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Chapter 2 reviewed some aspects of the elementary theory of general
finite irreducible Markov chains. In this chapter we specialize to reversible
chains, treating the discrete-time and continuous-time cases in parallel. Af-
ter Section 3 we shall assume that we are dealing with reversible chains
without continually repeating this assumption, and shall instead explicitly
say “general” to mean not necessarily reversible.

1 Introduction

Recall P denotes the transition matrix and = the stationary distribution of
a finite irreducible discrete-time chain (X;). Call the chain reversible if

mipi; = m;p;i for all i, 4. (1)
Equivalently, suppose (for given irreducible P) that 7 is a probability distri-
bution satisfying (1). Then 7 is the unique stationary distribution and the

chain is reversible. This is true because (1), sometimes called the detailed
balance equations, implies

Zﬂipij =T Zpﬁ =mn; forall j
7 7

and therefore 7 satisfies the balance equations of (1) in Chapter 2.
The name reversible comes from the following fact. If (X;) is the sta-
tionary chain, that is, if Xy has distribution 7, then

- d
(/XO,/YI,...7/Y7}) — (/Yt7/Yt_17...71Y0).
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More vividly, given a movie of the chain run forwards and the same movie
run backwards, you cannot tell which is which.
It is elementary that the same symmetry property (1) holds for the ¢-step
transition matrix P’:
(t) (Z)

TPy = TP

and thence for the matrix Z of (6) in Chapter 2:
WiZij = ﬁiji. (2)

But beware that the symmetry property does not work for mean hitting
times: the assertion

ﬂ'iEZ'T]' = ﬂ'jE]‘TZ’
is definitely false in general (see the Notes for one intuitive explanation).

See Chapter 7 for further discussion. The following general lemma will be
useful there.

Lemma 1 For an irreducible reversible chain, the following are equivalent.
(a) P;( Xy =1)=P;(X;=13), i,jel, t>1
(b) PAT; = 1) = Py(Ti= 1), i,jel, t>1.

Proof. In either case the stationary distribution is uniform—under (a) by
letting ¢ — oo, and under (b) by taking ¢ = 1, implying p;; = pj;. So by
reversibility P;(Xy = j) = P;j(X; =) for i # j and ¢ > 1. But recall from
Chapter 2 Lemma 25 that the generating functions

Gij(z) =3 P(Xa =12, Fy(z) =3 Pi(Ti= )
t t
satisfy
Fij =G/ G (3)
For ¢ # j we have seen that G;; = Gj;, and hence by (3)
Fij = Fy ift Gj; =G,

which is the assertion of Lemma 1. =
The discussion above extends to continuous time with only notational
changes, e.g., the detailed balance equation (1) becomes

migij = miq;i for all 4, j. (4)
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1.1 Time-reversals and cat-and-mouse games

For a general chain we can define the time-reversed chain to have transition
matrix P* where
TiPij = TP

so that the chain is reversible iff P* = P. One can check [cf. (2)]
T Zi; = T, (5)

The stationary P*-chain is just the stationary P-chain run backwards in
time. Consider Examples 16 and 22 from Chapter 2. In Example 16 (pat-
terns in coin tossing) the time-reversal P* just “shifts left” instead of shift-
ing right, i.e., from HTTTT the possible transitions are to HHTTT and
THTTT. In Example 22 the time-reversal just reverses the direction of
motion around the n-cycle:

1—a

pij = al(j=ioy + —
Warning. These examples are simple because the stationary distributions
are uniform. If the stationary distribution has no simple form then typically
P* will have no simple form.

A few facts about reversible chains are really specializations of facts
about general chains which involve both P and P*. Here is a simple instance.

Lemma 2 (The cyclic tour property) For states ig,i1,...,%, of a re-
versible chain,

B+ B, + -+ By = E T+ BT+ BT

0"
The explanation is that in a general chain we have
Ei Ty + B0 Tiy + -+ BTy = ES T, + B T+ -+ EL T, (6)

where E* refers to the time-reversed chain P*. Equality (6) is intuitively ob-
vious when we visualize running a movie backwards. But a precise argument
requires a little sophistication (see Notes). It is however straightforward to
verify (6) using (5) and the mean hitting time formula I;T; = (Z;;—Z;;) /7;.

We shall encounter several results which have amusing interpretations as
cat-and-mouse games. The common feature of these games is that the cat
moves according to a transition matrix P and the mouse moves according
to the time-reversed transition matrix P*.
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Cat-and-mouse game 1. Both animals are placed at the same state,
chosen according to the stationary distribution. The mouse makes a jump
according to P*, and then stops. The cat starts moving according to P and
continues until it finds the mouse, after M steps.

The notable feature of this game is the simple formula for K M:

EM =n — 1, where n is the number of states. (7)

This is simple once you see the right picture. Consider the stationary P-
chain (Xo, X1, X2,...). We can specify the game in terms of that chain by
taking the initial state to be X, and the mouse’s jump to be to Xy, and
the cat’s moves to be to X3, X3,.... So M =T* — 1 with

Tt :=min{t > 1: X; = Xo}.

And ETH =S, mETH =Y, mt =n.

Cat-and-mouse game 2. This Lgame, and Proposition 3, are rephrasings
of results of Coppersmith et al [17]. Think of the cat and the mouse as
pieces in a solitaire board game. The player sees their positions and chooses
which one to move: if the cat is chosen, it makes a move according to P, and
if the mouse is chosen, it makes a move according to P*. Let M denote the
number of moves until the cat and mouse meet. Then one expects the mean
E(z4yM to depend on the initial positions (z,y) of (cat, mouse) and on the
player’s strategy. But consider the example of asymmetric random walk on a
n-cycle, with (say) chance 2/3 of moving clockwise and chance 1/3 of moving
counterclockwise. A moment’s thought reveals that the distance (measured
clockwise from cat to mouse) between the animals does not depend on the
player’s strategy, and hence neither does F(,, M. In general FM does
depend on the strategy, but the following result implies that the size of the
effect of strategy changes can be bounded in terms of a measure of non-
symmetry of the chain.

Proposition 3 Regardless of strategy,
min KT, < Eg M — (BT, — E;Ty) <max E, T,

where hitting times T refer to the P-chain.

Proof. Consider the functions Symbol used here is
“defined identically to

be”.
flz,y) = ET, — BT,



[y, z) = E;T, — E;T,.

The first-step recurrences for z — F,T, and y — EJT, give
fley) = 14+ paf(zy), y#z (8)
Flye) = 143 p. (z2), y# e 9)

By the mean hitting time formula

— —7*
fl@y) = % =— =2
so we may rewrite (9) as
flay) =143 p.f,2), y#a. (10)

Now let (X;,Y;) be the positions of (cat, mouse) after ¢ moves according to
some strategy. Consider

W=t + f(Xi, YY),
Equalities (8) and (10) are exactly what is needed to verify
(W;0 <t < M) is a martingale.

So the optional stopping theorem says E(, ,yWo = F(; , )W, that is,

x,y) x,y)

f($7 y) = E(z,y)M + E(z,y)f(f(M7 YM) (11)
But X = Yas and —f(z,2) = E;T,, so

min F, T, < —f(XM,YM) < maxFE,T,

and the result follows from (11). m

Remarks. Symmetry conditions in the reversible setting are discussed
in Chapter 7. Vertex-transitivity forces F,T, to be independent of z, and
hence in the present setting implies E, , M = E,T, regardless of strategy.
For a reversible chain without this symmetry condition, consider (zq, yo)
attaining the min and maz of E;T,. The Proposition then implies Fy T, <
E M < FE,T,, and the bounds are attained by keeping one animal

*0,Y0)
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fixed. But for general initial states the bounds of the Proposition are not

attained. Indeed, the proof shows that to attain the bounds we need a

strategy which forces the animals to meet at states attaining the extrema

of F;T,. Finally, in the setting of random walk on a n-vertex graph we can

combine Proposition 3 with mean hitting time bounds from Chapter 6 to 10/31/94 version
show that FM is at worst O(n?).

1.2 Entrywise ordered transition matrices

Recall from Chapter 2 Section 3 that for a function f : S — R with }~, m; f; = 9/10/99 version

0, the asymptotic variance rate is This subsection
adapted from
t Section 8.1 of
2 — 1 -1 © Yy — Chapter MCMC
o“(P, f): hgnt var Zf()&s) frf (12) (1/2/0 version):
reminder: it still needs
to be deleted there!

s=1

where I';; = m;Z;; +7;Z;; + myw; — m;0;;. These individual-function variance
rates can be compared between chains with the same stationary distribu-
tion, under a very strong “(off-diagonal) entrywise ordering” of reversible
transition matrices.

Lemma 4 (Peskun’s Lemma [37]) Let P() and P®?) be reversible with
the same stationary distribution m. Suppose pg;) < pl(?) for all j #1. Then
o*(PW, ) > o*(P®, f) for all f with ¥ m;f; = 0.
Proof. Introduce a parameter 0 < o < 1 and write

P =P(a) = (1 - a)P!) 4+ aP®).

Write (+) for £ (-). It is enough to show

(@*(P, f)) <0.

By (12)
(P, ) =0 =23 3 fimiZi ;.
iy

By Chapter MCMC Lemma 4, Z' = ZP'Z. By setting Need to decide where

to put statement and
proof of that lemma

gi =mifis  aij = Zig/mps o wig = mpyg )
1/8/01 version

we find A’ = AW'A and can rewrite the equality above as

(0*(P,f))' =2 gAW'Ag.



Since A is symmetric, it is enough to show that W' is negative semidefinite.
By hypothesis W' is symmetric with zero row-sums and ng > 0 for j # 1.
Ordering states arbitrarily, we may write

W= > wjM7

1,7:4<]

where M¥ is the matrix whose only nonzero entries are m(i,4) = m(j, j) =
—1 and m(i,j) = m(j,7) = 1. Plainly M" is negative semidefinite, hence so
is W. =m

2 Reversible chains and weighted graphs

Our convention is that a graph has finite vertex-set V = {v,z,y,...} and
edge-set & = {ey, €9, ...}, is connected and undirected, has no multiple edges,
and has no self-loops. In a weighted graph, each edge (v, w) also has a weight
0 < wy gz = 1wy, < oo, and we allow a weighted graph to have self-loops.

Given a weighted graph, there is a natural definition of a Markov chain
on the vertices. This requires an arbitrary choice of convention: do we want
to regard an absent edge as having weight 0 or weight +00? In terms of
electrical networks (Section 3) the question is whether to regard weights as
conductances or as resistances of wires. Conceptually one can make good
arguments for either choice, but formulas look simpler with the conductance
convention (absent edges have weight 0), so we’ll adopt that convention.
Define discrete-time random walk on a weighted graph to be the Markov
chain with transition matrix

Puz = 'wvw/'wva € 7£ v (13)

where

W, = E Wy, W= g W,
T v

Note that w is the total edge-weight, when each edge is counted twice, i.e.,
once in each direction. The fundamental fact is that this chain is automat-
ically reversible with stationary distribution

Ty = Wy /W (14)

because (1) is obviously satisfied by m,pyz = Tupry = Wyz/w. Our standing
convention that graphs be connected implies that the chain is irreducible.

agreed: use negative
semidefinite rather
than nonpositive
definite throughout



Conversely, with our standing convention that chains be irreducible, any
reversible chain can be regarded as as random walk on the weighted graph
with edge-weights w,, := 7, p,z. Note also that the “aperiodic” condition for
a Markov chain (occurring in the convergence theorem Chapter 2 Theorem 2)
is just the condition that the graph be not bipartite.

An unweighted graph can be fitted into this setup by simply assigning
weight 1 to each edge. Since we’ll be talking a lot about this case, let’s write
out the specialization explicitly. The transition matrix becomes

) 1/d, if (v,z)is an edge
Pve = 0 if not

where d,, is the degree of vertex v. The stationary distribution becomes

Ty = dU
YT 2]

(15)

where |€| is the number of edges of the graph. In particular, on an un-
weighted regular graph the stationary distribution is uniform.

