6), but not gender (p = 0.277, Supplementary Fig 3). When adjusted for the proportion of male subjects in a multivariable analysis, mean age was positively associated with the mean duration of viral shedding in URT specimens (p = 0.003). There was a positive but non-significant association between mean age and duration of shedding in stool (p = 0.37) (Supplementary Figure 4).

141 Peak viral load

142 The majority of studies evaluating SARS-CoV-2 viral load in serial URT samples demonstrated

143 peak viral loads within the first week of symptom onset. ^{2,4,8,16-24} The highest viral loads were

reported either soon after or at the time of symptom $onset^{2,8,16,23,24}$ or at day 3-5 of illness^{4,18,20,22}

145 followed by a consistent decline.

Five studies that evaluated viral load dynamics in LRT samples observed a peak viral load in the second week of illness.^{4,18,20,23,25} In contrast, the dynamics of SARS-CoV-2 shedding in stool is more erratic, with highest viral loads reported on day 7,¹⁸ 2-3 weeks,^{24,25} and up to 5-6 weeks after symptom onset.²³ While several studies reported significantly higher viral titres in stool compared to respiratory samples,^{8,25} Huang *et al.* reported lower viral load in stool than in both LRT and URT samples early in the disease course.²³

152

153 Severity and association with duration of viral shedding

In total, 20 studies evaluated duration of viral RNA shedding based on disease severity. The majority (n=13) reported longer duration of viral shedding in patients with severe illness than those with non-severe illness, ^{18,25-36} while five studies reported similar shedding durations according to disease severity in URT samples^{17,19,37-39} and one study in stool samples.⁴⁰ Only one study reported shorter viral shedding in moderate to severe illness compared to mild to moderate illness.⁴¹ Six studies have performed comparative analysis based on severity of illness;^{18,25,27,28,38,39} the majority (n=5) demonstrated significantly longer duration of shedding

among the severe illness group compared to the non-severe patients and only one study

162 observed no difference.³⁹ (Table 2).

163 Other factors associated with prolonged shedding

All but one study⁴² (n=10) that examined the impact of age on SARS-CoV-2 shedding identified 164 an association between older age and prolonged viral RNA shedding.^{25,26,28,33,37-39,43-45} Three 165 studies identified age as an independent risk factor for delayed viral clearance.^{25,26,38} Male sex 166 was also associated with prolonged shedding,^{25,38,46} and the association remained significant 167 even when patients were stratified based on illness severity.^{25,38} Corticosteroid treatment was 168 associated with delayed viral clearance in four studies,^{33,38,47,48} and one study that recruited 120 169 170 critically ill patients, found no difference between corticosteroid and control groups.⁴⁹ In a phase 2 open-label study evaluating interferon beta-1b, lopinavir-ritonavir, and ribavirin a 171 172 shorter duration of viral shedding was seen with combination treatment compared to the

- 5
- 173 control.⁵⁰ None of the antiviral regimens (chloroquine, oseltamivir, arbidol, and lopinavir/ritonavir)
- 174 independently improved viral RNA clearance.^{28,51} In a retrospective study of 284 patients,
- 175 lopinavir/ritonavir use was associated with delayed viral clearance even after adjusting for

176 confounders.²⁸

177 Asymptomatic SARS-CoV-2 shedding

Twelve studies reported on viral load dynamics and/or duration of viral shedding among patients 178 with asymptomatic SARS-CoV-2 infection (Table 3); two demonstrated lower viral loads among 179 asymptomatic patients compared to symptomatic patients,^{8,52} while four studies found similar 180 initial viral loads. ^{13,14,53,54} However, Chau et al reported significantly lower viral load in 181 asymptomatic patients during the follow up compared to symptomatic patients.⁵³ Faster viral 182 clearance was observed in asymptomatic individuals in five out of six studies.^{13,28,53,55,56} The 183 exception Yongchen et al., found longer shedding duration among asymptomatic cases, but the 184 difference was not significant.³⁶ 185

186 Live virus detection

We identified 11 studies that attempted to isolate live virus. All eight studies that attempted virus isolation in respiratory samples successfully cultured viable virus within the first week of illness, ^{9,17,20,54,57-60} No live virus was isolated from any respiratory samples taken after day 8 of symptoms in three studies,^{20,57,58} or beyond day 9 in two studies^{17,54} despite persistently high viral RNA loads. One study demonstrated the highest probability of positive culture on day 3 of symptoms.⁵⁷ Arons *et al.* cultured viable virus 6 days before typical symptom onset, however onset of symptom was unclear.⁵⁴

The success of viral isolation correlated with viral load quantified by RT-PCR. No successful viral culture was obtained from samples with a viral load below 10⁶ copies/ml, ²⁰ Ct values >24,⁵⁷ or >34,^{54,58} with culture positivity declining with increasing Ct values.⁵⁸ Several other studies cultured live virus from RT-PCR positive specimens; however, they did not correlate these results with viral load titres.^{9,59,60}

Only one study reported the duration of viable virus shedding in respiratory samples; the median time to clearance from URT and LRT samples was 3.5 and 6 days, respectively.²⁰ Arons *et al.* cultured viable virus in one out of three asymptomatic cases from the respiratory tract.⁵⁴

Viral culture was successful in two of three RNA-positive patients in one study, but the time
 points from symptom onset were not reported.⁶¹ Andersson *et al.* failed to culture virus from 27
 RT-PCR positive serum samples.⁶²

205 Summary of SARS-CoV-1 and MERS studies

206 Eight studies on SARS-CoV-1 were included; the majority of studies did not report mean or median duration of viral shedding thus, were not eligible for quantitative analysis. The maximum duration 207 of viral shedding reported was 8 weeks in URT,^{63,64} 52 days in LRT,^{63,65} 6-7 weeks in serum,⁶⁶ 208 and 126 days in stool samples.^{63,65,67-69} Dialysis patients had longer viral shedding in stool 209 compared to non-dialysis patients.⁶⁸ Studies that have evaluated SARS-CoV-1 kinetics found low 210 viral load in the initial days of illness, increasing after the first week of illness in URT samples, 211 peaking at day 10,⁷⁰ or day 12-14,⁶⁷ and declining after week 3-4.⁶⁴ High viral loads correlated with 212 severity of illness⁶⁴ and poor survival.⁶⁴ While Chen *et al.* identified an association between 213

younger age and lower viral titers, ⁶⁴ Leong *et al.* found no difference.⁶⁹ Viable SARS-CoV-1 was
isolated from stool and respiratory samples up to 4 weeks, and urine specimens up to day 36.^{63,66}
All attempts to isolate virus from RT-PCR–positive stool specimens collected >6weeks after
disease onset failed.⁶⁵ The isolation probability for stool samples was approximately 5 to 10
times lower compared to respiratory specimens.⁶³

