
ar
X

iv
:1

30
7.

04
71

v2
 [

qu
an

t-
ph

]
10

 J
ul

 2
01

3

Quantum support vector machine for big feature and big data classification

Patrick Rebentrost,1,∗ Masoud Mohseni,2 and Seth Lloyd3,†

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Google Research, Venice, CA 90291

3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Supervised machine learning is the classification of new data based on already classified training examples.
In this work, we show that the support vector machine, an optimized linear and non-linear binary classifier, can
be implemented on a quantum computer, with exponential speedups in the size of the vectors and the number
of training examples. At the core of the algorithm is a non-sparse matrix simulation technique to efficiently
perform a principal component analysis and matrix inversion of the training data kernel matrix. We thus provide
an example of a quantum big feature and big data algorithm andpave the way for future developments at the
intersection of quantum computing and machine learning.

Machine learning can be separated into two branches, su-
pervised and unsupervised learning [1–4]. In unsupervised
learning, the task is to find structure in unlabeled data, such
as clusters in a set of data points. Supervised learning in-
volves a training set of already classified data, from which
inferences are made to classify new data. In both cases, re-
cent applications exhibit a growing number of features and
input data. A support vector machine (SVM) is a supervised
machine learning algorithm that classifies vectors in a feature
space into one of two sets, given training data from the sets
[5]. The machine operates by constructing the optimal hyper-
plane dividing the two sets, either in the original feature space
or a higher-dimensional kernel space. The SVM can be for-
mulated as a quadratic programming problem [6], which can
be solved in time proportional toO(polyNM), with N the
dimension of the feature space andM the number of train-
ing vectors. Ref. [7] introduced a least-squares version ofthe
SVM and [8] describes a large-scale version of it. Binary clas-
sification was discussed in terms of Grover search in [9] and
in the context of the adiabatic algorithm in [10–13].

In this paper, we show that a quantum support vector ma-
chine can achieveO(logNM) performance in both training
and classification stages. The exponential speedup inN arises
due to a fast quantum evaluation of inner products, discussed
in a general machine learning context by us in [14]. For the
exponential speedup inM , we re-express the SVM as an ap-
proximate least-squares problem [7] that allows for a quantum
solution with the matrix inversion algorithm [15, 16]. To this
end, we employ a recently-developed technique for the effi-
cient simulation of non-sparse positive semi-definite matrices
[17]. This enables a quantum parallel principal component
analysis of the training data kernel and covariance matrices
arising in this context and other machine learning algorithms
[18–20]. We note another timely benefit of quantum machine
learning: data privacy [14]. The user of the support vector
machine operates with the training data as quantum states and
can only sample from those states. The algorithm never re-
quires the explicitO(MN) representation of all the features
of each of the training examples, but generates the necessary
data structure, the kernel matrix of inner products, in quantum
parallel. Once the kernel matrix is generated, the individual
features of the training data are fully hidden from the user.

Support vector machine.− Support vector machines repre-
sent a powerful method for performing linear and non-linear
classification [5]. The task is to classify a vector into one
of two classes, givenM training data points of the form
{(~xj , yj) : ~xj ∈ R

N , yj = ±1}j=1...M , whereyj = 1
or −1 depending on the class to which~xj belongs. In lin-
ear support vector machines, the method of classification isto
find the maximum-margin hyperplane that divides the points
with yj = 1 from those withyj = −1. The machine finds
two parallel hyperplanes with normal vector~u, separated by
the maximum possible distance2/|~u|, that separate the two
classes of training data, and that have no data points in the
margin between them. These hyperplanes are constructed
so that~u · ~xj + b ≥ 1 for ~xj in the +1 class and that
~u · ~xj + b ≤ −1 for ~xj in the −1 class, whereb is pro-
portional to the offset of the hyperplane. Thus, finding the
maximum margin hyperplane consists of minimizing|~u|2/2
subject to the inequality constraintsyj(~u · ~xj + b) ≥ 1 for all
j. This is the primal formulation of the problem. To obtain
the dual formulation, the Karush-Kuhn-Tucker multipliersα′

j

are employed for the inequality constraints to first arrive at a
min/max problem, which, definingαj = yjα