In continuous time there are two different ways to associate a walk with
a weighted or unweighted graph. One way (and we use this way unless oth-
erwise mentioned) is just to use (13) as the definition of the transition rates
Gvz:- In the language of Chapter 2 this is the continuization of the discrete-
time walk, and has the same stationary distribution and mean hitting times
as the discrete-time walk. The alternative definition, which we call the fluid
model, uses the weights directly as transition rates:

Quz = Wyz, T F . (16)

In this model the stationary distribution is always uniform (cf. Section 2.1).
In the case of an unweighted regular graph the two models are identical up to
a deterministic time rescaling, but for non-regular graphs there are typically
no exact relations between numerical quantities for the two continuous-time
models. Note that, given an arbitrary continuous-time reversible chain, we
can define edge-weights (w;;) via

Tifij = Tjqji = Wij, say

but the weights (w;;) do not completely determine the chain: we can specify
the m; independently and then solve for the ¢’s.

Though there’s no point in writing out all the specializations of the
general theory of Chapter 2, let us emphasize the simple expressions for
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mean return times of discrete-time walk obtained from Chapter 2 Lemma 5 9/10/99 version
and the expressions (14)—(15) for the stationary distribution.

Lemma 5 For random walk on an n-vertex graph,

E,TH = “Z (weighted)
w,
2|
= €] (unweighted)
dy
= n (unweighted regular).
Example 6 Chess moves. The example has been

copied here from the
start of Example 18 of

Here is a classic homework problem for an undergraduate Markov chains
Chapter 5 (4/22/96

course. version); reminder:
. . that example needs to
Start a knight at a corner square of an otherwise-empty chess- be modified

board. Move the knight at random, by choosing uniformly from accordingly!

the legal knight-moves at each step. What is the mean number
of moves until the knight returns to the starting square?

It’s a good question, because if you don’t know Markov chain theory it looks
too messy to do by hand, whereas using Markov chain theory it becomes very
simple. The knight is performing random walk on a graph (the 64 squares
are the vertices, and the possible knight-moves are the edges). It is not hard
to check that the graph is connected, so by the elementary Lemma 5, for a
corner square v the mean return time is

BT = 1_2¢_

ﬂ-’U d’U

and by drawing a sketch in the margin the reader can count the number of
edges |€| to be 168.

€],

The following cute variation of Lemma 5 is sometimes useful. Given the
discrete-time random walk (X;), consider the process

Zy = (X4, Xy)

recording the present position at time t and also the previous position.
%

Clearly (Z;) is a Markov chain whose state-space is the set £ of directed

edges, and its stationary distribution (p, say) is

w’Ul‘

p(”?‘r) = w



in the general weighted case, and hence

1
pv,2) = ——, (z,v) €E
1€

in the unweighted case. Now given an edge (z,v), we can apply Chapter 2 9/10/99 version
Lemma 5 to (Z;) and the state (z,v) to deduce the following.

Lemma 7 Given an edge (v, z) define
U:=min{t > 1: X;=v, X4y =z}

Then

EU = - (weighted)

w’Ul‘

= 2/&| (unweighted).
Corollary 8 (The edge-commute inequality) For an edge (v,z),

L (weighted)
) < Wy x .
EuTx + EITU = 2|g| (unweightEd)

We shall soon see (Section 3.3) this inequality has a natural interpretation
in terms of electrical resistance, but it is worth remembering that the result
is more elementary than that.

Here is another variant of Lemma 5.

Lemma 9 For random walk on a weighted n-vertex graph,

> we(ET + E.T,) =w(n —1)

e=(v,z)
where the sum is over undirected edges.

Proof. Writing 3>~ > for the sum over directed edges (v, z), the left side
equals

Y Y we (B + BT

= Z E Wye KT, by symmetry

= w Z Ty ZpUIEITU

10



= wZﬂ'U(EUT;" - 1)

= wZﬂ'U(Wl—v - 1)

= w(n-1). L]

2.1 The fluid model

Imagine a finite number of identical buckets which can hold unit quantity of
fluid. Some pairs of buckets are connected by tubes through their bottoms.
If a tube connects buckets 7 and j then, when the quantities of fluid in
buckets ¢ and j are p; and p;, the flow rate through the tube should be
proportional to the pressure difference and hence should be w;;(p; — p;) in
the direction ¢ — j, where w;; = wj; is a parameter. Neglecting the fluid
in the tubes, the quantities of fluid (p;(¢)) at time ¢ will evolve according to
the differential equations

) S i i(t) - 2 1)

i#]

These of course are the same equations as the forward equations [(4) of
Chapter 2] for p;(t) (the probability of being in state i at time t) for the
continuous-time chain with transition rates ¢;; = w;;, 7 # ¢. Hence we call
this particular way of defining a continuous-time chain in terms of a weighted
graph the fluid model. Our main purpose in mentioning this notion is to
distinguish it from the electrical network analogy in the next section. Our
intuition about fluids says that as ¢t — oo the fluid will distribute itself
uniformly amongst buckets, which corresponds to the elementary fact that
the stationary distribution of the “fluid model” chain is always uniform.
Our intuition also says that increasing a “specific flow rate” parameter w;;
will make the fluid settle faster, and this corresponds to a true fact about
the “fluid model” Markov chain (in terms of the eigenvalue interpretation
of asymptotic convergence rate—see Corollary 28). On the other hand the
same assertion for the usual discrete-time chain or its continuization is sim-
ply false.

11
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3 Electrical networks

3.1 Flows

This is a convenient place to record some definitions. A flow f= (f;;) on a
graph is required only to satisfy the conditions

fii = —fji if (4,7) is an edge
Yo 0 if not.

So the net flow out of i is f(;y := }_,; fij, and by symmetry >=, f;) = 0. We
will be concerned with flows satisfying extra conditions. Given disjoint non-
empty subsets A, B of vertices, a unit flow from B to A is a flow satisfying

Zf(l) =1, f(]) =0 forall 5 Q AUB (17)
t€B
which implies 3, 4 f;) = —1. Given a Markov chain X (in particular, given

a weighted graph we can use the random walk) we can define a special flow
as follows. Given vy ¢ A, define fro=4 by

Ta
fii = Bu ) (1(Xt_1=i,Xt=j) - 1(Xt_1=j,Xt=z')) : (18)
=1

So f;; is the mean number of transitions ¢+ — j minus the mean number
of transitions 7 — 7, for the chain started at vy and run until hitting A.
Clearly £ 74 is a unit flow from vy to A. Note that the mean net transitions
definition of f;; works equally well in continuous time to provide a unit flow
fro=4 from vy to A.

In Section 7.2 we will define the notion of “a unit flow from vy to a
probability distribution p” and utilize a special unit flow from vy to the
stationary distribution.

3.2 The analogy

Given a weighted graph, consider the graph as an electrical network, where
a wire linking v and z has conductance w,,;, i.e., resistance 1/w,,. Fix a
vertex vg and a subset A of vertices not containing vg. Apply voltage 1 at v
and ground (i.e., set at voltage 0) the set A of vertices. As we shall see, this
determines the voltage ¢(v) at each vertex v; in particular,

g(vo) =1; g()=0on A. (19)

12



Physically, according to Ohm’s law,

Potential difference

Current = -
Resistance

for each wire; that is, the current I, along each wire (v, z) satisfies

Log = (g(v) — g(2)) wye. (20)
Clearly, I is a flow, and according to Kirchoff’s node law

Iy =0, v ¢ {v}UA. (21)

Regarding the above as intuition arising from the study of physical elec-
trical networks, we can define an electrical network mathematically as a
weighted graph together with a function g and a flow I, called voltage and
current, respectively, satisfying (20)—(21) and the normalization (19). As
it turns out, these three conditions specify ¢ [and hence also I, by (20)]
uniquely since (20)—(21) imply

g(v) = prg(fﬁ% vé{wiuA (22)

with p,, defined at (13), and Chapter 2 Lemma 27 shows that this equa-
tion, together with the boundary conditions (19), has a unique solution.
Conversely, if ¢ is the unique function satisfying (22) and (19), then I de-
fined by (20) satisfies (21), as required. Thus a weighted graph uniquely
determines both a random walk and an electrical network.

The point of this subsection is that the voltage and current functions can
be identified in terms of the random walk. Recall the flow f*o=4 defined
at (18).

Proposition 10 Consider a weighted graph as an electrical network, where
a wire linking v and x has conductance w,,. Suppose that the voltage func-
tion g satisfies (19). Then the voltage at any vertex v is given in terms of
the associated random walk by

g(v) = P'U(T'UO < TA) € [07 1] (23)
and the current I,, along each wire (v,z) is fy./r, where f = 074 and

1
Wy Py (Ta < TiF)

r =

€ (0,00). (24)

13
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Since f is a unit flow from vg to A and g(vo) = 1, we find [(, ) = g(vo)/r.
Since ¢ = 0 on A, it is thus natural in light of Ohm’s law to regard the entire
network as effectively a single conductor from vy to A with resistance r; for
this reason r is called the effective resistance between vy and A. Since (19)
and (21) are clearly satisfied, to establish Proposition 10 it suffices by our
previous comments to prove (20), i.e.,

fus

r = (g(’l)) - g('r))wvr (25)

Proof of (25). Here is a “brute force” proof by writing everything in
terms of mean hitting times. First, there is no less of generality in assuming
that A is a singleton «, by the collapsing principle (Chapter 2 Section 7.3).

Now by the Markov property

foz = E,, (number of visits to v before time T3,) py,

—E,, (number of visits to z before time 73) py,.

Chapter 2 Lemma 9 gives a formula for the expectations above, and using
ToPvz = TzpPay = Wy /W We get

w

fvx = Fk,T, - E’UOT’U - BT, + E’UOTI' (26)

vr

And Chapter 2 Corollaries 8 and 10 give a formula for g:
g(v) = (ByTu 4 EgTyy — EyTyy) Ty Pog (Ta < TF)
which leads to

g(v) —g(z)
Tuo Puo (T < Tih)

= BT, — E, T, — EST,, + E,T,,. (27)

But the right sides of (27) and (26) are equal, by the cyclic tour property
(Lemma 2) applied to the tour vy, z, a, v, v, and the result (25) follows after
rearrangement, using m,, = Wy, /w. =

Remark. Note that, when identifying a reversible chain with an electrical
network, the procedure of collapsing the set A of states of the chain to a
singleton corresponds to the procedure of shorting together the vertices A
of the electrical network.

14
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3.3 Mean commute times

The classical use of the electrical network analogy in the mathematical liter-
ature is in the study of the recurrence or transience of infinite-state reversible
chains by comparison arguments (Chapter 13). As discussed in Doyle and
Snell [20], the comparisons involve “cutting or shorting”. Cutting an edge,
or more generally decreasing an edge’s conductance, can only increase an
effective resistance. Shorting two vertices together (i.e., linking them with
an edge of infinite conductance), or more generally increasing an edge’s
conductance, can only decrease an effective resistance. These ideas can be
formalized via the extremal characterizations of Section 7 without explicitly
relying on the electrical analogy.

In our context of finite-state chains the key observation is the follow-
ing. For not-necessarily-reversible discrete-time chains we have (Chapter 2
Corollary 8)

1
moPy(Ty < TiF)

where we may call the right side the mean commute time between v and a.
[For continuous-time chains, m, is replaced by ¢,7, in (28).] Comparing
with (24) and using 7, = w,/w gives

=FET,+ ET,, v#a, (28)

Corollary 11 (commute interpretation of resistance) Given two ver-
tices v, a in a weighted graph, the effective resistance r,, between v and a is
related to the mean commute time of the associated random walk by

E T, + ET, = wry,.
Note that the Corollary takes a simple form in the case of unweighted graphs:
E,T,+ E,T, =2|E|ry,. (29)

Note also that the Corollary does not hold so simply if ¢ and v are both
replaced by subsets—see Corollary 37.