We identified 11 studies on MERS-CoV. Three studies (324 subjects) reporting MERS-CoV 219 shedding in URT and four studies (93 subjects) in LRT were included in the quantitative analysis. 220 221 The mean shedding duration was 15.3 days (95% CI, 11.6 – 19.0) and 16.6 days (95% CI, 14.8 – 18.4), respectively (Supplementary Figures 1 and 2). Only one study reported duration of viral 222 shedding in serum with a median of 14 days and max of 38 days.⁷¹ In a small study, mortality rates 223 were higher in patients with viraemia.⁷² In URT and LRT specimens, prolonged shedding was 224 associated with illness severity^{73,74} and survival⁷⁵ with the shortest duration observed in 225 226 asymptomatic patients.⁷³ Peak viral loads were observed between days 7 to 10 and higher viral loads was observed among patients with severe illness and fatal outcome.^{71,73,74,76,77} Differences 227 in viral loads between survivors and fatal cases was more pronounced in the second week of 228 illness (P< 0.0006).⁷⁷ The proportion of successful viable culture was 6% in respiratory samples 229 with a viral load values below 10⁷ copies/ml.⁷⁸ 230

231 Qualitative analysis

All but 11 studies (6 cohort studies, 2 cross-sectional studies, and 1 RCT on SARS-CoV-2 and 2 cohort studies on MERS-CoV) were case series, the majority of which recruited non-consecutive patients and therefore prone to possible selection bias. (Supplementary Table 1)

235 DISCUSSION

This systematic review and meta-analysis provide comprehensive data on the viral dynamics of SARS-CoV-2 including the duration of RNA shedding and viable virus isolation. Our findings suggest that while patients with SARS-CoV-2 infection may have prolonged RNA shedding, median time to live virus clearance from upper and lower respiratory tract samples were 3.5 days and 6 days, respectively. No live virus isolated from culture beyond day nine of symptoms despite persistently high viral RNA loads, thus emphasizing that the infectious period cannot be
inferred from the duration of viral RNA detection. This finding is supported by several studies
demonstrating a relationship between viral load and viability of virus, with no successful culture
from samples below a certain viral load threshold.

245 SARS-CoV-2 viral load appears to peak in the URT within the first week of illness, and later in the LRT. In contrast, peaks in SARS-CoV-1 and MERS-CoV viral loads in the URT occurred at 246 247 days 10-14 and 7-10 days of illness, respectively. Combined with isolation of viable virus in 248 respiratory samples primarily within the first week of illness, patients with SARS-CoV-2 infection 249 are likely to be most infectious in the first week of illness. Several studies report viral load peaks during the prodromal phase of illness or at the time of symptom onset, ^{2,4,8,16-23} providing a 250 rationale for the efficient spread of SARS-CoV-2. This is supported by the observation in contact 251 tracing studies that the highest risk of transmission occurs during the prodromal phase or early in 252 the disease course.^{79,80} No secondary cases were identified beyond 5 days after the symptom 253 onset.⁸¹ Although modelling studies estimated potential viral load peak before symptom onset, 254 we did not identify any study that confirms pre-symptomatic viral load peak.¹⁶ 255

Emerging evidence suggests a correlation between virus persistence and disease severity and outcome.^{18,25,27-29,38} This is consistent with the viral load dynamics of influenza, MERS-CoV, and SARS-CoV-1 whereby severe disease was also associated with prolonged viral shedding.^{73,74,82} However, more studies are needed to understand the duration of viable virus in patients with severe illness.

Similar to SARS-CoV-1, SARS-CoV-2 can be detected in stool for prolonged periods, with high viral loads detected even after 3 weeks of illness. A clear difference between SARS-CoV-1 and MERS-CoV is the detection of viral RNA in stool. In SARS-CoV-1, RNA prevalence in stool samples was high, with almost all studies reporting shedding in stool. Although viable SARS-CoV-1 was isolated up to 4 weeks of illness, fecal-oral transmission was not considered to be a primary driver of infection. Whereas in MERS-CoV, none of the studies reported duration of viral shedding in stool and RNA detection was low.^{77,83} To date, only a few studies have demonstrated viable SARS-CoV-2 in stool.^{61,84} Thus, the role of fecal shedding in viral
 transmission remains unclear.

270 Viral loads at the start of infection appear to be comparable between asymptomatic and 271 symptomatic patients infected with SARS-CoV-2. Nevertheless, most studies demonstrate faster 272 viral clearance among asymptomatic individuals. This suggests similar transmission potential among both groups at the onset of infection, but a shorter period of infectiousness in 273 274 asymptomatic patients. This is in keeping with viral kinetics observed with other respiratory 275 viruses such as influenza and MERS-CoV, in which people with asymptomatic infection have a shorter duration of viral shedding than symptomatic individuals.^{73,85} However, there are limited 276 277 data on the shedding of infectious virus in asymptomatic individuals to quantify their transmission potential to inform policy on guarantine duration in the absence of testing. 278 279 This is the first study that has comprehensively examined and compared SARS-CoV-2, SARS-280 CoV-1 and MERS-CoV viral dynamics and performed a meta-analysis of viral shedding duration. 281 Our study has limitations. First, some patients in the included studies received a range of treatments, including steroids and antivirals, which may have modified the shedding dynamics. 282

283 Second, most of the included studies are case series, which are particularly vulnerable to

selection bias. Third, our meta-analysis identified substantial study heterogeneity, likely due to

differences in study population, follow up and management approaches. Further, shedding

286 duration is reported as median ± IQR for most studies, but meta-analysis necessitates

287 conversion to mean \pm SD.⁶ The validity of this conversion is based on the assumption that

duration of viral shedding is normally distributed, which may not apply to some studies. Lastly,

although there is likely a broad overlap, the true clinical window of infectious shedding may not

290 entirely align with viral culture duration.

We identified a systematic review of SARS CoV-2 viral load kinetics that included studies
published up until 12 May 2020.⁸⁶ This review included many studies that did not meet our
eligibility criteria, including 26 case reports and 13 case series involving <5 individuals; these are
prone to significant selection bias, reporting atypical cases with prolonged viral shedding.
Additionally, the review included studies that reported viral shedding duration from the time of

296 hospital admission or initial PCR positivity, rather than symptom onset. Furthermore, no meta-297 analysis of the duration of viral shedding was performed.

