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Supervised machine learning is the classification of new Hated on already classified training examples.
In this work, we show that the support vector machine, amapéd linear and non-linear binary classifier, can
be implemented on a quantum computer, with exponentialdsgesein the size of the vectors and the number
of training examples. At the core of the algorithm is a noarsp matrix simulation technique to efficiently
perform a principal component analysis and matrix inversibthe training data kernel matrix. We thus provide
an example of a quantum big feature and big data algorithmpawe the way for future developments at the
intersection of quantum computing and machine learning.

Machine learning can be separated into two branches, su- Support vector machine.Support vector machines repre-
pervised and unsupervised learning/[1-4]. In unsupervisedent a powerful method for performing linear and non-linear
learning, the task is to find structure in unlabeled datah succlassification |[5]. The task is to classify a vector into one
as clusters in a set of data points. Supervised learning imf two classes, given\/ training data points of the form
volves a training set of already classified data, from which{(Z;,y;) : #; € R",y; = +1},-1..m, Wherey; = 1
inferences are made to classify new data. In both cases, rer —1 depending on the class to whiah belongs. In lin-
cent applications exhibit a growing number of features andear support vector machines, the method of classificatitm is
input data. A support vector machine (SVM) is a supervisedind the maximum-margin hyperplane that divides the points
machine learning algorithm that classifies vectors in aufeat with y; = 1 from those withy; = —1. The machine finds
space into one of two sets, given training data from the setsvo parallel hyperplanes with normal vect@r separated by
[5]. The machine operates by constructing the optimal hyperthe maximum possible distan@¢|i|, that separate the two
plane dividing the two sets, either in the original featypace  classes of training data, and that have no data points in the
or a higher-dimensional kernel space. The SVM can be formargin between them. These hyperplanes are constructed
mulated as a quadratic programming problem [6], which carso that@ - ©; + b > 1 for Z; in the +1 class and that
be solved in time proportional t®(poly NM), with N the @ - &; + b < —1 for Z; in the —1 class, where is pro-
dimension of the feature space anfl the number of train- portional to the offset of the hyperplane. Thus, finding the
ing vectors. Ref.[7] introduced a least-squares versidch®f maximum margin hyperplane consists of minimizimg? /2
SVM and [8] describes a large-scale version of it. Binarg<cla subject to the inequality constrainis(« - £; + b) > 1 for all
sification was discussed in terms of Grover search!in [9] ang. This is the primal formulation of the problem. To obtain
in the context of the adiabatic algorithm in [10+-13]. the dual formulation, the Karush-Kuhn-Tucker multipliers

In this paper, we show that a quantum support vector maare employed for the inequality constraints to first arriva a
chine can achievé(log N M) performance in both training min/max problem, which, defining; = y;a’, is formally
and classification stages. The exponential speeddpanises  solved byi; = Z;\i La;7; andb = y; — @ - &; (for those;j

due to a fast quantum evaluation of inner products, dlsmssewhereaj £ 0), wherey;a; > 0 andzﬁil a; = 0. Only a

in a general machine learmning context by usiin [14]. For thefew of thew; are non-zero: these are the ones corresponding

e)r(c?;%earlg?;zﬁidzgrg' Vrv:b:s;r?)[(?]rtehsstglﬁyvsvgmrf an 2{0 to thez; that lie on the two hyperplanes — the support vectors.
P q P ‘ I Employing this solution for; andb, the dual formulation is

solution with the matrix inversion algorithm [15,/16]. Tagh maximizing overs — (a - - )T the function:
end, we employ a recently-developed technique for the effi- 9 @=L, aM '
cient simulation of non-sparse positive semi-definite roatr M | M
[17]. This enables a quantum parallel principal component L(d) = Zyﬂ'o‘j - Z o Koy, (1)
analysis of the training data kernel and covariance matrice J=1 2 =1