Corollary 11 apparently was not stated explicitly or exploited until a 1989
paper of Chandra et al [13], but then rapidly became popular in the “ran-
domized algorithms” community. The point is that “cutting or shorting”
arguments can be used to bound mean commute times. As the simplest ex-
ample, it is obvious that the effective resistance r,, across an edge (v, z) is at
most the resistance 1/w,, of the edge itself, and so Corollary 11 implies the
edge-commute inequality (Corollary 8). Finally, we can use Corollary 11 to

15
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get simple exact expressions for mean commute times in some special cases,
in particular for birth-and-death processes (i.e., weighted linear graphs) dis-
cussed in Chapter 5.

As with the infinite-space results, the electrical analogy provides a vivid
language for comparison arguments, but the arguments themselves can be
justified via the extremal characterizations of Section 7 without explicit use
of the analogy.

3.4 Foster’s theorem

The commute interpretation of resistance allows us to rephrase Lemma 9 as
the following result about electrical networks, due to Foster [22].

Corollary 12 (Foster’s Theorem) In a weighted n-vertex graph, let r.
be the effective resistance between the ends (a,b) of an edge e. Then

E rew, =n — 1.
(5]

* k% ok ok ok k k k k kx k k x * * * * *k *k *k *k *k *x %

CONVENTION.

For the rest of the chapter we make the convention that we are dealing
with a finite-state, irreducible, reversible chain, and we will not repeat the
“reversible” hypothesis in each result. Instead we will say “general chain”
to mean not-necessarily-reversible chain.

¥ k% ok ok ok ok k k k Kk k k kx * * * * *k *k *k *k * * %

4 The spectral representation

Use the transition matrix P to define

1/2 —1/2
From definition (1), S is a symmetric matrix. So we can apply the ele-
mentary diagonalization theorem. The authors find it helpful to distinguish
between the state space I = {i,7,...}, of size n say, and the index set of
integers [n] = {1,2,...,n}, the point being that the state space may have a

16
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lot of extra structure, whereas the index set has no obvious structure. The
spectral theorem ([26] Theorem 4.1.5) gives a representation

S = UAUT

where U = (Uim )ier,me[n) is @an orthonormal matrix, and A = (A /) pm/eln]
is a diagonal real matrix. We can write the diagonal entries of A as (A,,),
and arrange them in decreasing order. Then

1=XA>XA>-- >, > -1 (30)

The classical fact that [A\;| < 1 follows easily from the fact that the entries
of 8®) are bounded as t — 0o by (31) below. These \’s are the eigenvalues
of P, as well as of S. That is, the solutions (X;z) with z; #Z 0 of

Z z;pi; = Az; forall j

are exactly the pairs

1/2

A=Az =, Ui, 0 =1,...,n)

for m=1,...,n, where ¢,, # 0 is arbitrary. And the solutions of

Epijyj = \y; for all ¢

J

are exactly the pairs
—1/2 .
(A= Ans yi = e, / Uim, 1= 1,...,m).
Note that an eigenvector (u;1) of S corresponding to the eigenvalue Ay = 1 is
1/2

Uniqueness of the stationary distribution now implies Ay < 1.
Now consider matrix powers. We have

s — gaAyT

and

pg.) = ﬂ;l/ng;)ﬂ;/Q, (31)
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S0
n
, : —1/2_1/2
P(X;=j)=m,; / ﬂ'j/ Z /\fnuimu]'m. (32)
m=1
This is the spectral representation formula. In continuous time, the analo-
gous formula is

P(X;=j)= 7Ti_1/27f;/2 Z exP(—Amt) Wi U - (33)

m=1

1/2

As before, U is an orthonormal matrix and u;; = m;'", and now the A’s
are the eigenvalues of —Q. In the continuous-time setting, the eigenvalues
satisfy

Rather than give the general proof, let us consider the effect of continuizing
the discrete-time chain (32). The continuized chain (Y;) can be represented
as Yy = X () where N () has Poisson(t) distribution, so by conditioning on
ZV(t) — I/7

ety

v!

. —-1/2 1/2 - - v
m=1 v=0

n
—1/2_1/2
= / 71'/ Z Wipn Ujm €XP(—(1 — Ap)t).
m=1
So when we compare the spectral representations (32),(33) for a discrete-
time chain and its continuization, the orthonormal matrices are identical,
and the eigenvalues are related by

A =1 - AD (35)

superscripts (c) and (d) indicating continuous or discrete time. In particular,
this relation holds for the basic discrete and continuous time random walks
on a graph.

Let us point out some interesting simple consequences of the spectral
representation. For these purposes continuous time is simpler. First,

Pi(X;=j) =7 =cije ™ £ o(e™™") ast — o0 (36)
;l/zﬁ;ﬂ Y miAm=A, Wimjm and where “typically” ¢;; # 0. (A
precise statement is this: there exists 7 such that

where ¢;; =7

Pi(Xy=1) —m ~ cie ™, ey >0, (37)
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by considering 7 such that u;; # 0.) Thus Ay has the interpretation of
“asymptotic rate of convergence to the stationary distribution”. The au-
thors find it simpler to interpret parameters measuring “time” rather than
“1/time”, and so prefer to work with the relazation time 5 defined by

Ty := 1/Ay for a continuous-time chain (38)
7 = 1/(1 = Ay) for a discrete-time chain. (39)

Note that by (35) the value of 75 is unchanged by continuizing a discrete-time
chain.
Still in continuous time, the spectral representation gives

P(Xi=1d)=m+ Z ul, exp(—Ant) (40)
m>2

so the right side is decreasing with ¢, and in fact is completely monotone,
a subject pursued in Section 5. Thus Z;; defined in Chapter 2 Section 2.3
satisfies

Zi = /(R-(Xt:i)—m)dt
0

= EufmA;I by (40). (41)
m>2

Using the orthonormal property of U,

ZZH = Z /\;l.

m>2

Applying Corollary 13 of Chapter 2, we obtain a fundamental result relating
average hitting times to eigenvalues.

Proposition 13 (The eigentime identity) For each i,

Z”jEiTj = Z P (continuous time)
7 m>2

Z?TJ'EZ'T]' = Z (1=X,)"" (discrete time).
J m>2

[The discrete-time version follows from (35).] Proposition 13 expands upon
the random target lemma, which said that (even for non-reversible chains)
>.; mjET; does not depend on 1.
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4.1 Mean hitting times and reversible chains

In Chapter 2 Section 2.2 we listed identities for general chains such as the 9/10/99 version
mean hitting time formulas

ETy = (Zj; = Zij) /75 ExTj = Zjj/m;.

There are a number of more complicated identities for general chains in
which one side becomes zero for any reversible chain (by the symmetry
property m;Z;; = w;Z;;) and which therefore simplify to give identities for
reversible chains. We have already seen one example, the cyclic tour lemma,
and the following result may be considered an extension of that lemma.
[Indeed, sum the following equation over successive pairs (7, j) along a cycle
to recapture the cyclic tour lemma.]

Corollary 14 F,T; — E,;T; = E;T; — E;T;.

This identity follows immediately from the mean hitting time formulas and
the symmetry property. Note the following interpretation of the corollary.
Define an ordering 7 < j on the states by

1<y it BT < E.T;.
Then Corollary 14 implies
E;T; > E;T; iff i <j.
Warning. Corollary 14 does not imply
max ;T is attained by some pair (7., j«) such that

27]
i« attains min £, T; and j, attains max E,T}.
i J

Here is a counterexample. Choose 0 < € < 1/2 arbitrarily and let I haven't tried to find
counterexamples with
2 1= 2¢ 0 more than three
states.
P=| ¢ 1-2 ¢
0 1—-2¢ 2¢

We invite the reader to perform the computations necessary to verify that P
is reversible with m = [¢, 1 — 2¢,¢] and

0 € 1
(BiT))=e'(1-25)" [ 1-¢ 0 1-¢ |,
1 € 0
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so that (FE,T;) = e 11 — 2e) 71 — 2e + 2%, 222, 1 — 2¢ + 2¢%]. Thus E,T;
is minimized uniquely by ¢* = 2, while max; ; F;T; is attained only by the
pairs (1,3) and (3,1).

As a second instance of what reversibility implies, note, from (33) and

the definition of Z;;, that

. —1/2_1/2 -1
Zi; =, T E Ay Uirn W«
m>2
This implies
1/2

the symmetrized matrix 7TZ»1/2ZZ']'7T; is positive semidefinite. (42)

Note that a symmetric positive semidefinite matrix (A4;;) has the property
Mi2j S M“'M]‘j. This gives

7% < ZyZyimi | mi, (43)

which enables us to upper-bound mean hitting times from arbitrary starts
in terms of mean hitting times from stationary starts.

Lemma 15 max;; F;T; < 2maxy F;T}.
Proof. Using (43),
(Zij/75)? < (Zii/mi) (Zj5 /7))

and so
—Z;i]m; < m]?XZkk/ﬂ'k.
So the mean hitting time formula gives the two equalities in
Zii _ Zij

Z
ET, = — - —< 2 max & — 2max F, 1. [ ]
T T k. Tk k

5 Complete monotonicity

One advantage of working in continuous time is to exploit complete mono-
tonicity properties. Abstractly, call f : [0, 00) — [0, 00) completely monotone
(CM) if there is a nonnegative measure y on [0, 00) such that

£(t) = /[0 m)e—ﬁfu(do), 0<t< co. (44)
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Our applications will use only the special case of a finite sum

) = Z:anﬂe_@m"‘7 for some a,, > 0, 6,, >0, (45)

but finiteness plays no essential role. If f is CM then (provided they exist)
S0 are

_f/(t)7
Ft) = /t T f(s) ds (46)

A probability distribution v on [0,00) is called CM if its tail distribution
function F(t) := v(t,00) is CM; equivalently, if its density function f is
CM (except that here we must in the general case allow the possibility
f(0) = 00). In more probabilistic language, v is CM iff it can be expressed
as the distribution of /A, where £ and A are independent random variables
such that

¢ has Exponential(1) distribution; A > 0. (47)

Given a CM function or distribution, the spectral gap A > 0 can be
defined consistently by

A = inf{t > 0:p[0,f] > 0} in setting (44)
A = min{f,,} in setting (45)
A = essinfA in setting (47).

This A controls the behavior of f(t) as t — co. A key property of CM
functions is that their value at a general time ¢ can be bounded in terms of
their behavior at 0 and at oo, as follows.

Lemma 16 Let f be CM with 0 < f(0) < co. Then

HORNIOwI
exp( 7(0) ) < 710) < F(0) <exp(=At), 0 <t <o

where X is the spectral gap.

We might have F'(0) = oo, but then F(t) = co and A = 0 so the convention
oo/o0o = 1 works.
Proof. By scaling we may suppose f(0) = 1. So we can rewrite (44) as

f(t) = Ee™®! (48)
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where © has distribution g. Then f/(t) = —E(©e~®). Because 8 — e~ is
decreasing, the random variables © and e~®! are negatively correlated (this
fact is sometimes called “Chebyshev’s other inequality”, and makes a nice
exercise [HINT: Symmetrize!]) and so £(Qe=®) < (EO)(Fe~®"). This says
—f'(t) < = f'(0) f(t), or in other words 4 log f(¢) > f'(0). Integrating gives
log f(t) > tf'(0), which is the leftmost inequality. (Recall we scaled to make
f(0) =1.) For the second inequality,

F(t) = E(©7 ' ®") by integrating (48)
> (EOY)(Ee™®") by positive correlation
= F(0) (1)

Finally, from the definition of the spectral gap A it is clear that f(¢)/f(0) <
e~*. But F has the same spectral gap as f. =
Returning to the study of continuous-time reversible chains, the spectral
representation (40) says that P;(X; = ¢) is a CM function. It is often
convenient to subtract the limit and say
P(X; = i) — m; is a CM function. (49)
More generally, given any function g : I — R the function

p(t) = Elg(X:)g(Xo)] (50)
is CM for the stationary chain, because by (33)

n

plt) = > (E ! 29(?7)uz'm) (Zﬂ}/ 29(j)uy'm) exp(—Amt)

m=1

n

= Y (Zﬁ}ﬂg(i)uim) exp(—Ant). (51)

m=1

Specializing to the case ¢ = 14 and conditioning,
P(X; € A| Xg € A) is a CM function (52)

again assuming the stationary chain. When A is a singleton, this is (49).
Remark. To study directly discrete-time reversible chains, one would
replace CM functions by sequences (f,) of the form

1
fo= [ 07 utas).