′
j , is formally

solved by~u =
∑M

j=1
αj~xj andb = yj − ~u · ~xj (for thosej

whereαj 6= 0), whereyjαj ≥ 0 and
∑M

j=1
αj = 0. Only a

few of theαj are non-zero: these are the ones corresponding
to the~xj that lie on the two hyperplanes – the support vectors.
Employing this solution for~u andb, the dual formulation is
maximizing over~α = (α1, · · · , αM)T the function:

L(~α) =

M
∑

j=1

yjαj −
1

2

M
∑

j,k=1

αjKjkαk, (1)

subject to the constraints
∑M

j=1
αj = 0, yjαj ≥ 0. We have

introduced the kernel matrix, a central quantity for supervised
machine learning problems [18, 20],Kjk = k(~xj , ~xk) =
~xj · ~xk, defining the kernel functionk(x, x′). More com-
plicated non-linear kernels and soft margins will be stud-
ied below. Solving the dual form involves evaluating the
M(M − 1)/2 dot products~xj · ~xk in the kernel matrix, and
then finding the optimalαj values by quadratic programming,
which takesO(M3) in the non-sparse case [21]. As each dot

http://arxiv.org/abs/1307.0471v2

2

product takes timeO(N) to evaluate, the classical support
vector algorithm takes time at leastO(M2(N + M)). The
result is a binary classifier:

y(~x) = sign





M
∑

j=1

αjk(~xj , ~x) + b



 . (2)

Classification isO(MN), orO(N) for the linear kernel when
the vector

∑M
j=1

αj~xj is computed once.
Quantum inner-product evaluation.− In the quantum set-

ting, assume that we are given oracles for the training data
that return quantum vectors|~xj〉 = 1/|~xj |

∑N
k=1

(~xj)k|k〉, the
norms|~xj |, and the labelsyj , see the discussion in [14]. To
evaluate a single dot product~xj · ~xk = |~xj | |~xk| 〈~xj |~xk〉, pro-
ceed as described in Ref. [14] to obtainO(logN/ǫ) run time,
whereǫ is the accuracy. Once all the dot products in the kernel
matrix have been evaluated to accuracyǫ, the optimalαj can
be identified by quadratic programming to the same degree of
accuracy. To classify a vector~x to the+1 or −1 set in the
quantum algorithm, assume that we are given~x as a normal-
ized quantum vector|x〉 together with the normalization|~x|.
We construct|~u〉 ∝ ∑M

j=1
αj |~xj〉. Evaluate the dot product

~u ·~x as above and compare the result tob = yj −~u ·~xj . Com-
paring this quantum support vector machine with the classical
support vector machine, we see that the run time of the quan-
tum algorithm isO(M2(M + logN/ǫ)), while the classical
algorithm can scale asO(M2(M +poly(N)/ǫ2)), depending
on the distribution of the components of the~xj . We now move
on to the big data exponential speedup inM .

Preparation and simulation of the kernel matrixK/trK.−
The kernel matrix plays a crucial role in the dual formulation
Eq. (1) and the least-squares reformulation discussed in the
next section. At this point we can already discuss efficient
preparation and simulation methods for the normalized ker-
nel matrix K̂ = K/trK. Classically, setting up the kernel
matrix takesO(M2N) run time. For the quantum mechani-
cal preparation, first call the training data oracle with thestate
1/

√
M
∑M

i=1
|i〉. This prepares in quantum parallel the state

|χ〉 = 1/
√

Nχ

∑M
i=1

|~xi||i〉|~xi〉, with Nχ =
∑M

i=1
|~xi|2,

in O(logNM) run time [22]. If we discard the training
set register, we obtain the desired kernel matrix as a quan-
tum density matrix. This can be seen from the partial trace
tr2{|χ〉〈χ|} = 1

Nχ

∑M
i,j=1

〈~xj |~xi〉|~xi||~xj ||i〉〈j| = K
trK . We

will show how to use this state in a fully quantum mechanical
algorithm to approximately solve the SVM. See the appendix
for an independent estimation of the trace ofK.

