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ABSTRACT
Cyber-physical systems increasingly rely on dynamically adap-
tive programs to respond to changes in their physical envi-
ronment; examples include ecosystem monitoring and dis-
aster relief systems. These systems are considered high-
assurance since errors during execution could result in in-
jury, loss of life, environmental impact, and/or financial loss.
In order to facilitate the development and verification of dy-
namically adaptive systems, we separate functional concerns
from adaptive concerns. Specifically, we model a dynam-
ically adaptive program as a collection of (non-adaptive)
steady-state programs and a set of adaptations that real-
ize transitions among steady state programs in response
to environmental changes. We use Linear Temporal Logic
(LTL) to specify properties of the non-adaptive portions of
the system, and we use A-LTL (an adapt-operator exten-
sion to LTL) to concisely specify properties that hold during
the adaptation process. Model checking offers an attractive
approach to automatically analyzing models for adherence
to formal properties and thus providing assurance. How-
ever, currently, model checkers are unable to verify prop-
erties specified using A-LTL. Moreover, as the number of
steady-state programs and adaptations increase, the verifi-
cation costs (in terms of space and time) potentially become
unwieldy. To address these issues, we propose a modular
model checking approach to verifying that a formal model of
an adaptive program satisfies its requirements specified in
LTL and A-LTL, respectively.
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1. INTRODUCTION
Cyber-physical systems increasingly rely on dynamically

adaptive programs to respond to changes in their physical
environment; examples include ecosystem monitoring and
disaster relief systems. These systems are considered high-
assurance since errors during execution could result in in-
jury, loss of life, environmental impact, and/or financial
loss. In this paper, we focus on the modeling and verifi-
cation phases of an aspect-oriented software development
approach to dynamically adaptive programs. In order to
manage the complexity of analyzing dynamically adaptive
systems, we leverage concepts used to promote and facili-
tate modular reasoning [13, 25, 28], including those specific
for aspect-oriented software [7], we separate the business (or
functional) logic from the adaptive logic. Specifically, we
model a dynamically adaptive program as a collection of
(non-adaptive) steady-state programs and a set of adapta-
tions that realize transitions among steady state programs
in response to environmental changes. This separation of
concerns enables us to reduce the complexity for modeling,
development, and verification purposes. We use Linear Tem-
poral Logic (LTL) to specify global invariants that describe
properties to be satisfied by the adaptive program through-
out its execution, and local properties that represent proper-
ties to be satisfied by a specific steady-state program. Addi-
tionally, we use A-LTL, an adapt-operator extension to LTL
that we previously developed [33], to concisely specify tran-
sitional properties that hold during the adaptation process.
Model checking offers an attractive approach to automati-
cally analyzing models for adherence to formal properties.
As the number of steady-state programs and adaptations
increase, however, the verification costs (in terms of space
and time) potentially become unwieldy. To that end, in
this paper, we propose a modular model checking approach
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to verifying that a formal model of an adaptive program
satisfies its requirements specified in LTL and A-LTL, re-
spectively. This approach reduces the verification cost by a
factor of n, where n is the number of steady-state programs
encompassed by the adaptive program.

Recently, model checking has been used to verify proper-
ties of adaptive software [1, 19, 31]. All of these approaches
verify global invariant properties and are able to verify local
properties. However, these approaches face several common
challenges: First, when the number of steady-state programs
encompassed by an adaptive program is large, the adaptive
program is usually too complex to be verified directly. Sec-
ond, incremental changes to the adaptive program require
the entire verification process to be repeated. Third, tran-
sitional properties cannot be verified by these approaches.
Verifying transitional properties poses a particularly chal-
lenging task because an adaptive program may adapt in an
infinite number of different sequences of steady state pro-
grams. Thus, the number of different transitional properties
is also infinite, which makes direct verifications computa-
tionally infeasible.

Modular model checking has been used to verify large
non-adaptive programs by decomposing the program into
smaller verification modules (e.g., [2, 8, 12, 15, 17, 18, 20,
22]). Several of these techniques [8, 17, 18, 20] use the
assume-guarantee paradigm [17, 18] to verify the modules.
Specifically, the assume/guarantee paradigm [17, 18] defines
assumptions as the conditions of the running environment
that are assumed to be true and guarantees as the assurances
provided by the program module under the assumptions. If
the guarantees imply the assumptions, then the program
module adheres to the properties being verified.