But analogs of Lemma 16 and subsequent results (e.g., Proposition 22) be-
come messier—so we prefer to derive discrete-time results by continuization.
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5.1 Lower bounds on mean hitting times

As a quick application, we give bounds on mean hitting times to a single
state from a stationary start. Recall ¢; = }_;4; ¢i; is the exit rate from i,
and 7y is the relaxation time of the chain.

Lemma 17 For any state © in a continuous-time chain,

(1 —m;)? CET < 7'2(1—71'2')‘

q;7; - 5

By continuization, the Lemma holds in discrete time, replacing ¢; by 1 — p;;.
Proof. The mean hitting time formula is

m LT, = Zy = / (PZ(XLL = Z) — 71'2') dt.
0

Write f(t) for the integrand. We know f is CM, and here A > Ay by (40), and

f'(0) = —¢, so the extreme bounds of Lemma 16 become, after multiplying

byf(O)Zl—ﬂ'“
(1 —m)exp(—qit/(1 —m)) < f(t) < (1 —m)e M,

Integrating these bounds gives the result. =
We can now give general lower bounds on some basic parameters we will
study in Chapter 4.

Proposition 18 For a discrete-time chain on n states,

—1)2
d_miE T > (n 1) (53)
, n
J
ma,X(EiTj + E]‘Ti) > Q(n — 1) (54)
27‘7
max BT, > n—1 (55)
27]
n—1
> 56
T2 Z " ( )

Remark. These inequalities become equalities for random walk on the com-
plete graph (Chapter 5 Example 9). By examining the proof, it can be 4/22/96 version
shown that this is the only chain where an equality holds.
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Proof. We go to the continuized chain, which has ¢; = 1 — p;; < 1. Then
ZﬂjErTj > Z(l —7;)* by Lemma 17
] J

= n—Q—I—Eﬂ?
i

> n—2+4
= (n_l)Z/n7

giving (53). By the eigentime identity,

ZWJET_E/\ L<(n=1)m

m>2

and so (56) follows from (53).
Now fix ¢ and write 7o = 7, m;F;T;, which (by the random target
lemma) doesn’t depend on k. Then
o + BT
1—m

(BiT; + EjTy) = (57)

#21—

If the right side were strictly less than 2(n — 1) for all 7, then

Zm(ro—l—E T:) < 2(n— 1)Zm(1— i),

7 7

which implies

279 < 2(n — 1) (1—Zﬁ)<2n—1)<1—l):2(n7_1)27

n

contradicting (53). Therefore there exists an ¢ such that

1_ (ET + E;T) > 2(n—1)
J#i

and so there exists j # ¢ such that E;7; + E;T; > 2(n — 1). This is (54),
and (55) follows immediately. m

There are several other results in the spirit of Lemma 17 and Proposi-
tion 18. For instance, (22) in Chapter 2 says that for a general discrete-time 9/10/99 version
chain,

2E:T;+1 1
var; TZ»+ = 2oplit 1 —5-

Appealing to Lemma 17 gives, after a little algebra,
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Corollary 19 For any state v in a discrete-time chain,

) (1 — 2m;) ‘

2
T

1—
VariTZ»+ > (
Again, equality holds for random walk on the complete graph.

5.2 Smoothness of convergence

We’re going to build some vague discussion around the following simple
result.

Lemma 20

~ 7 T
ik (T (2t 2
pis +s>_1‘§¢<p< )_1) <m< 8>_1) (50)
T T Tk
ik (¢ i (20 2 3
Pik(t + 5) < Pii(2t) pir (25) and so max; j pis(2t) < max; pii(2t) (60)
Tk ; L Tk i
Proof.

Epu pl” )

by reversibility. Putting k& = 4, s = ¢ gives (58). Rewriting the above
equality as

pzk t + 5
Epu

pir(t+s) | _ Eﬂjpij(t) — 7 Pri(8) = 7
Tk j ﬂ-j ﬂ-j

and applying the Cauchy-Schwarz inequality, we get the bound \/a;(t)ax(s),

where

ait) =Y (i (1) = m5)* _ prj(t) I i

; ; T

J J

This proves (59). The cruder bound (60) is sometimes easier to use than (59)
and is proved similarly. m
Discussion. Recalling from Chapter 2 Section 4.2 the definition of L? 9/10/99 version
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distance between distributions, (58) says

IP(X, ey — =250y (61)

5

In continuous time, we may regard the assertion “||P;(X; € ) — 7|2 is
decreasing in t” as a consequence of the equality in (61) and the CM property
of p;;(t). This assertion in fact holds for general chains, as pointed out in
Chapter 2 Lemma 35. Loosely, the general result of Chapter 2 Lemma 35
says that in a general chain the ratios (P,(X; = j)/7;, j € I) considered
as an unordered set tend to smooth out as ¢ increases. For a reversible
chain, much more seems to be true. There is some “intrinsic geometry”
on the state space such that, for the chain started at ¢, the probability
distribution as time increases from 0 “spreads out smoothly” with respect
to the geometry. It’s hard to formalize that idea convincingly. On the other
hand, (61) does say convincingly that the rate of convergence of the single
probability p;i(t) to m(7) is connected to a rate of convergence of the entire
distribution P;(X; € -) to m(-). This intimate connection between the local
and the global behavior of reversible chains underlies many of the technical
inequalities concerning mixing times in Chapter 4 and subsequent chapters.

5.3 Inequalities for hitting time distributions on subsets

We mentioned in Chapter 2 Section 2.2 that most of the simple identities
there for mean hitting times F£;7; on singletons have no simple analogs for
hitting times T4 on subsets. One exception is Kac’s formula (Chapter 2
Corollary 24), which says that for a general discrete-time chain

E. T =1/m(A). (62)

It turns out that for reversible chains there are useful inequalities relating the
distributions of T4 under different initial distributions. These are simplest in
continuous time as consequences of CM: as always, interesting consequences
may be applied to discrete-time chains via continuization.

Recall 74 is the stationary distribution conditioned to A:

(i) = 7(2)/7(A), i € A.
Trivially

Po(Ta>t) = (AP, (T4 > 1) (63)
E.Ty = n(AYE,,.Ta. (64)

27

9/10/99 version
9/10/99 version

10/11/94 version

9/10/99 version

9/10/99 version



Define the ergodic exit distribution p4 from A by

DicA Tidij
Q(A, A°)

where Q(A, A°) is the ergodic flow rate out of A:

Q(A, A%) =" " migi- (66)

1€A ke Ac

palj) = , JEAT, (65)

By stationarity, Q(A, A°) = Q(A°, A).

Proposition 21 Fiz a subset A in a continuous-time chain.

(i) T4 has CM distribution when the initial distribution of the chain is
any of the three distributions ™ or e or p4.

(i) The three hitting time distributions determine each other via (63)
and
PPA (TA > t)

PA

dt. (67)

(iii) Write A4 for the spectral gap associated with T4 (which is the same
for each of the three initial distributions). Then

Pr(Ty>t
P, (T4 >t)< Pr,.(T4a>t) = ;(ZC) ) <exp(—Aat), t>0 (68)
and in particular
W(AC) Eﬂ’TA
) g T,<E..T)= < 1/Aa.
QA A9 ~ el S Pracla =g S 10 o
(iv)
T (A°)
E,.T4 < :
1< (70)

Remarks. (a) In discrete time we can define p4 and Q(A, A°) by replacing
¢;; by pi; in (65)—(66), and then (69) holds in discrete time. The left equality
of (69) is then a reformulation of Kac’s formula (62), because

E. TH = 14 P, (X1€ A)E., (T - 1]X; € A%

Q(4, A%)

)

E, Ta.
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(b) Equation (83) and Corollary 34 [together with remark (b) following
Theorem 33] later show that 1/A4 < 75/7(A). So (70) can be regarded as a
consequence of (69). Reverse inequalities will be studied in Chapter 4.

Proof of Proposition 21. First consider the case where A is a singleton
{a}. Then (70) is an immediate consequence of Lemma 17. The equali-
ties in (69) and in (67) are general identities for stationary processes [(24)
and (23) in Chapter 2]. We shall prove below that T4 is CM under Py, ;.
Then by (63), (67), and (46), T4 is also CM under the other two initial
distributions. Then the second inequality of (68) is the upper bound in
Lemma 16, and the first is a consequence of (67) and Lemma 16. And (69)
follows from (68) by integrating over ¢.

To prove that T4 is CM under Prpays introduce a parameter 0 < e < 1
and consider the modified chain (X;) with transition rates

%G; = qij, i Fa
qzj = &qqj-

The modified chain remains reversible, and its stationary distribution is of
the form

£ y . L—
T =bim, 1 # q . = by

where the weights by, by depend only on € and 7,. Now as ¢ — 0 with ¢
fixed,
Privay (X7 € IN{a}) = Prp(, (Ta > 1) (71)

because the chain gets “stuck” upon hitting a. But the left side is CM
by (52), so the right side (which does not depend on ¢) is CM, because the
class of CM distributions is closed under pointwise limits. (The last assertion
is in general the continuity theorem for Laplace transforms [21] p. 83, though
for our purposes we need only the simpler fact that the set of functions of
the form (45) with at most n summands is closed.)

This completes the proof when A is a singleton. We now claim that the

case of general A follows from the collapsing principle (Chapter 2 Section 7.3),

i.e., by applying the special case to the chain in which the subset A is col-
lapsed into a single state. This is clear for all the assertions of Proposition 21
except for (70), for which we need the fact that the relaxation time 73 of the
collapsed chain is at most 7. This fact is proved as Corollary 27 below. =

Remark. Note that the CM property implies a supermultiplicitivity
property for hitting times from stationarity in a continuous-time reversible
chain:

Pﬂ-(TA > s+ t) > Pﬂ-(TA > S)Pﬂ-(TA > t).
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Contrast with the general submultiplicitivity property (Chapter 2 Section 4.3) 9/10/99 version

which holds when Py is replaced by max; F;.

5.4 Approximate exponentiality of hitting times

In many circumstances, the distribution of the first hitting time 74 on a
subset A of states with m(A) small (equivalently, with FTy4 large) can be
approximated by the exponential distribution with the same mean. As with
the issue of convergence to the stationary distribution, such approximations
can be proved for general chains (see Notes), but it is easier to get explicit

bounds in the reversible setting. If 7" has a CM distribution, then [as at (47),

but replacing 1/A by ©] we may suppose T’ L O&. We calculate

ET = (EO)(E¢) = EO; ET?*= (EO0*)(E¢?) = 2E6?

and so
ET? EO?
= >1
2(FT)?  (EO)% ~
with equality iff © is constant, i.e., iff T has exponential distribution. This
2

suggests that the difference % —1 can be used as a measure of “deviation
from exponentiality”. Let us quote a result of Mark Brown ([10] Theorem

4.1(iii)) which quantifies this idea in a very simple way.
Proposition 22 Let T have CM distribution. Then

ET?
2(ET)?

sup |P(T > t) — e V/FT| <
¢

So we can use this bound for hitting times T4 in a stationary reversible
chain. At first sight the bound seems useful only if we can estimate F,T3%
and F,T4 accurately. But the following remarkable variation shows that for
the hitting time distribution to be approximately exponential it is sufficient
that the mean hitting time be large compared to the relaxation time 5.