For quantum mechanically computing a matrix inverse such
asK̂−1 one needs to be able to efficiently simulatee−iK̂∆t.
However, the kernel matrix̂K is not sparse for the straightfor-
ward application of sparse simulation techniques [23, 24].For
the simulation of non-sparse symmetric or Hermitian matrices
a strategy was developed in [17]. We adapt it to the present
problem. Adopting a density matrix description to extend the
space of possible transformations gives, for some quantum
stateρ, e−iK̂∆t ρ eiK̂∆t = e−iL

K̂
∆t(ρ), where the super-

operator notationLK(ρ) = [K, ρ], or simplyLK = [K, ·],
was defined. Applying the algorithm of [17] obtains:

e−iL
K̂
∆t ≈ tr1{e−iS∆tK̂ ⊗ (·)eiS∆t} (3)

= 1− i∆t[K̂, ·] + O(∆t2).

Here,S =
∑M

m,n=1
|m〉〈n| ⊗ |n〉〈m| is the swap matrix of

dimensionM2 × M2. Eq. (3) is the operation that is im-
plemented on the quantum computer performing the machine
learning. For the time slice∆t, it consists of the preparation
of an environment statêK (see above) and the application of
the global swap operator to the combined system/environment
state followed by discarding the environmental degrees of
freedom. This shows that the simulation ofe−iK̂∆t is possible
with errorO(∆t2). The efficient preparation and simulation
of the training data kernel matrix, which appears in many ma-
chine learning problems [18, 20], potentially enables a wide
range of supervised quantum machine learning algorithms.

Quantum least-squares support vector machine.− A key
idea of this work is to employ the least-squares reformulation
of the support vector machine developed in [7] that circum-
vents the quadratic programming and obtains the parameters
from the solution of a linear equation system. The central sim-
plification is to introduce slack variablesej and replace the in-
equality constraints with equality constraints (usingy2j = 1):

yj(~u · ~xj + b) ≥ 1 → (~u · ~xj + b) = yj − yjej . (4)

In addition to the constraints, the implied Lagrange function
contains a penalty termγ/2

∑M
j=1

e2j , where user-specifiedγ
determines the relative weight of training error and SVM ob-
jective. Taking partial derivatives of the Lagrange function
and eliminating the variables~u andej leads to a least-squares
approximation of the problem:

F

(

b
~α

)

≡
(

0 ~1T

~1 K + γ−1
1

)(

b
~α

)

=

(

0
~y

)

. (5)

Here,Kij = ~xTi · ~xj is again the symmetric kernel matrix,
~y = (y1, · · · , yM)T , and~1 = (1, · · · , 1)T . The matrixF is
(M + 1) × (M + 1) dimensional. The additional row and
column with the~1 arise because of a non-zero offsetb. The
αj take on the role as distances from the optimal margin. The
support vector machine parameters are determined schemati-

cally by
(

b, ~αT
)T

= F−1
(

0, ~yT
)T

. As with the quadratic
programming formulation, the complexity of the least-squares
support vector machine isO(M3) [21].

For the quantum support vector machine, we would like
to generate a quantum state|b, ~α〉 describing the hyperplane
with the matrix inversion algorithm [15] and then classify a
state|x〉. For application of the quantum matrix inversion al-
gorithm one needs to be able to efficiently simulate the matrix
exponential ofF . First, the matrixF is divided as:F =

J +Kγ , with J =

(

0 ~1T

~1 0

)

andKγ =

(

0 0
0 K + γ−1

1

)

.

The matrix J is efficiently quantum mechanically simula-
ble [23] (“star” graph). The two nonzero eigenvalues ofJ

3

are λstar± = ±
√
M and the corresponding eigenstates are

|λstar± 〉 = 1√
2

(

|0〉 ± 1√
M

∑M
k=1

|k〉
)

. The identity matrix

γ−1
1 is trivially simulable. For the simulation ofK/trK, pro-

ceed according Eq. (3). DefinêF = F/trF = J/trKγ +

K̂γ , with K̂γ = Kγ/trKγ . The Lie product formula

gives e−iF̂∆t = e−iJ∆t/trKγe−i1∆t/trKγe−iK∆t/trKγ +

O(∆t2) = e−iJ∆t′/trKe−i1∆t′/trKe−iK̂∆t′ + O(∆t2), with
∆t′ = trK

trKγ
∆t. See the appendix for the evaluation oftrK.