298 This review provides detailed understanding about the available evidence to date on viral dynamics of SARS-CoV-2 and has implications for pandemic control strategies and infection 299 300 control practices. Although SARS-CoV-2 RNA shedding can be prolonged in respiratory and 301 stool samples, the duration of viable virus is short-lived, with culture success associated with 302 viral load levels. No study has reported live SARS-CoV-2 beyond day nine to date. Most studies 303 detected the SARS-CoV-2 viral load peak within the first week of illness. These findings highlight 304 that isolation practices should be commenced with the start of first symptoms including mild and 305 atypical symptoms that precede more typical COVID-19 symptoms. This systematic review underscores the importance of early case finding and isolation, as well as public education on 306 the spectrum of illness. However, given potential delays in the isolation of patients, effective 307 containment of SARS-CoV-2 may be challenging even with an early detection and isolation 308 strategy.87 309

310

311 Authors contributions:

M. Cevik: conceptualisation, methodology, investigation, data curation, writing – original draft. M.
Tate: investigation, data curation, writing – original draft; O Lloyd: investigation, data curation,
writing – review and editing; A. E. Maraolo: formal analysis, writing – original draft; J. Schafers:
investigation, data curation, writing – review and editing; A Ho: conceptualisation, methodology,
data curation, writing – original draft, supervision.

317

318 Financial support and sponsorship

- 319 No financial support received
- 320 Conflicts of interest
- 321 All authors have nothing to disclose.

322 Acknowledgements

- 323 We would like to thank Vicki Cormie at the University of St Andrews for assistance with the
- 324 search and obtaining papers not readily accessible.

Table 1: Summary of included studies

Study	Geographical location	Study setting	Study design	Number of patients	Age Median (IQR)	Male sex N (%)	Specimen types
SARS-CoV-2							
Andersson et al. ⁶²	Oxford, UK	Hospital	Case series	167	56 (46-76)	89 (53)	Serum
Arons et al.54	King's County, USA	Care home	Cross-sectional	46	78.6 ± 9.5*	NR	URT
Bullard et al. ⁵⁷	Manitoba, Canada	Hospital	Case series	90	45 (30-59)	44 (49)	Respiratory samples (not specified)
Cai et al. ⁷	Shanghai/ Hefei/ Qingdao, China	Hospital	Case series	10	6	4 (40)	LRT, blood, stool, urine
Cai et al. ²⁶	Shenzhen, China	Hospital	Case series	298	47 (33-61)	149 (50)	URT
Chang et al. ⁸⁸	Bejing, China	Hospital	Case series	16	35.5 (24-53)	11 (69)	URT
Chau et al.53	Ho Chi Minh City, Vietnam	Hospital	Case series	30	29 (16-60)	15 (50)	URT
Chen et al. ²⁷	Shanghai, China	Hospital	Case series	249	51 (36-64)	126 (51)	URT
Chen et al. ⁸⁹	Wuhan, China	Hospital	Case series	25	51.4 ±16.6*	11 (44)	URT
Chen et al. ²⁸	Guangzhou, China	Hospital	Case series	284	48 (33-62)	131 (46)	URT
Chen et al. 29	Wuhan, China	Hospital	Case series	42	51	15 (36)	URT, stool, urine
Corman et al. ⁹⁰	Germany	Hospital	Case series	18	NR	12 (67)	Blood
Fan et al. ³⁰	Shenyang, China	Hospital	Case series	55	46.8	30 (55)	URT, sputum
Fang et al. ³¹	Xiangtan, China	Hospital	Case series	32	41	16 (50)	URT, stool, blood
Fu et al. ⁹¹	Huazhong, China	Hospital	Case series	50	64 (37-87)	27 (54)	URT
Han et al. ⁸	Chongqing, South Korea	Hospital	Case series	12	6.5 (0.007-16)	5 (42)	URT, stool
He et al. ¹⁶	Guangzhou, China	Hospital	Case series	94	46	47 (50)	URT
Hu et al. ³⁷	Qingdao, China	Hospital	Case series	59	46 (33-57)	28 (47)	URT
Hu et al.55	Nanjing, China	Hospital	Case series	24	32.5 (21-57)	8 (33)	URT
Huang et al. ⁵¹	Guangzhou, China	Hospital	Case series	27	NR	12 (44)	URT

Huang et al. ²³	Wenzhou, China	Hospital	Case series	33	47 (range 2-84)	17 (52)	URT, LRT, stool
Huang et al. ⁹²	Wuhan, China	Hospital	Retrospective cohort	200	58± 17*	115 (48)	URT
Hung et al. ⁵⁰	Hong Kong	Hospital	RCT	127	52 (32-62)	68 (54)	URT, stool
Kim et al. ⁴	Soeul/ Incheon/ Seongna, South Korea	Hospital	Case series	28	40 (28-54)	15 (54)	URT, LRT
Kujawski et al. ¹⁷	6 states, USA	Hospital /Outpatient	Case series	12	53 (range 21- 68)	8 (75)	URT, LRT, stool, blood, urine
L'Huillier et al. ⁹	Geneva, Switzerland	Hospital	Case series	23	12 (3.8-14.5)	NR	URT
La Scola et al. ⁵⁸	France	Hospital	Case series	155	NR	NR	URT, LRT
Lavezzo et al. 14	Vo', Italy	Community	Cross-sectional	Only sample # reported	Mixed	Mixed	URT
Le et al. ⁵⁹	Hanoi, Vietnam	Hospital	Case series	12	29.5*	3 (25)	URT
Li et al.93	Wuhan China	Hospital	Case series	36	57.5 (52-65)	23 (64)	URT
Liang et al. ⁴⁹	Wuhan, China	Hospital	Case series	120	61.5 (47-70)	68 (57)	URT
Ling et al.47	Shanghai, China	Hospital	Case series	66	44 (16-778)	38 (58)	URT, stool, blood, urine
Liu et al. ⁹⁴	Wuhan, China	Hospital	Case series	238	55 (38.3-65)	138 (58)	URT
Liu et al. ³²	Nanchang, China	Hospital	Case series	76	48.3	48 (63)	URT
Lo et al. ⁹⁵	Macau, China	Hospital	Case series	10	54 (27-64)	3 (30)	URT, LRT, stool, urine
Lou B et al. ⁹⁶	Zhejiang, China	Hospital	Case series	80	55 (45-64)	50 (69)	LRT
Pongpirul et al. ⁹⁷	Bangkok, Thailand	Hospital	Case series	11	61 (28-74)	6 (55)	URT
Qian et al. ⁹⁸	Ningbo, China	Hospital	Case series	24	NR	NR	URT
Quan et al. ⁹⁹	Wuhan/Shenzhen/ Xiangyang, China	Hospital	Case series	23	60.3 ±15.3*	23 (100)	Prostatic secretions all negative (URT)