Proposition 23 For a subset A of a continuous-time chain,

sup | Pr (T4 > t) —exp(—t/E:Ta)| < 1o/ E:T4.
¢

Proof. By the collapsing principle (Chapter 2 Section 7.3) we may suppose A
is a singleton {j}, because (Corollary 27 below) collapsing cannot increase
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the relaxation time. Combining the mean hitting time formula with the
expression (41) for Z;; in terms of the spectral representation (33),

ET—?T_IZ]]—W IZu]m — (72)
m>2
A similar calculation, exhibited below, shows
E.T? - 2(E,Tj)
™t _ —1
5 > ul A (73)

m>2

But AZ2 < ATIAZT = 1At for m > 2, so the right side of (73) is bounded by
T Ly Zm22 u]m/\m , which by (72) equals 7 F2;T;. Applying Proposition 22
gives Proposition 23.

We give a straightforward but tedious verification of (73) (see also Notes).

The identity z?/2 = [;*(z — )T dt, = > 0 starts the calculation Chapter 2 reference in
following display is to
9/10/99 version.

1 o0
-E. T} = / E (T; — )t dt
2 0
= / E PW(XLL = i,Tj > t)EZ'T]‘ dt
0

= ZE’iTj E, (time spent at ¢ before T7)

R

by Chapter 2 Lemmas 12 and 15 (continuous-time version)

= Z“;Qﬁi(zjj — ZZ']‘)Z.

Zij = Zij ZjiTi = Zjim;
7 m

Expanding the square, the cross-term vanishes and the first term becomes

(Zjj/mi)? = (ExT;)% so
yERT] = (BLT)" =7 ) milZ)
To finish the calculation,

w2
_1 Em </ pi;i(s) — m;) ds) </(pij(t) - ;) dt)
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= X (Jost - myds)  [ute) - ) at)
= [ [ i+ —m) dsar

= [tlrsi(t) — ) d

= [ X et

m>2

— 2 -2
= Z Ui A ]
m>2

See the Notes for a related result, Theorem 43.

6 Extremal characterizations of eigenvalues

6.1 The Dirichlet formalism

A reversible chain has an associated Dirichlet form &, defined as follows.
For functions g : I — R write

£(g,9)=3>_> mipii(9(d) — 9(i))* (74)

in discrete time, and substitute ¢;; for p;; in continuous time. One can
immediately check the following equivalent definitions. In discrete time

£(9,9) = 3Fx(9(X1) — 9(X0))* = Ex[g(X0)(9(Xo0) — g(X1))]. (75)

In continuous time

E(g,9) = glimt™ Fr(g(Xe) - 9(Xo))*
= lim 7 g (Xo) (9(Xo) — 9(X))]

= - ZZﬂig(i)%g(j) (76)

where the sum includes j = 7. Note also that for random walk on a weighted
graph, (74) becomes

£0.9)= 535 "L (g() - 9(i))” (77

[T
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Recall from Chapter 2 Section 6.2 the discussion of L? norms for functions 9/10/99 version
and measures. In particular

lglli = D mig(i) = Erg*(Xo)
u?
lw—=|3 = Z ﬂ_—’ — 1 for a probability distribution .

The relevance of £ can be seen in the following lemma.
Lemma 24 Write p(t) = (p;(t)) for the distribution at time t of a continuous-
time chain, with arbitrary initial distribution. Write f;(t) = p;(t)/n;. Then

Slott) ~ w13 = 26 (F(1), 5(0).

Proof. ||p(t) — =||5 =3; 71'_1 p3(t) — 1, so using the forward equations

dtp] sz q;;

we get
d
o) ==l = EZ% p;i(t)pi(t)i;
- QZZf] 772(]2]

and the result follows from (76). m

6.2 Summary of extremal characterizations

For ease of comparison we state below three results which will be proved
in subsequent sections. These results are commonly presented “the other
way up” using infs rather than sups, but our presentation is forced by our
convention of consistently defining parameters to have dimensions of “time”
rather than “1/time”. The sups are over functions g : I — R satisfying
specified constraints, and excluding ¢ = 0. The results below are the same
in continuous and discrete time—that is, continuization doesn’t change the
numerical values of the quantities we consider. We shall give the proofs in
discrete time.
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Extremal characterization of relaxation time. The relazation time 19
satisfies

2 = sup{[lgl13/£(9,9) : 3 mig(i) = 0}.

Extremal characterization of quasistationary mean hitting time.
Given a subset A, let ay be the quasistationary distribution on A° defined
at (82). Then the quasistationary mean exit time is

Eo,Ta =sup{llg|l3/€(g,9): 9 >0, g=0on A}.

Extremal characterization of mean commute times. For distinct
states 1, j the mean commute time satisfies

ET; + E;T; =sup{1/&(g,9) : 0< g <1, g(i) =1, g(j)=0}.

Because the state space is finite, the sups are attained, and there are the-
oretical descriptions of the ¢ attaining the extrema in all three cases. An
immediate practical use of these characterizations in concrete examples is
to obtain lower bounds on the parameters by inspired guesswork, that is by
choosing some simple explicit “test function” g which seems qualitatively
right and computing the right-hand quantity. See Chapter 14 Example 32
for a typical example. Of course we cannot obtain upper bounds this way,
but extremal characterizations can be used as a starting point for further
theoretical work (see in particular the bounds on 7, in Chapter 4 Section 4).

6.3 The extremal characterization of relaxation time

The first two extremal characterizations are in fact just reformulations of
the classical Rayleigh—Ritz extremal characterization of eigenvalues, which
goes as follows ([26] Theorem 4.2.2 and eq. 4.2.7). Let S be a symmetric

matrix with eigenvalues pq > pg > ---. Then
20 2 LiSij T
=sup —————— 78
= Sup = (78)

and an x attaining the sup is an eigenvalue corresponding to p; (of course
sups are over x # 0). And

20022 YiSijy;
p2 = sup T

(79)
yiy o, viwi=0 2i y22
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and a y attaining the sup is an eigenvalue corresponding to ps.
As observed in Section 4, given a discrete-time chain with transition
matrix P, the symmetric matrix (s;; = 7r2»1/2pij7r;1/2) has maximal eigen-

value 1 with corresponding eigenvector (7r2»1/2). So applying (79) and writing

Y = 7r2»1/2g(i), the second-largest eigenvalue (of S and hence of P) is given

by . .
M= sup i 2 mig(i)piig(4)
9:2¢ mig(i)=0 Zz 71—292(@)

In probabilistic notation the fraction is

Erlg(Xo)g(X1)] _ | Erlg(Xo)(g(Xs) —g(Xo))] _ | £lg,9)
Erg*(Xo) Erg*(Xo) llgll3

Since 7, = 1/(1—A2) in discrete time we have proved the first of our extremal
characterizations.

Theorem 25 (Extremal characterization of relaxation time) The re-
laxzation time T satisfies

2 = sup{|lgl[3/€(g, 9) : 3 mig(i) = 0}.

A function g, say, attaining the sup in the extremal characterization is,
by examining the argument above, a right eigenvector associated with Ag:

Z pz’jgo(j) = /\290(i)-

(From this point on in the discussion, we assume gq is normalized so that
llgoll2 = 1.) The corresponding left eigenvector 6 :

> 6ipij = As0; for all j

is the signed measure 6 such that §; = m;go(¢). To continue a somewhat
informal discussion of the interpretation of g, it is convenient to switch to
continuous time (to avoid issues of negative eigenvalues) and to assume Ag
has multiplicity 1. The equation which relates distribution at time t to

initial distribution,
pi(t) = pi(0)pi;(t),
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can also be used to define signed measures evolving from an initial signed
measure. For the initial measure # we have

o(t) = e~*/728.
For any signed measure v = v(0) with 3>, 7;(0) = 0 we have
v(t) ~ee” ™0, ¢ = wi(0)6i/mi =D vi(0)go(i).
So 8 can be regarded as “the signed measure which relaxes to 0 most slowly”.
For a probability measure p(0), considering p(0) — 7 gives

plt) = 7~ ce™/20, c= 3 (pi(0) — m)goli) = Y pi(O)goli).  (80)

k3

So # has the interpretation of “the asymptotic normalized difference between
the true distribution at time ¢ and the stationary distribution”. Finally,
from (80) with p(0) concentrated at ¢ (or from the spectral representation)

Pi(X; € ) =7~ go(i)e /0,

So go has the interpretation of “the asymptotic normalized size of deviation
from stationarity, as a function of the starting state”. When the state space
has some geometric structure — jumps go to nearby states — one expects gq
to be a “smooth” function, exemplified by the cosine function arising in the
n-cycle (Chapter 5 Example 7). 4/22/96 version

6.4 Simple applications

Here is a fundamental “finite-time” result. Good name for
Lemma 26 — looks

Lemma 26 (L? contraction lemma) Write p(t) = (p;(t)) for the distri- good to DA !
bution at time t of a continuous-time chain, with arbitrary initial distribu-
tion. Then

llp(t) = wll2 < €*/72][p(0) — 2.
Proof. Write f;(t) = p;(t)/m;. Then

%Hp(t) —7ll3 = -28(f(t), f(t)) by Lemma 24
= 28(f@t)-1,7() - 1)
I7(t) ~ 1i3

< =2 by the extremal characterization of

T2

-9 9
= —|pt) - |3
— lo(t) - =l
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Integrating, ||p(t) — 7||3 < e=2/72||p(0) — 7|3, and the result follows. m
Alternatively, Lemma 26 follows by observing that

llo(t) — =||3 is CM with spectral gap at least 2X\y = 2/, (81)

and applying Lemma 16. The fact (81) can be established directly from
the spectral representation, but we will instead apply the observation at

(50)—(51). Indeed, with g(7) := p;(0)/7;, we have

pj (0)

Er[g(X21)g(Xo)] = sz pr (2t)~
= 2_pi(0 ZZM )pi; (t

= zﬂ—lklzm( ot ”m G ]
k 7
= X0 = lo0 = 7l + 1,

k

Thus by (51)
Io0) 2= 32 (St ) exp(-ann)

Our main use of the extremal characterization is to compare relaxation
times of different chains on the same (or essentially the same) state space.
Here are three instances. The first is a result we have already exploited in
Section 5.

Corollary 27 Given a chain with relazation time 74, let T4 be the relaz-
ation time of the chain with subset A collapsed to a singleton {a} (Chapter 2
Section 7.3). Then 13' < 1y.

Proof. Any function ¢ on the states of the collapsed chain can be extended to
the original state space by setting g = ¢g(a) on A, and (g, ¢) and >, m;g(¢)
and ||g|| are unchanged. So consider a g attaining the sup in the extremal
characterization of 75" and use this as a test function in the extremal char-
acterization of 75. =

Remark. An extension of Corollary 27 will be provided by the contraction
principle (Chapter 4 Proposition 44).
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Corollary 28 Let 79 be the relazation time for a “fluid model” continuous-
time chain associated with a graph with weights (w.) [recall (16)] and let 75
be the relaxation time when the weights are (w¥). If w* > w, for all edges e
then 75 < 79.

Proof. Each stationary distribution is uniform, so ||g]|3 = ||g||3? while
E*(g,9) > E(g,9). So the result is immediate from the extremal charac-
terization. m

The next result is a prototype for more complicated “indirect compari-
son” arguments later. It is convenient to state it in terms of random walk
on a weighted graph. Recall (Section 2) that a reversible chain specifies a
weighted graph with edge-weights w;; = m;p;;, vertex-weights w; = m;, and
total weight w = 1.

Lemma 29 (the direct comparison lemma) Let (w.) and (w}) be edge-
weights on a graph, let (w;) and (w}) be the vertex-weights, and let 7o and 5
be the relaxation times for the associated random walks. Then

min, (w./w?) 1o _ max;(w;/w})

max; (w;/wf) ~— 75 = min.(w./w})
where in min, we don’t count loops e = (v,v).

Proof. For any g, by (77)
w*E%(g,9) > w&(g, g) rr}iin(w:/we).
And since wl|g||3 = Y, wig*(7),
wllgll3* < wilglly max(w/w:).
So if g has 7*-mean 0 and 7-mean b then

lgll3* llg — bl[3* llg = bl maxi(wi/wi)
E*(g7g) - E*(g - b7g - b) N E(g - b7g - b) mine(w;/we)

By considering the ¢ attaining the extremal characterization of 73,

. max; (w}/w;)

Ty K Tg —/—————~.
min, (w}/w.)