Thise−iF̂∆t is employed conditionally in phase estimation.
We assume that the normalized quantum state corre-

sponding to the right-hand side of Eq. (5),|ỹ〉 =

1/
√
M
∑M

k=1
yk|k〉, can be efficiently prepared. We can for-

mally expand this state into eigenstates|uj〉 of F̂ with cor-
responding eigenvaluesλj , |ỹ〉 =

∑M+1

j=1
〈uj |ỹ〉|uj〉. With a

register for storing an approximation of the eigenvalues (ini-
tialized to |0〉), phase estimation generates a state which is
close to the ideal state storing the respective eigenvalue:

|ỹ〉|0〉 →
M+1
∑

j=1

〈uj |ỹ〉|uj〉|λj〉 →
M+1
∑

j=1

〈uj |ỹ〉
λj

|uj〉. (6)

The second step inverts the eigenvalue and is obtained as in
[15] by performing a controlled rotation and uncomputing the
eigenvalue register. In the basis of training set labels, the ex-
pansion coefficients of the new state are the desired support
vector machine parameters:

|b, ~α〉 = 1√
C

(

b|0〉+
M
∑

k=1

αk|k〉
)

, (7)

whereC = b2 +
∑M

k=1
α2
k.

Classification.− We have now trained the quantum SVM
and would like to classify a query state|x〉. From the state
|b, ~α〉 in Eq. (7), construct by calling the training-data oracle:

|ũ〉 = 1√
Nũ

(

b|0〉|0〉+
M
∑

k=1

αk|~xk||k〉|~xk〉
)

, (8)

with Nũ = b2 +
∑M

k=1
α2
k|~xk|2. In addition, construct the

query state:

|x̃〉 = 1√
Nx̃

(

|0〉|0〉+
M
∑

k=1

|~x||k〉|~x〉
)

. (9)

with Nx̃ = M |~x|2 + 1. For the classification, we perform
a swap test. Using an ancilla, construct the state|ψ〉 =
1√
2
(|0〉|ũ〉+ |1〉|x̃〉) and measure the ancilla in the state|φ〉 =

1√
2
(|0〉 − |1〉). The measurement has the success probability

P = |〈ψ|φ〉|2 = 1

2
(1 − 〈ũ|x̃〉). The inner product is given by

〈ũ|x̃〉 = 1√
Nx̃Nũ

(

b +
∑M

k=1 αk|~xk||~x|〈~xk|~x〉
)

. If P < 1/2

we classify|x〉 as+1, otherwise−1.

Kernel matrix compression and error analysis.− In this sec-
tion, we show that quantum matrix inversion essentially per-
forms a kernel matrix principal component analysis and givea
run time/error analysis of the quantum algorithm. The matrix
under consideration,̂F = F/trF , contains the kernel matrix
K̂γ = Kγ/trKγ and an additional row and column due to the
offset parameterb. In case the offset is negligible, the problem
reduces to matrix inversion of the kernel matrixK̂γ only. For
any finiteγ, K̂γ > 0, which means that̂Kγ is invertible. The
condition numberκ of F̂ plays an important role in the clas-
sical and quantum matrix inversion. The positive eigenvalues
of F̂ are dominated by the eigenvalues ofK̂γ . In addition,
F̂ has one additional negative eigenvalue which is involved
in determining the offset parameterb, see the appendix. The
maximum eigenvalue of̂Kγ is no greater than1 and the mini-
mum eigenvalue isO(1/M). The minimum eigenvalue can be
seen by the possibility of having a training example that has
(almost) zero overlap with the other training examples. Be-
cause of the normalization the eigenvalue will beO(1/M) and
the condition number is potentiallyO(M) in this case. Such
a condition number would prevent the exponential quantum
speedup inM [15]. To remedy this, we define a constantǫK
such that only the eigenvalues in the intervalǫK ≤ |λj | ≤ 1
are taken into account, essentially defining an effective con-
dition numberκeff = 1/ǫK. Then, the filtering procedure
described in [15] is employed in the phase estimation using
thisκeff . A three dimensional auxiliary register is attached to
the quantum state and, when multiplying the inverse1/λj for
each eigenstate as in Eq. (6), appropriately defined filtering
functions discard eigenvalues belowǫK . The desired outcome
is obtained by post-selecting the auxiliary register.