Sakurai et al. ⁴³	Aichi, Japan	Hospital	Case series	90	59.5 (36-68)	53 (59)	URT
Seah et al. ¹⁰⁰	Singapore	Hospital	Case series	17	NR	NR	Tears
Shastri et al. ⁴⁶	Mumbai, India	Reference lab	Case series	68	37 (range 3-75)	48 (71)	URT
Shi et al. ³³	Wuhan, China	Hospital	Case series	246	58 (47-67)	126 (51)	URT
Song et al. ¹⁰¹	Nanjing, China	Hospital	Case series	13	22 – 67 (range only)	13 (100)	URT, semen, testicular sample
Song et al. ¹⁰²	Beijing, China	Hospital/Outpatie nt	Case series	21	37 (21-59.5)	8 (38)	URT
Talmy et al. ⁴⁴	Ramat Gan, Israel	Outpatient	Case series	119	21 (19-25)	84 (71)	URT
Tan et al. ³⁴	Chongqing, China	Hospital	Case series	142	NR	NR	URT
Tan et al. ¹⁸	Chongqing, China	Hospital	Case series	67	49 (10-77)	35 (52)	URT, LRT, stool, blood, urine
Tan et al. ¹⁰	Changsha, China	Hospital	Case series	10	7 (1-12)	3 (30)	URT, stool
Tian et al. ⁴¹	Beijing, China	Hospital/Outpatie nt	Case series	75	41.5 (range 0.8 – 88)*	42 (56)	Respiratory tract sample (not specified further)
To et al. ¹⁹	Hong Kong, China	Hospital	Case series	23	62 (37-75)	13 (57)	URT, stool, blood, urine
To et al. ⁶⁰	Hong Kong, China	Hospital	Prospective Cohort	12	62.5 (37-75)	7 (58)	URT (saliva)
Tu et al. ¹⁰³	Anhui, China	Hospital	Case series	40	Viral shedding <10 days: 40.86 ± 8.26 Viral shedding ≥10 days: 45.5 ± 14.60	21 (53)	URT
Wang et al. ¹⁰⁴	Henan, China	Hospital	Case series	18	39 (29-55)	10 (56)	URT
Wang et al. ¹⁰⁵	Jinhua, China	Hospital	Case series	17	42 ± 17*	10 (59)	URT, stool
Wölfel et al. ²⁰	Munich, Germany	Hospital	Case series	9	NR	NR	URT, blood, urine
Wu et al. ¹⁰⁶	Hainan, China	Hospital	Case series	91	50 (range 21- 83)*	52 (57)	URT, stool

Wu et al. ¹¹	Qingdao, China	Hospital	Case series	74	6 (0.1-15.08	44 (59)	Stool
Wu et al. ⁴⁰	Zhuhai, China	Hospital	Case series	74	43.8*	35 (47)	Stool
Wyllie et al. ²¹	New Haven, USA	Hospital	Case series	44	61 (23-92 range)*	23 (52)	URT (saliva)
Xiao et al. ⁴⁵	Wuhan, China	Hospital	Case series	56	55 (42-68)	34 (61)	URT
Xiao et al. ⁶¹	Guangzhou, China	Hospital	Case series	28			Stool
Xu et al. ³⁸	Shenzhen/ Zheijang, China	Hospital	Retrospective Cohort	113	52 (42-63)	66 (58)	URT
Xu et al. ¹⁰⁷	Shenyang, China	Hospital	Case series	14	48 ± 13.4*	7 (50)	URT, LRT, serum, conjunctiva
Xu et al. ¹²	Guangzhou, China	Hospital	Case series	10	6.6	6 (60)	URT, rectal swab
Yan et al. ³⁹	Hubei, China	Hospital	Case series	120	52 (35-63)	54 (45)	URT
Yang et al. ⁵⁶	Wuhan, China	Hospital	Case series	78 (45 symptomatic)	Symptomatic: 56 (34-63)	Symptomatic:3 1 (40)	URT
				symptomatic	37 (26-45)	11 (33)	
Yang et al. ¹⁰⁸	Shenzhen, China	Hospital	Case series	213	52 (range 2-86)	108 (51)	URT, LRT
Yongchen et al. ³⁶	Nanjing, Xuzhou, China	Hospital	Case series	21	37	13 (62)	URT, stool
Young et al. ²²	Singapore	Hospital	Case series	18	47	9 (50)	URT, stool, blood, urine
Zha et al. ⁴⁸	Wuhu, China	Hospital	Case series	31	39 (32-54)	20 (65)	URT
Zhang et al. ²⁴	Beijing, China	Hospital	Case series	23	48 (40-62)	12 (52)	URT, stool, blood, urine
Zhang et al. ¹³	Shenzhen, China	Hospital	Case series	56	Mixed	Mixed	URT, stool
Zheng et al. ²⁵	Zhejiang, China	Hospital	Retrospective Cohort	96	53 (33.4-64.8)	NR	LRT, stool, blood, urine
Zhou et al. ⁴²	Wuhan, China	Hospital	Case series	41	58 (48-62)	22 (54)	URT
Zhou et al. ³⁵	Wuhan, China	Hospital	Case series	191	56 (46-67)	119 (62)	URT
Zhou et al. ⁵²	Guangzhou, China	Hospital	Case series	31	45 (33-60) 37 (28-57)	4 (44) 6 (27)	URT
Zhu et al. ¹⁵	Wuhan, China	Hospital	Case series	10	49.5	8 (80)	URT

Zou et al. ²	Zhuhai, China	Hospital/outpatie nt	Case series	18	59 (range 26- 76)	9 (50)	URT
SARS-CoV-1							
Chan et al. ⁶³	Hong Kong, China	Hospital	Case series	415	11.3 ± 4.1* 37.1 ± 11.2*	132 (33)	URT, LRT, stool, urine
Chen et al. ⁶⁴	Taiwan	Hospital	Case series	108	Stratified	95	URT
Cheng et al. ⁶⁷	Hong Kong, China	Hospital	Case series	1041	NR	NR	URT, LRT, stool, urine
Kwan et al. ⁶⁸	Hong Kong, China	Hospital	Case series	12 dialysis 33 controls	Dialysis: 58 (range 34-74);* Controls: 57 (range 34-75)	6 (50)	URT, stools, urine
Liu et al. ⁶⁵	Beijing, China	Hospital	Case series	56	31 (male) 34 (female)	31 (55)	LRT, stool
Leong et al. ⁶⁹	Singapore	Hospital	Case series	64	35.2 (17-63 range)*	16 (25)	URT, stool, blood, urine
Peiris et al. 70	Hong Kong, China	Hospital	Case series	75	39.8 (SD 12.2)	0.92	URT
Xu et al. ¹⁰⁹	Beijing, China	Hospital	Case series	54	NR	NR	LRT, blood, urine
MERS-CoV							
Al Hosani et al. ⁷³	Abu Dhabi, UAE	Hospital/commun ity	Case series	65	20 -59	43 (66)	LRT
Al-Jasser et al. ¹¹⁰	Riyadh, Saudi Arabia	Hospital	Case series	167	46.71*	142 (57)	URT
Alkendi et al. ¹¹¹	Tawam/Al Ain, UAE	Hospital	Case series	58	43.5	41 (71)	URT
Arabi et al. ⁷⁵	Saudi Arabia	Hospital	Cohort	330	58 (44-69)	225 (68)	URT
Corman et al. ⁷⁷	Riyadh, Saudi Arabia	Hospital	Case series	37	69 (24–90)*	27 (39)	URT, LRT, stool, blood, urine
Hong et al. ⁷⁶	Seoul, South Korea	Hospital	Case series	30	49*	19 (63)	Blood
Min et al. ⁷¹	Seoul/others, South Korea	Hospital	Case series	14	62	6 (35)	LRT, serum
Muth et al. ⁷⁸	Riyadh, Saudi Arabia	Hospital	Case series	32	66 (24-90)	24 (75)	LRT
Oh et al. ⁷⁴	Seoul, South Korea	Hospital	Case series	17	NR	NR	URT, LRT, serum
	,						