This is the lower bound in the lemma, and the upper bound follows by

reversing the roles of w. and w}. =
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Remarks. Sometimes 7, is very sensitive to apparently-small changes in
the chain. Consider random walk on an unweighted graph. If we add extra
edges, but keeping the total number of added edges small relative to the
number of original edges, then we might guess that m could not increase or
decrease much. But the examples outlined below show that 79 may in fact
change substantially in either direction.

Example 30 Take two complete graphs on n vertices and join with a single
edge. Then w = 2n(n — 1) + 2 and 7, ~ n%/2. But if we extend the single
join-edge to an n-edge matching of the vertices in the original two complete
graphs, then w* = 2n(n — 1) 4+ 2n ~ w but 75 ~ n/2.

Example 31 Take a complete graph on n vertices. Take k = o(nl/Z) new
vertices and attach each to distinct vertices of the original complete graph.
Then w = n(n — 1) + 2k and 73 is bounded. But if we now add all edges
within the new k vertices, w* =n(n — 1)+ 2k + k(k — 1) ~ w but 75 ~ k
provided k — oo.

As these examples suggest, comparison arguments are most effective
when the stationary distributions coincide. Specializing Lemma 29 to this
case, and rephrasing in terms of (reversible) chains, gives

Lemma 32 (the direct comparison lemma) For transition matrices P
and P* with the same stationary distribution w, if

pi > 0p5; for all j # i
then 5 < 871715,

Remarks. The hypothesis can be rephrased as P = §P*+(1—4)Q, where Q
is a (maybe not irreducible) reversible transition matrix with stationary
distribution 7. When Q = I we have 7, = §~!7J, so an interpretation of the
lemma is that “combining transitions of P* with noise can’t increase mixing
time any more than combining transitions with holds”.

6.5 Quasistationarity

Given a subset A of states in a discrete-time chain, let P4 be P restricted
to A°. Then P4 will be a substochastic matrix, i.e., the row-sums are at
most 1, and some row-sum is strictly less than 1. Suppose P4 is irreducible.
As a consequence of the Perron—Frobenius theorem (e.g., [26] Theorem 8.4.4)
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for the nonnegative matrix P4, there is a unique 0 < A < 1 (specifically,
the largest eigenvalue of P4) such that there is a probability distribution «
satisfying
a=0on A, Eaipij = Aaj, j € A" (82)
k3

Writing a4 and A4 to emphasize dependence on A, (82) implies that un-
der P, , the hitting time 7’4 has geometric distribution

PozA(TA > m) = AE? m 2 07

whence
1

1- A4
Call ay the quasistationary distribution and FE, , T4 the quasistationary
mean exit time.

Similarly, for a continuous-time chain let Q4 be Q restricted to A°.
Assuming irreducibility of the substochastic chain with generator Q4, there
is a unique A = A4 > 0 such that there is a probability distribution o = a4
(called the quasistationary distribution) satisfying

E,,Th=

a=0on A, ZOMM =-)doj, j € A"
7

This implies that under P, , the hitting time 7’4 has exponential distribution
P, (T4 >1t)=exp(—Aat), t>0,
whence the quasistationary mean exit time is
E,, Ts=1/)X4. (83)

Note that both a4 and F, ,T4 are unaffected by continuization of a discrete-
time chain.

The facts above do not depend on reversibility, but invoking now our
standing assumption that chains are reversible we will show in remark (c)
following Theorem 33 that, for continuous-time chains, A4 here agrees with
the spectral gap A4 discussed in Proposition 21, and we can also now prove
our second extremal characterization.

Theorem 33 (Extremal characterization of quasistationary mean
hitting time) The quasistationary mean ezit time satisfies

Eo,Ta=sup{|lgll3/€(g,9): 9 >0, g=0o0n A}. (84)
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Proof. As usual, we give the proof in discrete time. The matrix (s# =

i
ﬂj/QpiAjﬂ'j_l/Q) is symmetric with largest eigenvalue A 4. Putting z; = 7r2»1/2g(i)

in the characterization (78) gives
A4 = sup 222 mg(i)pf}g(j)
9 >0 mig?(4)
Clearly the sup is attained by nonnegative g, and though the sums above
are technically over A° we can sum over all I by setting ¢ = 0 on A. So

. Y 3 mig(1)pig ()
AT >, 7ig? (i)

As in the proof of Theorem 25 this rearranges to

:gZO,g:OonA}.

1
= sup{|[g|l5/€(g,9) : g > 0, g=0on A},
1—a

establishing Theorem 33. m
Remarks. (a) These remarks closely parallel the remarks at the end of

Section 6.3. The sup in Theorem 33 is attained by the function gg which is
the right eigenvector associated with A4, and by reversibility this is

go(i) = au(i)/m;. (85)
It easily follows from (82) that
P, (Xy=j|Ta>t) =aus(j) for all j and ¢,

which explains the name quasistationary distribution for ay. A related
interpretation of a4 is as the distribution of the Markov chain conditioned
on having been in A° for the infinite past. More precisely, one can use
Perron—Frobenius theory to prove that

P(X;=7|Ta>t) > aa(j)ast — oo (86)

provided P4 is aperiodic as well as irreducible.
(b) Relation (86) holds in continuous time as well (assuming irreducibil-
ity of the chain restricted to A°), yielding

exp(—=Aat) = P, (T>t)

- . P(Ta>t+s)
_ Sgrgon(TA>t+8|TA>8)_sli%m
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Since by Proposition 21 the distribution of T4 for the stationary chain is
CM with spectral gap (say) o4, the limit here is exp(—o4t). Thus Ay = 04,
that is, our two uses of A4 refer to the same quantity.

(c) We conclude from remark (b), (83), and the final inequality in (69)
that, in either continuous or discrete time,

E.Ta
By Ta> > F.Ta. 87
aTa 2 205 2 Bl (87)

Our fundamental use of quasistationarity is the following.

Corollary 34 For any subset A, the quasistationary mean hitting time sat-

isfies
E, Ty <1y/m(A).

Proof. As at (85) set ¢(i) = aa(i)/m;, so

B Ta=913/(9, 9)- (88)

Now Erg(Xo) = 1, so applying the extremal characterization of relaxation
time to g — 1,

llg — 113 gl — 1 ( 1 )
Ty > = =(FEy,Ta)|1-—, 89
So-Tg-1)  Elgg) el 9113 (59
the last equality using (88). Since a4 is a probability distribution on A° we
have

1= Ex [14:(X0)g(Xo)]
and so by Cauchy—-Schwarz
17 < (Erlac(Xo)) x l|gll3 = (1 = x(A))]|g]l3-

Rearranging,

1 m(A)

! >
o3 =

and substituting into (89) gives the desired bound. =
Combining Corollary 34 with (68) and (83) gives the result below.

Lemma 35

(continuous time) FPp(T4 >t) < exp(—tr(A)/m), t>0
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7 Extremal characterizations and mean hitting times

Theorem 36 (Extremal characterization of mean commute times)
For distinct states 1 and a, the mean commute time satisfies

BT, + E,T; =sup{1/€(9,9): 0< g <1, g(i) =1, g(a) =0}  (90)

and the sup is attained by g(j) = P;(T; < T,). In discrete time, for a
subset A and a state 1 ¢ A,

T Pi(Ta <TF) =inf{€(g,9): 0< g <1, g(i) =1, g(-) =00n A} (91)

and the inf is attained by g(j) = P;(1T; < Ta). FEquation (91) remains true
in continuous time, with m; replaced by q;w; on the left.

Proof. As noted at (28), form (90) follows (in either discrete or continuous
time) from form (91) with A = {a}. To prove (91), consider g satisfying the
specified boundary conditions. Inspecting (74), the contribution to £(g, ¢g)
involving a fixed state j is

> mipiklg(k) — ()% (92)

k#j
As a function of ¢(j) this is minimized by

9() =Y pirg(k). (93)
k

Thus the g which minimizes £ subject to the prescribed boundary conditions
on AU {i} must satisfy (93) for all j ¢ AU{7}, and by Chapter 2 Lemma 27
the unique solution of these equations is g(j) = P;(1; < T4). Now apply to
this ¢ the general expression (75):

£(g,9) =Y _mig(j) (g(j) - ijkg(k)) :
J k

For j ¢ AU {i} the factor (¢(j) — > pjrg(k)) equals zero, and for j € A we
have g(j) = 0, so only the j =4 term contributes. Thus

E(g,9) = m (1—21%14}(’“))
k

= (1 - B(T7 < Ta))
= mP(Ta<TH), (94)
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giving (91). m
The analogous result for two disjoint subsets A and B is a little compli-
cated to state. The argument above shows that

inf{€(g,9):9g(-)=0o0n A, ¢g(-)=1o0n B}

is attained by go(j) = P;(Ts < T4) and that this g satisfies

(g0, 90) :ZmPZ’(TA <TE). (95)
i€B

We want to interpret the reciprocal of this quantity as a mean time for the
chain to commute from A to B and back. Consider the stationary chain
(X4 —o00 < t < 00). We can define what is technically called a “marked
point process” which records the times at which A is first visited after a
visit to B and vice versa. Precisely, define Z; taking values in {a, 3,6} by

B if ds <t such that X; € A, Xy € B, X,  AUBVs<u<t
Zy:=<¢ « ifds<tsuchthat X; € B, X; € A, X,  BUAVs<u<t
¢ otherwise.

So the times t when Z; = (3 are the times of first return to B after visiting A,
and the times t when Z; = « are the times of first return to A after visiting B.
Now (Z;) is a stationary process. By considering the time-reversal of X, we
see that for i € B

P(Xo=1,Zo=8)=P(Xo=1,Ta <TE)=mP(Ts < TF).

So (95) shows P(Zy = () = £(go0,90). If we define Trap, “the typical
time to go from B to A and back to B”, to have the conditional distri-
bution of min{t > 1: Z; = 3} given Zy = 3, then Kac’s formula for the
(non-Markov) stationary process Z (see e.g. [21] Theorem 6.3.3) says that
ETgap =1/P(Zy = ). So we have proved

Corollary 37

ETpap =sup{1/&(g,9):0<g<1, g(-)=0o0n A, g(-)=1on B}
and the sup is attained by g(i) = P;(Tp < Ty).
As another interpretation of this quantity, define

pE(-) = P(Xo € -| Zo=p), pa(-)=P(Xo € |Z=a).
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Interpret pp and p4 as the distribution of hitting places on B and on A in
the commute process. It is intuitively clear, and not hard to verify, that

Ep (X (TB) € 1) = pB(), Bpp(X(Ta) €)= pal)

FETgap = EPBTA + EpATB-

In particular

min ;T4 + min F;Tp < FTgsp < max KTy + max I;Tg.
t€B €A 1€EB €A

7.1 Thompson’s principle and leveling networks

Theorem 36 was stated in terms of (reversible) Markov chains. Rephras-
ing in terms of discrete-time random walk on a weighted graph gives the
usual “electrical network” formulation of the Dirichlet principle stated be-
low, using (77),(91) and (94). Recall from Proposition 10 that the effective
resistance r between vg and A is, in terms of the random walk,

1
r= - (96)
Wy on (TA < Tvo)

Proposition 38 (The Dirichlet principle) Take a weighted graph and
fix a vertex vy and a subset A of vertices not containing vy. Then the quantity
%ZZ Yo wii(g(g) — g(1))? is minimized, over all functions g : [ — [0,1] with
g(vo) = 1 and g(-) = 0 on A, by the function g(i) := P;(T,, < T4) (where
probabilities refer to random walk on the weighted graph), and the minimum
value equals 1/r, where r is the effective resistance (96).

There is a dual form of the Dirichlet principle, which following Doyle and
Snell [20] we call

Proposition 39 (Thompson’s principle) Take a weighted graph and fiz
a vertex vg and a subset A of vertices not containing vo. Let f = f;; denote
a unit flow from vy to A. Then £33 .(f%/wi;) is minimized, over all
such flows, by the flow fro=4 [defined at (18)] associated with the random
walk from vy to A, and the minimum value equals the effective resistance r
appearing in (96).