The legitimacy of this kernel matrix compression can be
rationalized by its equivalence to principal component analy-
sis. Define theN ×M data matrixX = (~x1, · · · , ~xM). The
M ×M kernel matrix is given byK = XTX . TheN × N
covariance matrix is given byΣ = XXT =

∑M
m=1

~xm~x
T
m.

If the data is assumed to be standardized, principal compo-
nent analysis [4] keeps the directions in the data that have the
largest variance, which is equivalent to keeping the eigenvec-
tors of Σ with the largest eigenvalues. The matricesXXT

andXTX have the same eigenvalues, except for zero eigen-
values. Thus, the principal component idea directly translates
into the kernel space. Removing small eigenvalues of the ker-
nel matrix removes small eigenvalues of the covariance ma-
trix. Keeping the large eigenvalues of the kernel matrix re-
tains the principal components of the covariance matrix. In
the present quantum algorithm, the kernel matrix compres-
sion (and thus the principal component analysis) is performed
in quantum parallel by phase estimation.

We continue with a discussion of the run time of the quan-
tum algorithm [15]. The interval∆t can be written as∆t =
t0/T whereT is the number of time steps in the phase estima-
tion and the total evolution timet0 determines the error of the
phase estimation. The swap matrix used in Eq. (3) is1-sparse
and e−iS∆t for is efficiently simulable in negligible time

4

Õ(log(M)∆t) [24]. TheÕ notation suppresses more slowly
growing factors, such as alog∗M factor [15, 24]. For the
phase estimation, the propagatore−iL

F̂
∆t is simulated with

errorO(∆t2||F̂ ||2), see Eq (3). With the spectral norm for a
matrixA, ||A|| = max|~v|=1 |A~v|, we have||F̂ || = O(1). Tak-
ing powers of this propagator,e−iL

F̂
τ∆t for τ = 0, · · · , T−1,

leads to an error of maximallyǫ = O(T∆t2) = O(t20/T).
Thus, the run time isT = O(t20/ǫ). Taking into account
the preparation of the kernel matrix inO(logMN), the run
time is thusO(t20 logMN/ǫ). The relative error ofλ−1 by
phase estimation is given byO(1/t0λ) ≤ O(1/t0ǫK) for
λ ≥ ǫK . If t0 is takenO(κeff/ǫ) = O(1/ǫKǫ) this error
is O(ǫ). The run time is thus̃O(logMN/ǫ2Kǫ

3). Repeating
the algorithm forO(κeff) times to achieve a constant success
probability of the post-selection step obtains a final run time of
O(κ3eff logMN/ǫ3). To summarize, we find a quantum sup-
port vector machine that scales asO(logMN), which implies
a quantum advantage in situations where many training exam-
ples are involved (“quantum big data”).

Nonlinear support vector machines.− One of the most
powerful uses of support vector machines is to perform non-
linear classification [5]. Perform a nonlinear mapping~φ(~xj)
into a higher-dimensional vector space. Thus, the kernel func-
tion becomes a nonlinear function in~x:

k(~xj , ~xk) = ~φ(~xj) · ~φ(~xk). (10)

For example,k(~xj , ~xk) = (~xj · ~xk)d. Now perform the SVM
classification in the higher-dimensional space. The separating
hyperplanes in the higher-dimensional space now correspond
to separating nonlinear surfaces in the original space.