	Shalhoub et al. ⁷²	Jeddah, Saudi Arabia	Hospital	Retrospective cohort	32	65	14 (44)	LRT, serum
327	Abbreviations:	UK, United Kingdo	om, USA; United St	ates of America; UAE, Uni	ted Arab	Emirates; RCT, rand	omised controlle	d trial; URT, upper respirato
328	tract; LRT, low	er respiratory trac	t; NR, not reported					
329	* Mean ± stan	dard deviation (or	range if stated).					
330								
331								
332								
333								
334								
335								
336								
337								
338								
339								
340								
341								
342								

343 Table 2: Severity of illness and viral dynamics

Study	Classification of severity	Median duration - days (IQR)	Viral dynamics in severe patients compared to non- severe patients	P-value
Chen <i>et al.</i> ²⁷	ICU vs. non- ICU patients	11	Median time to viral clearance significantly longer in ICU vs. non- ICU patients (HR=3.17, 95% CI, 2.29-4.37)	Only HR provided
Chen <i>et al</i> ²⁸	China CDC guideline (version 7)	12 (8-16)	Shedding duration varies by severity: asymptomatic 6 days; mild 10 days; moderate 12 days; serious 14 days; critical 32 days	<0.0001
Tan e <i>t al.¹⁸</i>	China CDC guideline (version 6)	NP: 12 Any sample: 22	Viral shedding significantly longer in severe patients: any sample 23 vs. 20 days (note NP: 14 vs. 11 days – non- significant)	p=0.023 (any sample)
Xu <i>et al</i> . ³⁸	WHO criteria	17 (13-32)	Higher proportion of severe patients had shedding >21 days (34.2% vs.16.2%)	0.49
Yan <i>et al.</i> ³⁹	China CDC guideline (version 6)	23 (18-32)	No difference in shedding duration (general 23 days vs. severe 26 days vs. critical 28 days)	0.51
Zheng <i>et al</i> . ²⁵	China CDC guideline (version 6)	Resp: 18 (13-29)	Shedding duration significantly longer in severe patients (21 vs 14 days) in respiratory samples.	p=0.04
			No difference in shedding duration in stool/serum	

- 344 Abbreviations: IQR, interquartile range; ICU, intensive care unit; HR, hazard ratio; CDC, Centers
- 345 for Disease Control and Prevention; WHO, World Health Organization.

352

Table 3: SARS-CoV-2 viral dynamics in asymptomatic patients compared to symptomatic patients

	Median duration – days (IQR)	Viral dynamics in asymptomatic patients compared to symptomatic patients	P-value
Arons <i>et al.</i> ⁵⁴	NR	No difference in viral load	NS
Chau <i>et al.</i> ⁵³	NR	Initial viral load similar. Asymptomatic patients had significantly lower viral load during the follow up compared to symptomatic patients and faster viral clearance in asymptomatic, compared to symptomatic individuals	0.027
Chen <i>et al.</i> ²⁸	6 (3.5-10)	Significantly shorter duration of viral shedding among asymptomatic cases (median 6 days, IQR 3.5-10), with increasing shedding duration associated with increasing illness severity	<0.0001
Han <i>et al</i> . ⁸	NR	Symptomatic children had higher initial RNA load in nasopharyngeal swab specimens than asymptomatic children (9.01 vs. 6.32 log ₁₀ copies/mL; p = 0.048).	0.048
Hu <i>et al.</i> ⁵⁵	6 (2-12)	Asymptomatic patients had shorter duration of viral shedding compared to pre-symptomatic patients (median duration of SARS-CoV-2 positivity was 6.0 (2.0 - 12.0) compared to 12.0 (12.0 - 14.0))	NR
Lavezzo et al. ¹⁴	NR	No difference in viral load	NS
Le <i>et al</i> . ⁵⁹	9	NR	N/A
Sakurai e <i>t al.</i> 43	9 (6-11)	NR	N/A
Yang et al. ⁵⁶	8 (3-12)	Significantly shorter duration of viral shedding from nasopharynx swabs was observed among asymptomatic compared to symptomatic patients	P= .001
Yongchen <i>et al.</i> ³⁶	18 (5-28)	Longer shedding duration among asymptomatic cases (median 18 days, range 5-28), compared to non-severe (10 days, range 2-21) and severe (14 days, range 9-33) cases	NS
Zhang et al. ¹³	9.63	Initial viral load similar, viral clearance occurred earlier in the asymptomatic (9.6 days) and symptomatic individuals (9.7 days, compared to pre-symptomatic group (13.6 days)	
Zhou <i>et al.</i> ⁵²	NR	Significantly higher viral load in symptomatic (n=22) compared to asymptomatic (n=9) patients (median cycle threshold (Ct) value 34.5 vs. 39.0, respectively) but duration of shedding was similar	

355 Abbreviations: IQR, interquartile range; RNA, ribonucleic acid; NR, not reported; NS, non-

³⁵⁶ significant; N/A, not applicable

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit www.prisma-statement.org.

Figure 2: Pooled mean duration (days) of SARS-CoV-2 shedding from the upper respiratory tract (random-effects model).

Note: the overall effect is plotted as a black square.

Test for heterogeneity: Q-value = 4076,08, df(Q) = 42, p < 0.001, $I^2 = 99\%$.

Figure 3: Pooled mean duration (days) of SARS-CoV-2 shedding from the lower respiratory tract (random-effects model).