arising in this context and other machine learning algarih

[18+20]. We note another timely benefit of quantum machinesubject to the constrain@jjj‘i1 a; =0, yja; > 0. We have
learning: data privacy [14]. The user of the support vectorintroduced the kernel matrix, a central quantity for supsers
machine operates with the training data as quantum staties amachine learning problems [18,120K,, = k(&;,&k) =
can only sample from those states. The algorithm never reg; - Z, defining the kernel functior(x,z"). More com-
quires the expliciO(M N) representation of all the features plicated non-linear kernels and soft margins will be stud-
of each of the training examples, but generates the negessaed below. Solving the dual form involves evaluating the
data structure, the kernel matrix of inner products, in quen M (M — 1)/2 dot productst; - &, in the kernel matrix, and
parallel. Once the kernel matrix is generated, the indaidu then finding the optimak; values by quadratic programming,
features of the training data are fully hidden from the user. which takesO(M/3) in the non-sparse case [21]. As each dot
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product takes time&(N) to evaluate, the classical support operator notationC i (p) = [K, p], or simply Lx = [K, ],
vector algorithm takes time at lea&{(M?(N + M)). The  was defined. Applying the algorithm of [17] obtains:

result is a binary classifier: . . . )
y eszKAt ~ trl{efzSAtK ® (_)ezSAt} (3)

=1 —iAt[K, ]+ O(AL?).

M

Z) = sign oik(Z, %) +0 ). 2

v(E) ¢ ; M7, 3) @ Here,S = Zﬁn:l |m)(n| & |n)(m| is the swap matrix of
dimensionM? x M?2. Eq. [3) is the operation that is im-

Classification ig)(M N), or O(N) for the linear kernelwhen  plemented on the quantum computer performing the machine
the VeCtOVZ;\il ;& is computed once. learning. For the time slicé\t, it consists of the preparation

Quantum inner-product evaluation.In the quantum set- of an environment stat& (see above) and the application of
ting, assume that we are given oracles for the training datéhe global swap operator to the combined system/environmen
that return quantum vectofg;) = 1/|;]| ij:l(fj)klk% the state followed by discarding the environmental degrees of
norms|z;|, and the labelg;, see the discussion in [14]. To freedom. This shows that the simulatioreof 2t is possible
evaluate a single dot produtf - 7 = || |Zk| (Z;]Z%), Pro-  with error O(At2). The efficient preparation and simulation
ceed as described in Ref. [14] to obtahilog V/e) runtime,  of the training data kernel matrix, which appears in many ma-
wheree is the accuracy. Once all the dot products in the kernefnine learning problem$ [18,120], potentially enables aewid
matrix have been evaluated to accuracthe optimala; can  range of supervised quantum machine learning algorithms.
be identified by quadratic programming to the same degree of Quantum least-squares support vector maching. key
accuracy. To classify a vectafto the+1 or —1 setin the  jdea of this work is to employ the least-squares reformoifati
quantum algorithm, assume that we are givems a normal-  of the support vector machine developed]in [7] that circum-
ized quantum vectd) together with the normalizatiol¥|.  vents the quadratic programming and obtains the parameters
We constructi) o 3717 a;|7;). Evaluate the dot product from the solution of a linear equation system. The centrat si
-7 as above and compare the resulkte y; — - 7;. Com-  plification is to introduce slack variables and replace the in-
paring this quantum support vector machine with the classic equality constraints with equality constraints (usifjg= 1):
support vector machine, we see that the run time of the quan-
tum algorithm isO(M? (M + log N/e)), while the classical yj(U- T +0) 21— (€% +b) = y; —yjej.  (4)
algorithm can scale a8(M?(M + poly(N)/e?)), depending
on the distribution of the components of thg We now move
on to the big data exponential speedugin

Preparation and simulation of the kernel mati&/tr K.—
The kernel matrix plays a crucial role in the dual formulatio
Eq. (@) and the least-squares reformulation discussedein t
next section. At this point we can already discuss efficienf'P

preparation and simulation methods for the normalized ker- b 0 i b 0
)= (Y ) (2)=(5) @

In addition to the constraints, the implied Lagrange fumtti
contains a penalty term/2 Zj]‘il e?, where user-specified
determines the relative weight of training error and SVM ob-
jective. Taking partial derivatives of the Lagrange fuanti
hand eliminating the variablesande; leads to a least-squares
proximation of the problem:

—

nel matrix KX = K/trK. Classically, setting up the kernel a 7

matrix takesO(M?2N) run time. For the quantum mechani-

cal prepaa?tion, first call the training data oracle withstete Here, K;; = Z7 - #; is again the symmetric kernel matrix,

1/VM 35;Z, |i). This prepares in quantum parallel the state; — (, .. . VT ‘andT = (1,---,1)7. The matrixF is

) = 1Ny SE F @), with Ny = 7 |72, (M + 1) x (M + 1) dimensional. The additional row and

in O(log NM) run time [22]. If we discard the training column with thel arise because of a non-zero offéetThe

set register, we obtain the desired kernel matrix as a quany; take on the role as distances from the optimal margin. The

tum density matrix. This can be seen from the partial trac&upport vector machine parameters are determined schemati

tra{ )X} = w Xy @ENT T 1D G = 5 We  cally by (b, @) = F~1(0, §7)". As with the quadratic

will show how to use this state in a fully quantum mechanicalprogramming formulation, the complexity of the least-sgsa

algorithm to approximately solve the SVM. See the appendi@upport vector machine @8(M3) [21].

for an independent estimation of the tracefof For the quantum support vector machine, we would like
Ff)r quantum mechanically computing a matrix inveArse suchg generate a quantum stated@) describing the hyperplane

as K ! one needs to be able to efficiently simulatg2t.  with the matrix inversion algorithm [15] and then classify a

However, the kernel matrik is not sparse for the straightfor- state|z). For application of the quantum matrix inversion al-

ward application of sparse simulation techniques|[23, Bdf.  gorithm one needs to be able to efficiently simulate the matri

the simulation of non-sparse symmetric or Hermitian magic exponential ofF. First, the matrixF" is divided as: FF =

a strategy was developed in [17]. We adapt it to the present ) 017 0 0

problem. Adopting a density matrix description to extenel th S+ Ky, with J = < T 0 > andK, = < 0 K+~ 11 >

space of possible transformations gives, for some quanturmhe matrix J is efficiently quantum mechanically simula-

statep, e KAt p KAt — —iLgAt(p) where the super- ble [23] (“star” graph). The two nonzero eigenvalues.jof

—
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are M = ++/M and the corresponding eigenstates are Kernel matrix compression and error analysidn this sec-
Agar) = \/% (|O> + ﬁ Zkle k). The identity matrix tion, we show that quar_ltum matrix inversion ess_entially_per
IR _ : i forms a kernel matrix principal component analysis and give
v Lis tr|V|aI_IyS|muIabIe. For_thAe simulation dt/trK, pro- run time/error analysis of the quantum algorithm. The matri
ceed according EqLY3). Defin€é = F/trF = J/trKy +  nder considerationi’ — F/trF, contains the kernel matrix
Ky, with K, = K,/trK,. The Lie product formula g — i /trK. and an additional row and column due to the
gives e FAL = gTI ALK, Tl AL kG miRAL/E, 4 offset parametel. In case the offsetis negligible, the problem
O(A#2) = =1/ AY /K —il Al /K o—iKAY L O(Af2), with  reduces to matrix inversion of the kernel mathix, only. For
At = %At. See the appendix for the evaluationtefC.  any finite, K, > 0, which means thak, is invertible. The

Thise~##'2t js employed conditionally in phase estimation. condition number: of F plays an important role in the clas-
We assume that the normalized quantum state corresical and quantum matrix inversion. The positive eigereslu
sponding to the right-hand side of Eq. [ (5))) = of F' are dominated by the eigenvaluesigf,. In addition,