The ability of quantum computers to manipulate high-
dimensional vectors affords a natural quantum algorithm for
polynomial kernel machines. Simply map each vector|~xj〉
into thed-times tensor product|φ(~xj)〉 ≡ |~xj〉 ⊗ . . . ⊗ |~xj〉
and use the feature that〈φ(~xj)|φ(~xk)〉 = 〈~xj |~xk〉d. Arbitrary
polynomial kernels can be constructed using this trick. The
optimization using a nonlinear, polynomial kernel in the orig-
inal space now becomes a linear hyperplane optimization in
thed-times tensor product space. Considering only the speed-
up in the vector space dimension, the nonlineard-level poly-
nomial quantum kernel algorithm to accuracyǫ then runs in
timeO(d logN/ǫ). Note that, in contrast to classical kernel
machines, the exponential quantum advantage in evaluating
inner products allows quantum kernel machines to perform
the kernel evaluation directly in the higher dimensional space.

Conclusion.− In this work, we have shown that an im-
portant classifier in machine learning, the support vector ma-
chine, can be implemented quantum mechanically. We have
obtained exponential speedups in feature size and the num-
ber of training data, thus providing one example of a quan-
tum “big data” speedup. We have considered a least-squares
formulation of the support vector machine, which allows the
use of phase estimation and the quantum matrix inversion al-
gorithm. To this end, we have employed a newly-developed
non-sparse simulation technique for Hermitian positive semi-
definite matrices. The speed of the quantum algorithm is max-

imized when the training data kernel matrix is dominated by a
relatively small number of principal components. In summary,
with the quantum support vector machine we have shown an
efficient quantum implementation of an important machine
learning algorithm, which also provides advantages in terms
of data privacy and could be used as a component in a larger
quantum neural network.

This work was supported by DARPA, NSF, ENI, Google,
and Jeffrey Epstein.

∗ rebentr@mit.edu
† slloyd@mit.edu

[1] D. Mackay,Information Theory, Inference and Learning Algo-
rithms(Cambridge University Press, 2003).

[2] E. Alpaydin,Introduction to Machine Learning (Adaptive Com-
putation and Machine Learning)(MIT Press, 2004).

[3] C. M. Bishop, Pattern Recognition and Machine Learning
(Springer, 2007).

[4] K. P. Murphy,Machine Learning: A Probabilistic Perspective
(MIT Press, 2012).

[5] C. Cortes and V. Vapnik, Mach. Learn.20, 273 (1995).
[6] S. Boyd and L. Vandenberghe,Convex Optimization(Cam-

bridge University Press, 2004).
[7] J. Suykens and J. Vandewalle, Neural Process. Lett.9, 293

(1999).
[8] J. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Van-

dewalle, inEuropean Conference on Circuit Theory and Design
(ECCTD), Vol. 99 (1999) p. 839.

[9] D. Anguita, S. Ridella, F. Rivieccion, and R. Zunino, Neural
Networks16, 763 (2003).

[10] H. Neven, V. Denchev, G. Rose, and W. Macready,
arXiv:quant-ph/0811.0416 (2008).

[11] H. Neven, V. Denchev, G. Rose, and W. Macready,
arXiv:0912.0779 (2009).

[12] K. Pudenz and D. Lidar, arXiv:1109.0325 (2011).
[13] V. S. Denchev, N. Ding, S. V. N. Vishwanathan, and H. Neven,

arXiv:1205.1148 (2012).
[14] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0411

(2013).
[15] A. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett.103,

150502 (2009).
[16] N. Wiebe, D. Braun, and S. Lloyd, Phys. Rev. Lett.109, 050505

(2012).
[17] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0401

(2013).
[18] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Sch¨olkopf,

IEEE T. Neural Networ.12, 181 (2001).
[19] L. Hoegaerts, J. Suykens, J. Vandewalle, and B. D. Moor,in

Proceedings of International Joint Conference on Neural Net-
works (IJCNN)(2004) p. 561.

[20] T. Hofmann, B. Schölkopf, and A. J. Smola,
Ann. Stat.36, 1171 (2008).

[21] The exponent3 can be improved considerably: D. Coppersmith
and S. Winograd, J. Symb. Comp.9, 251 (1990).

[22] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 100,
160501 (2008).