In this paper, we extended the assume/guarantee paradigm
to develop a modular model checking technique to verify that
a given adaptive program adheres to its LTL properties (i.e.,
local properties and global invariants) and A-LTL properties
(i.e., transitional properties). Our approach applies a sepa-
ration of concerns strategy for performing the model check-
ing within the assume/guarantee paradigm. Specifically,
we defined guarantees as the conditions satisfied by each
steady-state program without adaptation and assumptions
as the sufficient conditions that each steady-state program
must satisfy in order for the adaptive program to meet the
guarantees with adaptation. A given state’s obligations are
the union of its assumptions and guarantees. We leveraged
the extended version of the assume/guarantee paradigm to
develop three modular model checking algorithms that are
used to verify global invariants and transitional properties,
where local properties are verified as part of the transitional
property model checking algorithm.

Our approach, called AMOebA (Adaptive program MOd-
ular Analyzer) enables developers to verify that adaptive
programs adhere to requirements specified in LTL and A-
LTL, including transitional properties. Additionally, it re-
duces the complexity of verifying an adaptive program by a
factor of n, where n is the number of steady-state programs.
Moreover, additional or modified steady-state programs can
be verified in isolation without repeating the verification of
the entire adaptive program. As such, we apply the sep-
aration of concerns strategy both in the modeling and in
the verification process, thereby simplifying both steps. We
model and analyze properties of an adaptive TCP routing
protocol to illustrate AMOebA. The remainder of the paper

is organized as follows. In Section 2, we overview A-LTL,
describe the adaptive TCP routing protocol, and provide
additional detail on the verification challenges of adaptive
programs. Section 3 introduces a formal model for adap-
tive programs and describes the marking algorithm used by
our model checking algorithms. Section 4 details our model
checking algorithms, states important properties of the pro-
posed algorithms, and applies the algorithms to the adaptive
TCP routing protocol. Section 5 discusses the scalability of
our approach. Related work is described in Section 6. Sec-
tion 7 concludes this paper and briefly discusses our future
directions.

2. SPECIFYING ADAPTIVE SYSTEMS
In this section, we overview A-LTL, describe a simplified

version of an adaptive TCP routing protocol, and discuss
the verification challenges posed by adaptive programs. The
adaptive TCP routing protocol was developed for RAPID-
ware [27], an Office of Naval Research project that provides
concrete applications for adaptive program verification chal-
lenges and is also used to illustrate our proposed solution.

2.1 A-LTL
Previously, we introduced the A-LTL (Adapt-operator ex-

tended LTL) [33] to specify the properties to be satisfied for

adaptive systems. More specifically, we write φ
Ω
⇀ψ, where

φ, ψ, and Ω are three LTL formulae, to mean that an execu-
tion initially satisfies φ; in a certain state A, it stops being
constrained by φ, and in the next state B , it starts to satisfy
ψ, and the two-state sequence (A,B) satisfies Ω.

In practice, we have found A-LTL to be more convenient
than LTL in specifying various adaptation semantics [33].
For example, if we want to express adapting from a program
satisfying !(A→♦B) to a program satisfying !(C→♦D),
then in A-LTL we write

!(A→♦B)⇀!(C→♦D),

which directly captures the intent. The equivalent LTL for-
mula is

(A→♦(B∧♦!(C→♦D)))U (!(C→♦D),

which is much more cumbersome and potentially confusing.1

We have proved that while A-LTL and LTL have the same
expressive power, A-LTL is at least exponentially more suc-
cinct than LTL in specifying transitional properties (even
when Ω ≡ true) [32].

Semantics.
We define A-LTL semantics over both finite state sequences

(denoted by“|=fin”) and infinite sequences (denoted by“|=inf ”).
• Operators (→, ∧, ∨, !, ♦, U , !, etc) are defined simi-

larly as those defined in LTL.
• If σ is an infinite state sequence and φ is an LTL for-

mula, then σ satisfies φ in A-LTL if and only if σ sat-
isfies φ in LTL.

• If σ is a finite state sequence and φ is an A-LTL for-
mula, then σ |=fin φ if and only if σ′ |=inf φ, where σ′

1It is a common misunderstanding that the adapt operator
in A-LTL can be simply replaced by the next or until oper-
ator in LTL. We have previously proved [32] that it is not
the case.
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is the infinite state sequence constructed by repeating
the last state of σ.