Note: the overall effect is plotted as a black square.

Test for heterogeneity: Q-value = 203.3, df(Q) = 6, p < 0.001, $I^2 = 97\%$.

Figure 4. Pooled mean duration (days) of SARS-CoV-2 shedding in the blood (random-effects model).

Study name		Statistic	s for each	n study			Mean and 95% Cl	
	Mean	Standard error	Variance	Upper limit	Lower limit	Total		Relative weight
Zheng et al.	23.3	1.1	1.2	25.4	21.2	96		49.99
Kujawski et a	al 10.0	1.1	1.1	12.1	7.9	12		50.01
	16.6	6.6	44.2	29.7	3.6	108		
							0 20 40	

Note: the overall effect is plotted as a black square.

Test for heterogeneity: Q-value = 77,6, df(Q) = 1, p < 0.001, $I^2 = 99\%$.

Figure 5. Pooled mean duration (days) of SARS-CoV-2 shedding from the stool (random-effects

<u>otauj namo</u>										
	Mean	Standard error	Variance	Upper limit	Lower limit	Total				
Zheng et al.	16.0	0.8	0.6	17.5	14.5	96				
Cai et al.	16.8	3.0	8.8	22.6	10.9	10				
Lo et al.	19.3	1.1	1.2	21.4	17.2	10				
Ling et al.	9.8	0.4	0.2	10.5	9.0	66				
Wu Y et al.	27.9	1.2	1.5	30.3	25.5	74				
Xu Y et al.	17.0	3.0	9.2	23.0	11.0	10				
Wang S et al.	18.8	2.6	6.9	23.9	13.6	17				
Wu B et al.	19.7	0.9	0.9	21.5	17.8	91				
Zhang N et al.	17.8	1.3	1.6	20.2	15.3	26				
Tan W et al.	15.8	0.6	0.4	17.0	14.5	67				
Kujawski et al.	15.0	2.1	4.5	19.2	10.8	12				
WuQ et al.	11.5	0.5	0.3	12.6	10.4	74				
Huang J et al.	20.2	2.8	7.7	25.6	14.7	33				
-	17.2	1.4	2.1	20.1	14.4	586				

model).

Note: the overall effect is plotted as a black square.

Test for heterogeneity: Q-value = 356.0, df(Q) = 12, p < 0.001, I2 = 96.6%.

Figure 6. Meta-regression bubble plot of the impact of age on mean SARS-CoV-2 shedding from the upper respiratory tract

Regression of Mean (Days of viral shedding of SARS-CoV-2 from URT) on Mean Age

URT: upper respiratory tract.

Note: the plot was built upon 41 studies (no data on mean age from the study of Qian et al.⁹⁸). A random-effects model was used.

References:

1. Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians. *Clin Microbiol Infect* 2020; **26**(7): 842-7.

2. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. *New England Journal of Medicine* 2020; **382**(12): 1177-9.

3. Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. *Nature* 2020.

4. Kim ES, Chin BS, Kang CK, et al. Clinical Course and Outcomes of Patients with Severe Acute Respiratory Syndrome Coronavirus 2 Infection: a Preliminary Report of the First 28 Patients from the Korean Cohort Study on COVID-19. *J Korean Med Sci* 2020; **35**(13): e142.

5. Institute TJB. The Joanna Briggs Institute Critical Appraisal tools for use in JBI systematic reviews–checklist for case series. , 2017.

6. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Medical Research Methodology* 2014; **14**(1): 135.

7. Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. *Clinical Infectious Diseases* 2020; **28**: 28.

8. Han MS, Seong M-W, Kim N, et al. Early Release - Viral RNA Load in Mildly Symptomatic and Asymptomatic Children with COVID-19, Seoul - Volume 26, Number 10—October 2020 - Emerging Infectious Diseases journal - CDC.

9. L'Huillier A, Torriani G, Pigny F, Kaiser L, Eckerle I. Shedding of infectious SARS-CoV-2 in symptomatic neonates, children and adolescents. 2020.

10. Tan Y-p, Tan B-y, Pan J, Wu J, Zeng S-z, Wei H-y. Epidemiologic and clinical characteristics of 10 children with coronavirus disease 2019 in Changsha, China. *Journal of Clinical Virology* 2020; **127**: 104353.

11. Wu Q, Xing Y, Shi L, et al. Epidemiological and Clinical Characteristics of Children with Coronavirus Disease 2019. 2020.

12. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. *Nature Medicine* 2020; **26**(4): 502-5.

13. Zhang Z, Xiao T, Wang Y, et al. Early viral clearance and antibody kinetics of COVID-19 among asymptomatic carriers. *medRxiv* 2020: 2020.04.28.20083139.

14. Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo'. *Nature* 2020: 1-.

15. Zhu L, Gong N, Liu B, et al. Coronavirus Disease 2019 Pneumonia in Immunosuppressed Renal Transplant Recipients: A Summary of 10 Confirmed Cases in Wuhan, China. *Eur Urol* 2020; **18**: 18.

16. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nature Medicine*; **26**(5): 672-5.

17. Kujawski SA, Wong KK, Collins JP, et al. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. *Nature Medicine* 2020; **26**(6): 861-8.

Tan W, Lu Y, Zhang J, et al. Viral Kinetics and Antibody Responses in Patients with COVID-19.
 2020.

19. To KK-W, Tsang OT-Y, Leung W-S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. *The Lancet Infectious Diseases* 2020; **20**(5): 565-74.

20. Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. *Nature* 2020; **581**(7809): 465-9.

21. Wyllie AL, Fournier J, Casanovas-Massana A, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs.

22. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. *JAMA* 2020; **03**: 03.

23. Huang J, Mao T, Li S, et al. Long period dynamics of viral load and antibodies for SARS-CoV-2 infection: an observational cohort study. *medRxiv* 2020: 2020.04.22.20071258.

24. Zhang N, Gong Y, Meng F, Bi Y, Yang P, Wang F. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. 2020.

25. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. *BMJ* 2020; **369**.

26. Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. *Allergy* 2020; **n/a**(n/a).

27. Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. *Journal of Infection* 2020; **80**(5): e1-e6.

Chen X, Zhang Y, Zhu B, et al. Associations of clinical characteristics and antiviral drugs with viral RNA clearance in patients with COVID-19 in Guangzhou, China: a retrospective cohort study.
 Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. *Journal of Medical Virology* 2020; **03**: 03.

30. Fan L, Liu C, Li N, et al. Medical treatment of 55 patients with COVID-19 from seven cities in northeast China who fully recovered: a single-center, retrospective, observational study.

31. Fang Z, Zhang Y, Hang C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. *Journal of Infection* 2020; **21**: 21.