Recall that a flow is required to have f;; = 0 whenever w;; = 0, and interpret
sums ) _; >, as sums over ordered pairs (2,7) with w;; > 0.
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Proof. Write ¢(f) := 3, 5;(f%/wi;). By formula (25) relating the
random walk notions of “low” and “potential”, the fact that i (fvo—4)
is immediate from the corresponding equality in the Dirichlet principle. So
the issue is to prove that for a unit flow £*, say, attaining the minimum
of ¥(f), we have ¥(f*) = ¢(f*4). To prove this, consider two arbitrary
paths (y;) and (z;) from vy to A, and let £° denote the flow f* modified by
adding flow rates +¢ along the edges (y;, yi+1) and by adding flow rates —e
along the edges (z;, z;41). Then £° is still a unit flow from vy to A. So the
function € — (f*) must have derivative zero at € = 0, and this becomes

the condition that

Z(f;,yiﬂ/wynyiﬂ) = Z(f;¢,2¢+1/'wzg‘,zz‘+1)'

k3 k3

=T

So the sum is the same for all paths from vy to A. Fixing z, the sum must
be the same for all paths from z to A, because two paths from z to A could
be extended to paths from vy to A by appending a common path from vg
to z. It follows that we can define g*(z) as the sum }7;(f7, o, /Wei iy,
over some path (z;) from z to A, and the sum does not depend on the path
chosen. So
f*
g7 () — g7(2) = =*= for each edge (z,2) not contained within A.  (97)

wl‘Z

The fact that £* is a flow means that, for z ¢ A U{vp},

0= Z f;z = waz(g*(x) - g*(z))

zZwgz >0

So ¢* is a harmonic function outside AU {vp}, and ¢g* = 0 on A. So by the
uniqueness result (Chapter 2 Lemma 27) we have that ¢* must be propor-
tional to g, the minimizing function in Proposition 38. So f* is proportional
to 04 because the relationship (97) holds for both, and then f* = fvo—=4
because both are unit flows. =

A remarkable statistical interpretation was discussed in a monograph of
Borre and Meissl [7]. Imagine a finite set of locations such as hilltops. For
each pair of locations (¢, 7) with a clear line-of-sight, measure the elevation
difference D;; = (height of j minus height of ¢). Consider the associated
graph [whose edges are such pairs (7, )], and suppose it is connected. Take
one location vy as a benchmark “height 0”. If our measurements were exact
we could determine the height of location z by adding the D’s along a path
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from vy to x, and the sum would not depend on the path chosen. But
suppose our measurements contain random errors. Precisely, suppose D; ;
equals the true height difference h(j) — h(7) plus an error Y;; which has
mean 0 and variance 1/w;; and is independent for different measurements.
Then it seems natural to estimate the height of z by taking some average
iz(r) over paths from vg to x, and it turns out that the “best” way to average
is to use the random walk from vy to z and average (over realizations of the
walk) the net height climbed by the walk.

In mathematical terms, the problem is to choose weights f;;, not de-
pending on the function h, such that

1
=52 > fiiDi
2~~~
i

has Fh(z) = h(z) and minimal variance. It is not hard to see that the
former “unbiased” property holds iff f is a unit flow from vy to . Then

var h ZZ var(D ZE ”

Wy 5

and Proposition 39 says this is minimized when we use the flow from vg to z
obtained from the random walk on the weighted graph. But then

Ty
h(.ﬁ) = E'UO ZDXt—IXt7

t=1

the expectation referring to the random walk.

7.2 Hitting times and Thompson’s principle

Using the commute interpretation of resistance (Corollary 11) to translate
Thompson’s principle into an assertion about mean commute times gives
the following.

Corollary 40 For random walk on a weighted graph and distinct vertices v
and a,

ET,+ E, T, =winf { EZ /w” :f is a unit flow from « to v}

and the min is attained by the flow £°7Y associated with the random walk.
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Comparing with Theorem 36 we have two different extremal characteriza-
tions of mean commute times, as a sup over potential functions and as an
inf over flows. In practice this “flow” form is less easy to use than the “po-
tential” form, because writing down a flow f is harder than writing down a
function ¢. But, when we can write down and calculate with some plausible
flow, it gives upper bounds on mean commute times.

One-sided mean hitting times F;T; don’t have simple extremal char-
acterizations of the same kind, with the exception of hitting times from
stationarity. To state the result, we need two definitions. First, given a
probability distribution p on vertices, a unit flow from a to p is a flow f
satisfying

fiy = L(i=a) — pi for all 4; (98)

more generally, a unit flow from a set A to p is defined to satisfy

Zf(i) =1-p(A) and f = —p; forall i € A°
€A

Now fix a state ¢ and define the special flow f*77 by

to
fi = Jim E, 2 (1(Xt_1=z',xt=j) — l(X\a=5, thz')) (99)
with the usual convention in the periodic case. So f;; is the mean excess
of transitions ¢ — j compared to transitions j — ¢, for the chain started
at a and run forever. This is a unit flow from a to w, in the above sense.
Equation (6) (the definition of Z) in Chapter 2 and reversibility give the
first equality, and Chapter 2 Lemma 12 gives the last equality, in

fii = Zaipij — ZajPji
_ ZiaTipij _ ZjaTiPii
Ta Ta
Zia — Zja)TiDij
ﬂ-a
E‘Ta - EiTa 17
— ( J )’LU J , (101)
w

switching to “weighted graphs” notation. Note also that the first-step re-
currence for the function 7 — 7;, is

Zig = (1(2':@) - 7Ta) + Zpijzja- (102)
J
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Proposition 41 For random walk on a weighted graph and a subset A of
vertices,

E:Tx

. 1 . :
w inf {52232]:( :/wij) : £ is a unit flow from A to 7r}

= sup{l/é’(g,g) 1—o0 < g<oo, g(-)=1on A, ng(z) = 0}.

When A is a singleton {a}, the minimizing flow is the flow £*7" defined
above, and the mazimizing function g is g(i) = Zio/Zaa. For general A the
mazimizing function g is g(i) = 1 — E;—Ti.

Proof. Suppose first that A = {a}. We start by showing that the extremizing
flow, £* say, is the asserted f*77". By considering adding to f* a flow of size &
along a directed cycle, and copying the argument for (97) in the proof of
Proposition 39, there must exist a function g* such that

*

g (z) — g% (2) = Jez for each edge (z, 2). (103)

wl‘Z

The fact that f* is a unit flow from a to 7 says that
Yoma) = Mo = Y f7. = D wea(g7(2) = 97(2))

which implies

1(95211)77;% =D Paz(97(2) = 97(2)) = 97 (2) = Y pazg™(2).

Since w, = wr, and 1/m, = F,T;}, this becomes
g (x) =D peag™(z) —w™ (1 - (EaTJ)l(x:a)) .

Now these equations have a unique solution ¢*, up to an additive constant,
because the difference between two solutions is a harmonic function. (Recall

Chapter 2 Corollary 28.) On the other hand, a solution is g*(z) = —Z2Te by

considering the first-step recurrence for F,T;}. So by (103) fX, = (FE,T, —
E,T))wy./w, and so £* = f*77 by (101).
Now consider the function ¢ which minimizes £(g,¢) under the con-

straints ), m;¢(7) = 0 and ¢g(a) = 1. By introducing a Lagrange multiplier v
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we may consider g as minimizing £(g,¢9) 4+ v>_; mig(7) subject to g(a) = 1.
Repeating the argument at (92), the minimizing ¢ satisfies

23 mipin(g(k) — 9(§)) +ym; =0, j#a.
k#j

Rearranging, and introducing a term $1(;—,) to cover the case j = a, we
have

Zp]kg = (7/2) + B1(j=q) for all j,
for some v, 3. Because 3, m;g(j) = 0 we have

0=0—(v/2) + fma,

allowing us to rewrite the equation as
7= _pirg(k) + B(1(j=a) — Ta)-
k

By the familiar “harmonic function” argument this has a unique solution,
and (102) shows the solution is g(j) = #Z;,. Then the constraint g(a) =1

gives ¢(j) = Z;u/Zaa-
Next consider the relationship between the flow f = f*7™ and the func-

tion g(l) = Zia/Zaa- We have E}lllapt.er Zd?ef(;ren.cetin
ollowing display is to
2 W 9/10/99 version.
L = (BT, — FE;T,)*—% by (101)
Wi
wi: (BT — ET \?2
_ E.T, 9 Wiy < jla P a)
( ) w F.T,

Z Zia - Z'a 2
= (E.T,)* i <Tj) by Chapter 2 Lemmas 11, 12
w o

a

= (E:T)"=E (g() - 9(5))*

Thus it is enough to prove

w5 EZ Ji_ (104)

w”
and it will then follow that

1/€(g,9) = F:T,.
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To prove (104), introduce a parameter ¢ (which will later go to 0) and a
new vertex z and edge-weights w;, = ew;. Writing superscripts ° to refer
to this new graph and its random walk, the equation becomes w§, := cw;
and Corollary 40 says

1 ( .5,)2

BT 4+ ET, =w= Y 3 4
a Z—I_ z+a w 2 , we

iele jels ]

(105)

where f¢ is the special unit flow from a to z associated with the new graph
(which has vertex set I := I U {z}). We want to interpret the ingredients
to (105) in terms of the original graph. Clearly w® = w(1 + 2¢). The
new walk has chance ¢/(1 + €) to jump to z from each other vertex, so
E:T, = (14 ¢)/e. Starting from z, after one step the new walk has the
stationary distribution 7 on the original graph, and it follows easily that
E:T, = 14 E;T,(1+ O(e)). We can regard the new walk up to time 7,
as the old walk sent to z at a random time U® with Geometric(e/(1 + €))
distribution, so for 7 # 2 and j # z the flow ff; is the expected net number
of transitions ¢+ — j by the old walk up to time U®. From the spectral
representation it follows easily that f = fi; + O(g). Similarly, for ¢ # z we
have — f5, = ff, = P,(X(U® - 1) = i) = m;+ O(e); noting that 3, f7, = 1,
the total contribution of such terms to the double sum in (105) is

22(’”2—1—][‘;_ ﬂ-i)Z iZ(ﬂ-Z—}—f;_ﬂ-l)Z

oy cw; - we o T
2 (fe, —m)? 2
= — |1 =z V) = — .
we ( + % L we +0()
So (105) becomes
1+e 1 L1
14+ ET,+0() =w(l+2¢) | 5 L+ —1]+0
€ tit +0(e) =w(l+2) (2 ;; Wi; + we) +0()

Subtracting (1 4 2¢)/e from both sides and letting ¢ — 0 gives the de-
sired (104). This concludes the proof for the case A = {a}, once we use the
mean hitting time formula to verify

N Z BT
g(i) = z==1- g7t

Ky G/‘
Finally, the extension to general A is an exercise in use of the chain,

say X*, in which the set A is collapsed to a single state a. Recall Chapter 2
Section 7.3. In particular, 9/10/99 version
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fol— .. 4 4 C. an¥ — . y C. * o __ . . an¥* —
w; = wij, 1,5 € A% wy, = E wik, 1 € A% w,, = g E wr; W= w.
keA keAleA

We now sketch the extension. First, F,Ty = F:.T,. Then the natural
one-to-one correspondence between functions ¢ on I with ¢(-) =1 on A and
Y ier™ig(i) = 0 and functions g* on I* with g*(a) = 0 and ) ,cp» 7¥g*(i) =0
gives a trivial proof of

E,Ty = sup{1/5(979) :—00 < g <00, g()=Tlon A, Y mg(i) = 0}-

It remains to show that

inf {¥(f) : f is a unit flow from A to 7 (for X)}
= inf {¥*(f*) : f* is a unit flow from a to 7* (for X*)}  (106)

where

ZZ /w” = Z Z i /w”

ZEI 7€l ZEI*]EI*

Indeed, given a unit flow f from A to 7, define f7 as f;; if 7, j € A° and as
Y ke Jiw if i € A° and j = a. One can check that f* is a unit flow from «a
to ©* (the key observation being that Zz’eA >jea fij = 0) and, using the
Cauchy—Schwarz inequality, that \Il*(f*) U(f). Conversely, given a unit
flow £* from a to 7*, define f;; as f7 if 1,5 € A°, as flwi/ Y peq wir if
t € A° and j € A, and as 0 if 7,5 € A. One can check that f is a unit
flow from A to 7 and that W(f) = W(f*). We have thus established (106),

completing the proof. m

Corollary 42 For chains with transition matrices P,P and the same sta-
tionary distribution 7,

E.T,
min P < < max — p”
iZ£] pzj E7rTa 12 pZ]

Proof. Plug the minimizing flow f*77 for the P-chain into Proposition 41

for the P-chain to get the second inequality. The first follows by reversing
the roles of P and P. =m
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8 Notes on Chapter 3

Textbooks. Almost all the results have long been known to (different groups
of) experts, but it has not been easy to find accessible textbook treatments.
Of the three books on reversible chains at roughly the same level of sophis-
tication as ours, Kelly [32] emphasizes stationary distributions of stochastic
networks; Keilson [31] emphasizes mathematical properties such as complete
monotonicity; and Chen [14] discusses those aspects useful in the study of
interacting particle systems.