• σ |=inf φ
Ω
⇀ψ if and only if there exists a finite state

sequence
σ′ = (s0, s1, · · · sk ), and an infinite state sequence
σ′′ = (sk+1, sk+2, · · · ), such that σ = σ′ % σ′′, σ′ |=fin φ,
σ′′ |=inf ψ, and (sk , sk+1) |=fin Ω, where φ, ψ, and Ω
are A-LTL formulae, and the % is the sequence con-
catenation operator.
We can use Ω = InP1 to specify that the adaptation
transition must emit from a state within the program
P1. For simplicity, in this paper we assume Ω ≡ true

and write φ⇀ψ instead of φ
Ω
⇀ψ. However, our ap-

proach also applies to cases where Ω can be an arbi-
trary LTL formula [32].

In general, in an adaptive program with n steady-state
programs P1,P2, ...Pn , any execution σj with a sequence of
(k−1) steps of adaptations, starting from Pj1 , going through
Pj2 , · · ·Pjk must satisfy the following transitional property

LPj1⇀LPj2⇀LPj3 · · ·⇀LPjk , where ji &= ji+1.

Each LPi is a local property for program Pi . Note that
each different adaptation sequence corresponds to a different
transitional property.

2.2 Adaptive TCP Routing
The adaptive TCP routing protocol is a network proto-

col involving adaptive middleware in which a node balances
the network traffic by dynamically choosing the next hop
for delivering packets. We assume two types of next hop
nodes: trusted and untrusted. The protocol can be imple-
mented for two different configurations: safe and normal.
In “safe” configuration, only trusted nodes are selected for
packet delivery, and in “normal” configuration, both types
are used in order to maximize throughput. Any packet must
be encrypted before being transferred to an untrusted node.
We consider the program running in the safe and normal
configurations to be two steady-state programs P1 and P2,
respectively.

Figure 1 depicts an elided portion of the finite state ma-
chines for the adaptive protocol; parameters have been omit-
ted for brevity. The upper rectangle of Figure 1 depicts P1.
Initially, P1 is in the ready1 state, in which, P1 may receive
a packet and move to state received1. At this point, P1

searches for a trusted next hop and moves to state routed1
when one is found. Then P1 sends the packet to the trusted
next hop and returns to the ready1 state. The lower rect-
angle in Figure 1 illustrates P2. The ready2 and received2
states are similar to those in P1. In state received2, the next
hop may be either an untrusted or a trusted node. If the
next hop is a trusted node, then P2 moves to the routed2-
safe state. If the next hop is not trusted and the packet is
not encrypted, then P2 moves to the routed2-unsafe state.
From state routed2-unsafe, P2 encrypts the packet and goes
to the routed2-safe state. Four adaptive transitions are de-
fined between P1 and P2: a1, a2, a3, and a4. The adap-
tive routing protocol uses the adaptive transitions to switch
between steady state programs in response to changing re-
source levels because P1 has less throughput than P2.

The global invariants and local properties of the adaptive
program are specified in linear temporal logic (LTL) [29].
For the adaptive routing protocol, a global invariant is that

ready2 routed2−
unsafe

routed2−
safe

ready1 received1

  for trusted
  next hop

do search 

sentPacket()/
sent=true; received=false;
ready=true

/ready = true sendPacket()/sent=true; received=false; ready=true

routed1
[trusted()==true]

[(trusted()==false &&
  encrypted()==false]

/ready = true

a1 a2 a3 a4

[trusted()==true ||
encrypted() == true]

encryptPacket()

received2

  for next
  hop

do search 
received = true;
receivePacket()/

sent = false
ready = false;

received = true;
receivePacket()/

ready = false;
sent = false

P1: Safe Configuration

P2: Normal Configuration

Figure 1: Case study: adaptive routing protocol

the program should not drop any packet throughout its ex-
ecution, i.e., after it receives a packet, it should not receive
the next packet before it sends the current packet. Formally
in LTL:

inv = !(received ⇒ (!ready U sent)).

Additionally, we define local properties for each steady state
program. For P1, we require the system to never use an
untrusted (unsafe) next hop. Formally in LTL, we write

LP1 = !(!unsafe).

where unsafe ≡ trusted() == false. For P2, we require the
system to encrypt a packet before sending the packet if the
next hop is not trusted. Formally in LTL, we write

LP2 = !(unsafe ⇒ (!sent U encrypted)).

For an execution of an adaptive program, if it adapts
(i.e., the control flow changes) among the steady-state pro-
grams of the adaptive program, then the execution must
sequentially satisfy the corresponding local properties of the
steady-state programs in the same order.