32. Liu Y, Yan L-M, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. *Lancet Infect Dis* 2020; **20**(6): 656-7.

33. Shi J, Cheng C, Yu M, et al. Systemic Inflammatory Cytokines Associate With SARS-COV-2 Viral Shedding Time in Covid-19 Inpatients. *ResearchSquare* 2020.

34. Tan L, Kang X, Ji X, et al. Validation of Predictors of Disease Severity and Outcomes in COVID-19 Patients: A Descriptive and Retrospective Study. *Med* 2020.

35. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 2020; **395**(10229): 1054-62.

36. Yongchen Z, Shen H, Wang X, et al. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. *Emerg* 2020; **9**(1): 833-6.

37. Hu X, Xing Y, Jia J, et al. Factors associated with negative conversion of viral RNA in patients hospitalized with COVID-19. *Science of the Total Environment* 2020; **728 (no pagination)**.

38. Xu K, Chen Y, Yuan J, et al. Factors associated with prolonged viral RNA shedding in patients with COVID-19. *Clinical Infectious Diseases* 2020; **09**: 09.

39. Yan D, Liu X-y, Zhu Y-n, et al. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2 infection.

40. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. *Lancet Gastroenterol Hepatol* 2020; **5**(5): 434-5.

41. Tian D, Wang L, Wang X, et al. Clinical research and factors associated with prolonged duration of viral shedding in patients with COVID-19. *ResearchSquare* 2020.

42. Zhou B, She J, Wang Y, Ma X. The duration of viral shedding of discharged patients with severe COVID-19. *Clinical Infectious Diseases* 2020; **17**: 17.

43. Sakurai A, Sasaki T, Kato S, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. *New England Journal of Medicine* 2020.

44. Talmy T, Tsur A, Shabtay O. Duration of Viral Clearance in IDF Soldiers with Mild COVID-19. *medRxiv*.

45. Xiao AT, Tong YX, Zhang S. Profile of RT-PCR for SARS-CoV-2: a preliminary study from 56 COVID-19 patients. *Clinical Infectious Diseases* 2020; **19**: 19.

46. Shastri A, Wheat J, Agrawal S, et al. Delayed clearance of SARS-CoV2 in male compared to female patients: High ACE2 expression in testes suggests possible existence of gender-specific viral reservoirs.

47. Ling Y, Xu S-B, Lin Y-X, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. *Chinese Medical Journal* 2020; **133**(9).

48. Zha L, Li S, Pan L, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). *Medical Journal of Australia* 2020; **212**(9): 416-20.

49. Liang M, Chen P, He M, et al. Corticosteroid Treatment in Critically III Patients with COVID-19: A Retrospective Cohort Study. *ResearchSquare* 2020.

50. Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavirritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an openlabel, randomised, phase 2 trial. *The Lancet* 2020; **395**(10238): 1695-704.

51. Huang H, Guan L, Yang Y, et al. Chloroquine, arbidol (umifenovir) or lopinavir/ritonavir as the antiviral monotherapy for COVID-19 patients: a retrospective cohort study. 2020.

52. Zhou R, Li F, Chen F, et al. Viral dynamics in asymptomatic patients with COVID-19. *International Journal of Infectious Diseases* 2020; **96**: 288-90.

53. Chau NVV, Thanh Lam V, Thanh Dung N, et al. The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. *Clinical Infectious Diseases* 2020.

Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 Infections and
Transmission in a Skilled Nursing Facility. *New England Journal of Medicine* 2020; **382**(22): 2081-90.
Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-

55. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. *Science China Life Sciences* 2020; **63**(5): 706-11.

56. Yang R, Gui X, Xiong Y. Comparison of Clinical Characteristics of Patients with Asymptomatic vs Symptomatic Coronavirus Disease 2019 in Wuhan, China. *JAMA Netw Open* 2020; **3**(5).

57. Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic samples. *Clinical Infectious Diseases*.

58. La Scola B, Le Bideau M, Andreani J, et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. *Eur J Clin Microbiol Infect Dis* 2020: 1-3.

59. Le TQM, Takemura T, Moi ML, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Shedding by Travelers, Vietnam, 2020. *Emerg Infect Dis* 2020; **26**(7): 02.

60. To KK-W, Tsang OT-Y, Yip CC-Y, et al. Consistent Detection of 2019 Novel Coronavirus in Saliva. *Clinical Infectious Diseases* 2020; (ciaa149).

61. Xiao F, Sun J, Xu Y, et al. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. *Emerging Infectious Disease journal* 2020; **26**(8).

62. Andersson M, Arancibia - Carcamo CV, Auckland K, et al. SARS-CoV-2 RNA detected in blood samples from patients with COVID-19 is not associated with infectious virus. *medRxiv*.

63. Chan PK, To WK, Ng KC, et al. Laboratory diagnosis of SARS. *Emerg Infect Dis* 2004; **10**(5): 825-31.

64. Chen WJ, Yang JY, Lin JH, et al. Nasopharyngeal shedding of severe acute respiratory syndrome-associated coronavirus is associated with genetic polymorphisms. *Clinical Infectious Diseases* 2006; **42**(11): 1561-9.

65. Liu W, Tang F, Fontanet A, et al. Long-term SARS coronavirus excretion from patient cohort, China. *Emerg Infect Dis* 2004; **10**(10): 1841-3.

66. Xu D, Zhang Z, Jin L, et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. *European Journal of Clinical Microbiology and Infectious Diseases* 2005; **24**(3): 165-71.

67. Cheng PK, Wong DA, Tong LK, et al. Viral shedding patterns of coronavirus in patients with probable severe acute respiratory syndrome. *Lancet* 2004; **363**(9422): 1699-700.

68. Kwan BC, Leung CB, Szeto CC, et al. Severe acute respiratory syndrome in dialysis patients. *J Am Soc Nephrol* 2004; **15**(7): 1883-8.

69. Leong HN, Chan KP, Khan AS, et al. Virus-specific RNA and antibody from convalescent-phase SARS patients discharged from hospital. *Emerg Infect Dis* 2004; **10**(10): 1745-50.

70. Peiris JSM, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. *The Lancet* 2003; **361**(9371): 1767-72.

71. Min CK, Cheon S, Ha NY, et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. *Sci* 2016; **6**: 25359.

72. Shalhoub S, Farahat F, Al-Jiffri A, et al. IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. *J Antimicrob Chemother* 2015; **70**(7): 2129-32.

73. Al Hosani FI, Pringle K, Al Mulla M, et al. Response to Emergence of Middle East Respiratory Syndrome Coronavirus, Abu Dhabi, United Arab Emirates, 2013-2014. *Emerg Infect Dis* 2016; **22**(7): 1162-8.