Section 1. In abstract settings reversible chains are called symmetrizable,
but that’s a much less evocative term. Elementary textbooks often give
Kolmogorov’s criterion ([32] Thm 1.7) for reversibility, but we have never
found it to be useful.

The following figure may be helpful in seeing why =, E;T; # =; E;T; for
a general reversible chain, even if 7 is uniform. Run such a chain (X;) for
—00 < t < 0o and record only the times when the chain is in state 7 or state j.
Then E;T; is the long-run empirical average of the passage times from ¢
to j, indicated by arrows —; and F;T; is the long-run empirical average
of the passage times from j to ¢ in the reverse time direction, indicated by
arrows <—. One might think these two quantities were averaging the same
empirical intervals, but a glance at the figure shows they are not.

i1 i ] i o] i1 j

Section 1.1. Though probabilists would regard the “cyclic tour” Lemma 2
as obvious, Laszlé Lovasz pointed out a complication, that with a careful
definition of starts and ends of tours these times are not invariant under time-
reversal. The sophisticated fix is to use doubly-infinite stationary chains and
observe that tours in reversed time just interleave tours in forward time, so
by ergodicity their asymptotic rates are equal. Tetali [40] shows that the
cyclic tour property implies reversibility. Tanushev and Arratia [38] show
that the distributions of forward and reverse tour times are equal.

Cat-and-mouse game 1 is treated more opaquely in Coppersmith et al
[16], whose deeper results are discussed in Chapter 9 Section 4.4. Underlying
the use of the optional sampling theorem in game 2 is a general result about
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optimal stopping, but it’s much easier to prove what we want here than to
appeal to general theory. Several algorithmic variations on Proposition 3
are discussed in Coppersmith et al [17] and Tetali and Winkler [41].

Section 2. Many textbooks on Markov chains note the simple explicit
form of the stationary distribution for random walks on graphs. An historical
note (taken from [18]) is that the first explicit treatment of random walk on a
general finite graph was apparently given in 1935 by Bottema [8], who proved
the convergence theorem. Amongst subsequent papers specializing Markov
theory to random walks on graphs let us mention Gobel and Jagers [24],
which contains a variety of the more elementary facts given in this book, for
instance the unweighted version of Lemma 9. Another observation from [24]
is that for a reversible chain the quantity

Bij1t = ﬁlei(number of visits to j before time 7})
satisfies 3;;; = B;i1. Indeed, by Chapter 2 Lemma 9 we have
Biji = (BT + ET; + E;T;) — (BT + ETj)

and so the result follows from the cyclic tour property.

Just as random walks on undirected graphs are as general as reversible
Markov chains, so random walks on directed graphs are as general as general
Markov chains. In particular, one usually has no simple expression like (15)
for the stationary distribution. The one tractable case is a balanced directed
graph, where the in-degree d, of each vertex v equals its out-degree.

Section 2.1. Yet another way to associate a continuous-time reversible
chain with a weighted graph is to set ¢;; = w”/\/m This construction
was used by Chung and Yau [15] as the simplest way to set up discrete
analogs of certain results from differential geometry.

Another interpretation of continuous-time random walk on a weighted
graph is to write w;; = 1/L;; and interpret L;; as edge-length. Then run
Brownian motion on the edges of the graph. Starting from vertex ¢, the
chance that j is the first vertex other than ¢ visited is w;;/ Y, wik, so the
embedded discrete chain is the usual discrete random walk. This construc-
tion could be used as an intermediate step in the context of approximating
Brownian motion on a manifold by random walk on a graph embedded in
the manifold.

Section 3. Doyle and Snell [20] gave a detailed elementary textbook
exposition of Proposition 10 and the whole random walk / electrical network
connection. Previous brief textbook accounts were given by Kemeny et al
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[33] and Kelly [32]. Our development follows closely that of Chapter 2
in Lyons and Peres [34]. As mentioned in the text, the first explicit use
(known to us) of the mean commute interpretation was given by Chandra et
al [13]. One can combine the commute formula with the general identities
of Chapter 2 to obtain numerous identities relating mean hitting times and
resistances, some of which are given (using bare-hands proofs instead) in
Tetali [39]. The connection between Foster’s theorem and Lemma 9 was
noted in [16].

Section 4. The spectral theory is of course classical. In devising a sym-
metric matrix one could use m;p;; or pijﬂ'j_l instead of ﬁj/zpijﬂj_l/z—there
doesn’t seem any systematic advantage to a particular choice. We learned
the eigentime identity from Andrei Broder who used it in [9], and Lemma 15
from David Zuckerman who used it in [42]. Apparently no-one has studied
whether Lemma 15 holds for general chains. Mark Brown (personal com-
munication) has noted several variations on the theme of Lemma 15, for
example that the unweighted average of (E;T};4,j € A) is bounded by the
unweighted average of (E,;T;;7 € A). The name eigentime identity is our
own coinage: once we call 1/\; the relaxation time it is natural to start
thinking of the other 1/A,, as “eigentimes”.

Section 5. We regard complete monotonicity as a name for “mixtures of
exponentials”, and have not used the analytic characterization via deriva-
tives of alternating signs. Of course the CM property is implicit in much
analysis of reversible Markov processes, but we find it helpful to exhibit
explicitly its use in obtaining inequalities. This idea in general, and in par-
ticular the “stochastic ordering of exit times” result (Proposition 21), were
first emphasized by Keilson [31] in the context of reliability and queueing
models. Brown [11] gives other interesting consequences of monotonicity.

Section 5.1. Parts of Proposition 18 have been given by several authors,
e.g., Broder and Karlin [9] Corollary 18 give (53). One can invent many
variations. Consider for instance min; max; F;7;. On the complete graph
this equals n— 1, but this is not the minimum value, as observed by Erik Or-
dentlich in a homework exercise. If we take the complete graph, distinguish
a vertex ig, let the edges involving 7g have weight £ and the other edges have
weight 1, then as ¢ — 0 we have (for j # i)

BT —» =+ 222(1+(n-2))=n—-2+ 5.
By the random target lemma and (53), the quantity under consideration is
at least g > n — 2+ %, so the example is close to optimal.
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Section 5.4. The simple result quoted as Proposition 22 is actually
weaker than the result proved in Brown [10]. The ideas in the proof of
Proposition 23 are in Aldous [2] and in Brown [11], the latter containing a
shorter Laplace transform argument for (73). Aldous and Brown [3] give a
more detailed account of the exponential approximation, including the fol-
lowing result which is useful in precisely the situation where Proposition 23
is applicable, that is, when F T4 is large compared to 7.

Theorem 43 Let oy be the quasistationary distribution on A° defined at (82).

Then

T2 —t
Po(Ts>1) > [1- >0
Ta>1) 2 ( EQATA)GXP <EQATA) >

BTy > FE,,Th— 1.

Using this requires only a lower bound on F,T4, which can often be obtained
using the extremal characterization (84). Connections with “interleaving of
eigenvalues” results are discussed in Brown [12].

For general chains, explicit bounds on exponential approximation are
much messier: see Aldous [1] for a bound based upon total variation mixing
and Iscoe and McDonald [27] for a bound involving spectral gaps.

Section 6.1. Dirichlet forms were developed for use with continuous-
space continuous-time Markov processes, where existence and uniqueness
questions can be technically difficult—see, e.g., Fukushima [23]. Their use
subsequently trickled down to the discrete world, influenced, e.g., by the
paper of Diaconis and Stroock [19]. Chen [14] is the most accessible intro-
duction.

Section 6.2. Since mean commute times have two dual extremal char-
acterizations, as sups over potential functions and as infs over flows, it is
natural to ask

Open Problem 44 Does there exist a characterization of the relaxation
time as exactly an inf over flows?

We will see in Chapter 4 Theorem 32 an inequality giving an upper bound
on the relaxation time in terms of an inf over flows, but it would be more
elegant to derive such inequalities from some exact characterization.

Section 6.4. Lemma 32 is sometimes used to show, by comparison with
the i.i.d. chain,

if ,mii,(pij/ﬁj) =6> 0 then 7 <67,
4,51
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But this is inefficient: direct use of submultiplicitivity of variation distance
gives a stronger conclusion.
Section 6.5. Quasistationary distributions for general chains have long
been studied in applied probability, but the topic lacks a good survey article.
Corollary 34 is a good example of a repeatedly-rediscovered simple-yet-useful
result which defies attempts at attribution.
Kahale [30] Corollary 6.1 gives a discrete time variant of Lemma 35, that
is to say an upper bound on P, (T4 > t), and Alon et al [4] Proposition 2.4
give a lower bound in terms of the smallest eigenvalue (both results are
phrased in the context of random walk on an undirected graph). In studying details in previous
bounds on 7’4 such as Lemma 35 we usually have in mind that 7(A) is small, version now deleted
One is sometimes interested in exit times from a set A with 7(A) small, i.e.,
hitting times on A® where m(A°) is near 1. In this setting one can replace
inequalities using 73 or 7. (parameters which involve the whole chain) by
inequalities involving analogous parameters for the chain restricted to A
and its boundary. See Babai [5] for uses of such bounds.
Section 7.1. Use of Thompson’s principle and the Dirichlet principle
to study transience / recurrence of countably infinite state space chains is
given an elementary treatment in Doyle and Snell [20] and more technical
treatments in papers of Nash-Williams [36], Griffeath and Liggett [25] and
Lyons [35]. Some reformulations of Thompson’s principle are discussed by
Berman and Konsowa [6].
We learned about the work of Borre and Meissl [7] on leveling networks
from Persi Diaconis. Here is another characterization of effective resistance
that is of a similar spirit. Given a weighted graph, assign independent
Normal(0, w;;) random variables X;; to the edges (¢,7), with X;; = —X;;.
Then condition on the event that the sum around any cycle vanishes. The
conditional process (Y;;) is still Gaussian. Fix a reference vertex v, and
for each vertex v let S, be the sum of the Y-values along a path from v,
to v. (The choice of path doesn’t matter, because of the conditioning event.)
Then (obviously) S, is mean-zero Normal but (not obviously) its variance
is the effective resistance between v, and v. This is discussed and proved in
Janson [29] Section 9.4.
Section 7.2. We have never seen in the literature an explicit statement
of the extremal characterizations for mean hitting times from a stationary
start (Proposition 41), but these are undoubtedly folklore, at least in the
“potential” form. Iscoe et al [28] implicitly contains the analogous charac-
terization of E;exp(—6T4). Steve Evans once showed us an argument for nitial distribution is
Corollary 42 based on the usual Dirichlet principle, and that motivated us ndeed 7 —yes (DA)
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to present the “natural explanation” given by Proposition 41.
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