In the adaptive routing protocol, we express the transi-
tional property that must be satisfied by executions adapting
from P1 to P2 with the A-LTL formula LP1⇀LP2, and the
transitional property that must be satisfied by executions
adapting from P1 to P2 and back to P1 with the A-LTL
formula LP1⇀LP2⇀LP1, etc.

2.3 Verification Challenges
Several model checking techniques have been proposed for

adaptive systems. We overview work in this area with a
focus on the types of properties analyzed and the time and
space complexity of the approaches.
Global invariants. Allen et al [1] used model checking
to verify that an adaptive program adapting between two
steady-state programs satisfy certain global properties. While
they do not explicitly address adaptations of n-plex adap-
tive programs (for n > 2), a straightforward extension could
be to apply pairwise model checking between each pair of
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steady-state programs, separately. A drawback of the pair-
wise extension is that it requires n2 iterations of model
checking for a program with n steady-state programs.

A solution proposed by Magee [26], called the monolithic
approach [8], treats an adaptive program as a general pro-
gram and directly verifies the adaptive program against its
global invariants. As with many model checking techniques,
the monolithic approach encounters the state explosion prob-
lem: it is mostly limited by the large amount of memory
required by the computation [9]. Also, the monolithic ap-
proach is not designed for incremental adaptive software de-
velopment or verification, and therefore cannot reuse verifi-
cation results.
Transitional Properties. Verifying transitional proper-
ties is an even more challenging task. Since executions of
an adaptive program may adapt within its set of steady-
state programs in an infinite number of different sequences,
the number of different transitional properties is also infi-
nite. Therefore, it is impossible to verify each transitional
property separately. To the best of our knowledge, no exist-
ing approaches address the transitional property verification
problem defined in this paper.

To address the above problems, we propose a modular
model checking approach for adaptive programs against their
global invariants and transitional properties that not only re-
duces verification complexity by a factor of n, where n is the
number of steady-state programs, but also further reduces
verification cost by supporting verification of incrementally
developed adaptive software.

3. FORMAL MODELS
In this section, we first introduce a formal model for adap-

tive programs. Specifically, we use a finite state machine to
represent an adaptive system. Then we introduce several no-
tations, algorithms, and a data structure needed to support
the modular model checking. Specifically, a key part of our
modular model checking approach is the marking algorithm
used to annotate each state with guarantees and assump-
tions. The marking algorithms typically used for analyzing
non-adaptive programs are not sufficient because: (1) they
do not support A-LTL properties and (2) it is assumed that
the initial states of the program all satisfy the same property,
whereas the initial state of each of our steady-state programs
must satisfy a potentially different local property. There-
fore, in order to build a modular model checker for adaptive
programs: (1) we translate LTL and A-LTL properties to
partitioned normal form, the notation used to express obli-
gations; (2) we extend the property automata construction
algorithm to support A-LTL properties; and (3) we create a
new marking algorithm specifically for adaptive programs.

Simple and Adaptive Programs.

Given a set of atomic propositions AP , a finite-state ma-
chine (FSM) is a tuple M = (S ,S0,T ,L), where S is a set
of states, transitions T : S × S is a set of state pairs, where
(s, t) ∈ T represents that there is an arc from s (the pre-
decessor) to t (the successor). The initial state set S0 ⊆ S
is a subset of the states. The function L : S → 2AP labels
each state s with a set of atomic propositions that are eval-
uated true in s. We represent the states, the transitions, the
labels, and the initial states of a given labeled transition sys-
tem M with S(M ), T (M ), L(M ), and S0(M ), respectively.

An FSM is an extended FSM (EFSM) if it does not contain
a deadlock state.

We define the composition of two programs comp(Pi ,Pj )
to be a program with all the states and transitions in Pi and
Pj , and with initial states coming from only Pi :

comp(Pi ,Pj ) = (S ,S0,T ,L), where

S = S(Pi) ∪ S(Pj ), T = T (Pi) ∪ T (Pj ),

L = L(Pi) ∪ L(Pj ), and S0 = S0(Pi).

The comp operation can be recursively extended to accept
a list of programs:

comp(Pi1 ,Pi2 , · · ·Pin ) = comp(comp(Pi1 ,Pi2),Pi3 , · · · ,Pin ).