74. Oh MD, Park WB, Choe PG, et al. Viral load kinetics of MERS coronavirus infection. *New England Journal of Medicine* 2016; **375**(13): 1303-5.

75. Arabi YM, Al-Omari A, Mandourah Y, et al. Critically III Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. *Crit Care Med* 2017; **45**(10): 1683-95.

76. Hong KH, Choi JP, Hong SH, et al. Predictors of mortality in Middle East respiratory syndrome (MERS). *Thorax* 2018; **73**(3): 286-9.

77. Corman VM, Albarrak AM, Omrani AS, et al. Viral Shedding and Antibody Response in 37 Patients With Middle East Respiratory Syndrome Coronavirus Infection. *Clinical Infectious Diseases* 2016; **62**(4): 477-83.

78. Muth D, Corman VM, Meyer B, et al. Infectious middle east respiratory syndrome coronavirus excretion and serotype variability based on live virus isolates from patients in Saudi Arabia. *Journal of Clinical Microbiology* 2015; **53**(9): 2951-5.

79. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. *BMJ Global Health* 2020; **5**(5): e002794.

80. Böhmer MM, Buchholz U, Corman VM, et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. *The Lancet Infectious Diseases*.

81. Cheng H-Y, Jian S-W, Liu D-P, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. *JAMA Internal Medicine* 2020.

82. Wang Y, Guo Q, Yan Z, et al. Factors Associated With Prolonged Viral Shedding in Patients With Avian Influenza A(H7N9) Virus Infection. *J Infect Dis* 2018; **217**(11): 1708-17.

83. Memish A. Viral shedding and antibody response in MERS. *Vox Sanguinis* 2016; **111** (Supplement 1): 48-9.

84. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. *JAMA* 2020; **323**(18): 1843-4.

85. Ip DKM, Lau LLH, Leung NHL, et al. Viral Shedding and Transmission Potential of Asymptomatic and Paucisymptomatic Influenza Virus Infections in the Community. *Clin Infect Dis* 2017; **64**(6): 736-42.

86. Walsh KA, Jordan K, Clyne B, et al. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. *Journal of Infection*.

87. Kretzschmar ME, Rozhnova G, Bootsma MCJ, van Boven M, van de Wijgert JHHM, Bonten MJM. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. *The Lancet Public Health*.

88. Chang D, Mo G, Yuan X, et al. Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection. *Am J Respir Crit Care Med* 2020; **201**(9): 1150-2.

89. Chen X, Ling J, Mo P, et al. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. *medRxiv* 2020: 2020.03.03.20030437.

90. Corman VM, Rabenau HF, Adams O, et al. SARS-CoV-2 asymptomatic and symptomatic patients and risk for transfusion transmission. *Transfusion* 2020; **60**(6): 1119-22.

91. Fu S, Fu X, Song Y, et al. Virologic and clinical characteristics for prognosis of severe COVID-19: a retrospective observational study in Wuhan, China. 2020.

92. Huang L, Chen Z, Ni L, et al. Impact of Angiotensin-converting Enzyme Inhibitors and Angiotensin Receptor Blockers on Inflammatory Responses and Viral Clearance in COVID-19 Patients: A Multicenter Retrospective Cohort Study. *ResearchSquare* 2020.

93. Li N, Wang X, Lv T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. *Journal of Medical Virology*; **n/a**(n/a).

94. Liu L, Liu W, Zheng Y, et al. A preliminary study on serological assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 238 admitted hospital patients. *Microbes and Infection* 2020; **22**(4): 206-11.

95. Lo IL, Lio CF, Cheong HH, et al. Evaluation of SARS-CoV-2 RNA shedding in clinical specimens and clinical characteristics of 10 patients with COVID-19 in Macau. *Int J Biol Sci* 2020; **16**(10): 1698-707.

96. Lou B, Li T, Zheng S, et al. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset.

97. Pongpirul WA, Mott JA, Woodring JV, et al. Clinical Characteristics of Patients Hospitalized with Coronavirus Disease, Thailand - Volume 26, Number 7—July 2020 - Emerging Infectious Diseases journal - CDC.

98. Qian GQ, Chen XQ, Lv DF, et al. Duration of SARS-CoV-2 viral shedding during COVID-19 infection. *Infect Dis (Lond)* 2020: 1-2.

99. quan w, zheng q, tian j, et al. No SARS-CoV-2 in expressed prostatic secretion of patients with coronavirus disease 2019: a descriptive multicentre study in China.

100. Seah IYJ, Anderson DE, Kang AEZ, et al. Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. *Ophthalmology* 2020; **24**: 24.

101. Song C, Wang Y, Li W, et al. Detection of 2019 novel coronavirus in semen and testicular biopsy specimen of COVID-19 patients.

102. Song R, Han B, Song M, et al. Clinical and epidemiological features of COVID-19 family clusters in Beijing, China. *Journal of Infection* 2020.

103. Tu Y-H, Wei Y-Y, Zhang D-W, Chen C-S, Hu X-W, Fei G. Analysis of factors affected the SARS-CoV-2 viral shedding time of COVID-19 patients in Anhui, China: a retrospective study. 2020.

104. Wang L, Gao Y-h, Lou L-L, Zhang G-J. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China. *European Respiratory Journal* 2020.

105. Wang S, Tu J, Sheng Y. Clinical characteristics and fecal-oral transmission potential of patients with COVID-19. *medRxiv*.

106. Wu B, Lei Z-Y, Wu K-L, et al. Epidemiological and clinical features of imported and local patients with coronavirus disease 2019 (COVID-19) in Hainan, China. *ResearchSquare* 2020.
107. Xu I, Zhang X, Song W, et al. Conjunctival polymerase chain reaction-tests of 2019 novel

coronavirus in patients in Shenyang, China.

108. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. 2020.

109. Xu D, Zhang Z, Jin L, et al. Persistent shedding of viable SARS-CoV in urine and stool of SARS patients during the convalescent phase. *Eur J Clin Microbiol Infect Dis* 2005; **24**(3): 165-71.

110. Al-Jasser FS, Nouh RM, Youssef RM. Epidemiology and predictors of survival of MERS-CoV infections in Riyadh region, 2014-2015. *J Infect Public Health* 2019; **12**(2): 171-7.

111. Alkendi F, Nair SC, Hashmey R. Descriptive Epidemiology, Clinical Characteristics and Outcomes for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infected Patients in AlAin - Abu Dhabi Emirate. *J Infect Public Health* 2019; **12 (1)**: 137.

112. Park WB, Poon LLM, Choi SJ, et al. Replicative virus shedding in the respiratory tract of patients with Middle East respiratory syndrome coronavirus infection. *International Journal of Infectious Diseases* 2018; **72**: 8-10.