1/vVM 22{1 yk|k), can be efficiently prepared. We can for- F" has one additional negative eigenvalue which is involved
mally expand this state into eigenstates) of £ with cor- N determining the offset parametérsee the appendix. The
. . - M1, i~ . maximum eigenvalue ok, is no greater thah and the mini-
responding eigenvalues;, |7) = > .~ (u;|9)|u;). With a ; ; o .
! - o Lg=1 I ., mum eigenvalue i®(1/M). The minimum eigenvalue can be
register for storing an approximation of the eigenvalugs (i oo ) -
2 S .~ .seen by the possibility of having a training example that has
tialized to|0)), phase estimation generates a state which |? . -
close to the ideal state storing the respective eigenvalue: almost) zero °"er"’?‘p V.V'th the cher tramm.g examples. Be-
" cause of the normalization the eigenvalue wilibg /M) and
M1 M1 N the condition number is potentiallp()) in this case. Such
; AP {wslg) .. a condition number would prevent the exponential quantum
910) = D (wsldlu) ) = Y ug).  (6) ' preve P q
= Aj speedup inV/ [15]. To remedy this, we define a constapt
such that only the eigenvalues in the interval < |\;| < 1
The second step inverts the eigenvalue and is obtained as &me taken into account, essentially defining an effective co
[15] by performing a controlled rotation and uncomputing th dition numbers.g = 1/ex. Then, the filtering procedure
eigenvalue register. In the basis of training set labelsgthh  described inl[15] is employed in the phase estimation using
pansion coefficients of the new state are the desired suppatiis x.¢. A three dimensional auxiliary register is attached to
vector machine parameters: the quantum state and, when multiplying the invergg; for
each eigenstate as in Ed.] (6), appropriately defined fitjerin

J=1

. 1 M functions discard eigenvalues belew. The desired outcome
b, @) = NG bl0) + Z aklk) |, (7) s obtained by post-selecting the auxiliary register.
k=1
The legitimacy of this kernel matrix compression can be
whereC = b2 + 224:1 a2, rationalized by its equivalence to principal componentyna
Classification— We have now trained the quantum SvM SiS. Define theV x M data matrixX = (le, -+, @), The
and would like to classify a query state). From the state M x M kernel matrix is given by’ = X*.X. TheN x N

. .. . M o
b, @) in Eq. [7), construct by calling the training-data oracle: covariance matrix is given by, = XXT_ = Y m=1 ?Cmiﬂf@-
If the data is assumed to be standardized, principal compo-

1 M nent analysig [4] keeps the directions in the data that Have t
@) = oo <b|0>|0> + Z ak|fk||k>|fk>> , (8) largest variance, which is equivalent to keeping the eigenv
i k=1 tors of  with the largest eigenvalues. The matricsg”

_ o N and X7 X have the same eigenvalues, except for zero eigen-
with Nz = b* + 32,2, of|Zx|>. In addition, construct the values. Thus, the principal component idea directly trates!

query state: into the kernel space. Removing small eigenvalues of the ker
u nel matrix removes small eigenvalues of the covariance ma-
- 1 . . trix. Keeping the large eigenvalues of the kernel matrix re-
|Z) = N <|O>|O> + kz |x||k>|x>> : ©) tains the principal components of the covariance matrix. In
=1

the present quantum algorithm, the kernel matrix compres-
sion (and thus the principal component analysis) is peréorm

with Nz = M|#|*> + 1. For the classification, we perform e
in quantum parallel by phase estimation.

a swap test. Using an ancilla, construct the state =
s(|0)|@) +[1)|z)) and measure the ancilla in the state = We continue with a discussion of the run time of the quan-
=(|0) — [1)). The measurement has the success probabilitWTTa|gh0ritgm [121- Thebinterfvgdkt can be er:ttel; as\t =

_ 2 _ 1 . : I to/T whereT is the number of time steps in the phase estima-
= [Wlo)* = 5(1 - <1;lf>)' The inner productis given by tion and the total evolution timg determines the error of the
Q7)) = S (b + 2 k=1 | T[] <fk|f>)- If P <1/2  phase estimation. The swap matrix used in Ef. (3)sparse
we classify|z) as+1, otherwise—1. and e~ *4¢ for is efficiently simulable in negligible time

2 vk
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O(log(M)At) [24]. TheO notation suppresses more slowly imized when the training data kernel matrix is dominated by a
growing factors, such aslag” M factor [15,.24]. For the relatively small number of principal components. In sumynar
phase estimation, the propagator“#~t is simulated with  with the quantum support vector machine we have shown an
errorO(A#2||F||?), see Eq[{B). With the spectral norm for a efficient quantum implementation of an important machine
matrix A, [|A|| = maxg -, |A7], we have|F'|| = O(1). Tak-  learning algorithm, which also provides advantages in serm
ing powers of this propagatar, “# 2t forr = 0,--- ,T—1, of data privacy and could be used as a component in a larger
leads to an error of maximally = O(TAt?) = O(t3/T).  quantum neural network.