[23] A. Childs, Comm. Math. Phys.294, 581 (2010).
[24] D. Berry, G. Ahokas, R. Cleve, and B. Sanders,

Comm. Math. Phys.270, 359 (2007).

mailto:rebentr@mit.edu
mailto:slloyd@mit.edu
http://arxiv.org/pdf/math/0701907.pdf
arXiv:quant-ph/0508139

5

APPENDIX: THE OFFSET PARAMETER b

The matrixF̂ is not positive definite (the determinant of
the upper2 × 2 minor is negative). The positive eigenvalues
of F̂ are dominated by the positive eigenvalues ofK̂γ . To get
an idea of the single negative eigenvalue ofF̂ , which is re-
lated the offset parameterb, note that the eigenvalues of only
the matrixJ/trKγ areλstar± /O(M) = O(1/

√
M). Thus, the

negative eigenvalue of̂F is potentially too small to be resolved
by the phase estimation and the offset parameterb cannot be
determined. One way to handle this issue is to center the data.
Compute the centroid of the training data similar to the quan-
tum k-means algorithm shown in [14] (ignoring the labelsyj).
The re-centered training vectors are then used for the prepara-
tion of the kernel matrix and subsequent matrix inversion.

However, there exist cases for which the negative eigen-
value isO(1) and can thus be resolved by choosingǫK appro-
priately. To show this, use the property of the determinant for
block matrices, forλ < 1/(γtrKγ), to obtain for the charac-
teristic polynomial:

0 = det(F̂ − λ1M+1) = det(K̂γ − λ1M)f(λ), (11)

with the Schur complementf(λ) = −λ−1̂T (K̂γ−λ1M)−11̂,
where 1̂ = ~1/trKγ. Since K̂γ does not have any eigen-
values< 1/(γtrKγ), we investigate the relationf(λ) = 0
to obtain information about the single negative eigenvalue
λ−. Note thatf(−|λ|) = |λ| − 1̂T (K̂γ + |λ|1M)−11̂, and
1̂T (K̂γ + |λ|1M)−11̂ > 0 since K̂γ + |λ|1M is positive

definite. Note also that with the eigendecompositionK̂γ =
∑M

j=1
k̂j~kj~k

T
j , with the eigenvalues1/(γtrKγ) ≤ k̂j ≤ 1

and the corresponding normalized eigenvectors~kj , we have
(K̂γ + |λ|1M)−1 =

∑M
j=1

1

|λ|+k̂j

~kj~k
T
j . The problem be-

comes0 = |λ| −∑M
j=1

1

|λ|+k̂j

βj , with βj = (~kTj · 1̂)2, which

is equivalent to1 =
∑M

j=1
1

|λ|2+|λ|k̂j

βj . The special case

whenβj = O(1/M) occurs if the sum of components of~kj
is O(

√
M), for all j. Thus, the remainder of the terms in the

sum determining|λ| isO(1), becauseM O(1/M) terms need
to add up to1. In this case,λ− is O(1). Which avenue is to
be taken, centering the data or choosing a feasibleǫK , can be
determined by cross-validation [4]. That is, using part of the
training set for training and another part for classification to
determine the correctness of the resulting SVM classifier.

APPENDIX: ESTIMATING THE TRACE OF THE KERNEL
MATRIX

The trace of the kernel matrix can be efficiently evalu-
ated, similar to [14]. Generate the HamiltonianHtr =
∑M

j=1
|~xj ||j〉〈j| ⊗ σx from the quantum access to the

norms due to the training-data oracle. Applyinge−iHtrt to
the state|ψ〉 = 1/

√
M
∑M

j=1
|j〉|0〉 results in |ψ(t)〉 =

1/
√
M
∑M

j=1
(cos(|~xj |t)|j〉|0〉 − i sin(|~xj |t)|j〉|1〉). Choose

t such that|~xj |t ≪ 1, for all j, and measure the ancilla in the
|1〉 state. This succeeds with probability1/M

∑M
j=1

|~xj |2t2,

which allows the estimation of the trace ofK,
∑M

j=1
|~xj |2.