Thus, the run time i" = O(t3/¢). Taking into account This work was supported by DARPA, NSF, ENI, Google,
the preparation of the kernel matrix ®(log M N), the run  and Jeffrey Epstein.

time is thusO(t2log M N/¢). The relative error of\~! by

phase estimation is given b®(1/tp\) < O(1/toex) for

A > ex. If tgis takenO(kenr/€) = O(1/exe) this error

is O(€). The run time is thu®(log M N/e%.¢*). Repeating _

the algorithm forO (k) times to achieve a constant success T rebentr@mit.edu

probability of the post-selection step obtains a final ravetbf slloyd@mit.edu
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APPENDIX: THE OFFSET PARAMETER b definite. Note also that with the eigendecompositRm =

) S kk kT, with the eigenvalues/(ytrk,) < k<1
The matrix F is not positive definite (the determinant of and the corresponding normalized eigenvectgrswe have

the upper2 x 2 minor is negative). The positive eigenvalues (f( + | \1p)"t = ZM _1_ i ET  The problem be-
~ . . . ~ Y j=1 I\ +k; I

of F' are dominated by the positive eigenvaluegaf To get 0=\ M 1 I ith 3. — (K7 . 1)2. which

an idea of the single negative eigenvaluefafwhich is re- SO e = M = 2= s, B With 85 = (k- 1)7, whic

lated the offset parametéy note that the eigenvalues of only is equivalent tol = ZM —L___3,. The special case

i ST T=L AR+ ALk
star _ N
the matrixJ/trK,, areA)\i /O(M) = O(1/vVM). Thus, the wheng; = O(1/M) occurs if the sum of components bf

negative eigenvalue df is potentially too small to be resolved is O(v/M), for all j. Thus, the remainder of the terms in the

by the phase estimation and the qﬁ;et pararrietrannot be sum determining| is O(1), because O(1/M) terms need
determined. One way to handle this issue is to center the dat?0 add up tol. In this case)_ is O(1). Which avenue is to

Compute the centrpld of the training dgta S|_m|lar to the quan,,, taken, centering the data or choosing a feasiblecan be
tum k-means algorithm shown in [14] (ignoring the labgll  yetermined by cross-validatior [4]. That is, using parthaf t
'I_'he re-centered training vectors are then “Se‘?' f(_)r the PXEPA training set for training and another part for classificatio
tion of the kernel matrix and subsequent matrix inversion. determine the correctness of the resulting SVM classifier.
However, there exist cases for which the negative eigen-
value isO(1) and can thus be resolved by choosingappro-
priately. To show this, use the property of the determinantf APPENDIX: ESTIMATING THE TRACE OF THE KERNEL
block matrices, fo < 1/(vytrK,), to obtain for the charac- MATRIX
teristic polynomial:
The trace of the kernel matrix can be efficiently evalu-
0 = det(F — M ary1) = det(K, — ALy ) f(A), (11) at(?g, similar to [[14]. Generate the Hamiltonidh, =
> =1 [T|[7)(j] ® o, from the quantum access to the
ini iyt Hert
with the Schur complemerft\) = —A—17 (K, —A1,,) "', tnhoerrr:a(t:i:@;oihelt/rfl/l%n%gfualt.<>)|r0a>clgsﬁtp;pli3r/]|a|a£(t)> tf
wherei = 1/trK,. Since K, does not have any eigen- W= VA 2= W TESER B
values< 1/(ytrK,), we investigate the relatiofi(\) = 0 Umza‘z} (cos(|Z;[1)17)]0) — isin(|Z;(¢)|7)[1)). Choose
to obtain information about the single negative eigenvalud Such that;|t <1, for all j, and measure thej;mcﬂla in the
A_. Note thatf(—|A]) = [A| — 1T(K, + |A[1y) 11, and  |1) state. This succeeds with probability)/ 3°— |Z;]%t2,

1T(K, + [M1ap)~'1 > 0 since K, + |\|1a is positive  which allows the estimation of the trace &, Z;‘il z;)%.