Similarly, we define the union of two programs union(Pi ,Pj )
to be a program with all the states, transitions, and initial
states from Pi and Pj .

union(Pi ,Pj ) = (S ,S0,T ,L), where

S = S(Pi) ∪ S(Pj ), T = T (Pi) ∪ T (Pj ),

L = L(Pi) ∪ L(Pj ), S0 = S0(Pi) ∪ S0(Pj ).

The union operation can be extended to accept a list of
programs:

union(Pi1 ,Pi2 , · · ·Pin ) = union(union(Pi1 ,Pi2),Pi3 , · · · ,Pin ).

A simple adaptive program SAi,j from program Pi to Pj

includes the source program Pi , the target program Pj ,
and the adaptation set Ai,j that comprises the intermedi-
ate states and transitions connecting Pi to Pj . Formally, we
define the simple adaptive program from program Pi to Pj

to be the composition

SAi,j = comp(Pi ,Pj ,Ai,j ).

We formally model an n-plex adaptive program as an EFSM
that contains n steady-state programs P1,P2, · · · ,Pn , each
of which is an EFSM, and there exist adaptations among the
Pis. Thus, an n-plex adaptive program M contains the union
of all the states, transitions, and initial states of n steady-
state programs and the corresponding adaptation sets. For-
mally:

M = comp(union(P1, · · · pn), union(A1,2,A1,3, · · ·An,n−1)).

An execution of an n-plex adaptive program M is an
infinite state sequence s0, s1, s2 · · · such that si ∈ S(M ),
(si , si+1) ∈ T (M ), and s0 ∈ S0(M ) (for all i ≥ 0). A non-
adaptive execution is an execution s0, s1, s2 · · · , such that all
its states are within one program si ∈ Pj , for all si and some
Pj . An adaptive execution goes through one or more adap-
tation transitions, and two or more steady-state programs.

For an A-LTL/LTL formula φ, an execution sequence σ
of an adaptive program satisfies φ if and only if σ |= φ.
Conventionally, we say a state s of an adaptive program
satisfies a formula φ (i.e., s |= φ) if and only if all execution
paths initiated from s satisfy φ. And an adaptive program
M satisfies φ (i.e., M |= φ), if and only if all its initial states
satisfy φ. In addition, for convenience, we define a formula
mapping function Ψ : S0→ A-LTL/LTL that assigns each
initial state a formula. We say M satisfies Ψ (i.e., M |= Ψ),
if for any initial state s0 ∈ S0(M ), we have s0 |= Ψ(s0).
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Algorithms and Data Structure.
For the interested reader, the appendix contains the for-

mal notations, algorithms, and basic data structures that
are required by our model checking algorithm. In general,
we define an obligation of a state s of a program P to be
a necessary condition that the state must satisfy in order
for the program to satisfy a given temporal logic formula
ρ. The appendix describes the Partitioned Normal Form
(PNF) that is used to propagate the obligations for analy-
sis. Intuitively, the algorithm first marks the initial states of
P with obligation ρ, then the obligations of each state are
propagated to its successor state(s) in such a way that pre-
serves the necessary conditions along the propagation paths.
If a state is reachable from the initial states from multiple
paths, then the obligations of the state is the conjunction of
the necessary conditions propagated to the state along all
these paths.

3.1 Property Automaton
Bowman and Thompson’s [4] tableau construction algo-

rithm first creates a property automaton based on an initial
formula φ, and then constructs the product automaton of
the property automaton and the program. Their approach
is suited for verifying that all initial states satisfy the same
initial formula. However, our model checking algorithm re-
quires us to mark program states with necessary/sufficient
conditions for different initial states to satisfy different ini-
tial formulae. Therefore, we extend their property automa-
ton construction algorithm for our purpose as follows.

New property automaton construction algorithm:
A property automaton is a tuple (S ,S0,T ,P ,N ), where S
is a set of states. S0 is a set of initial states where S0 ⊆ S .
T : S → 2S maps each state to a set of next states.
P : S → proposition represents the propositional conditions
that must be satisfied by each state. N : S → formula rep-
resents the conditions that must be satisfied by all the next
states of a given state.

Given a set of A-LTL/LTL formula Φ, we generate a prop-
erty automaton PROP(Φ) with the following features:

• For each member φ ∈ Φ, create an initial state s ∈ S0

such that P(s) = true, N (s) = φ.
• For each state s ∈ S , let the PNF of N (s) be

(pe∧empty)∨
W

i(pi∧©qi), then it has a successor s ′i ∈
S for each pi field with P(s ′i ) = pi and N (s ′i ) = qi .

A path of a property automaton is an infinite sequence of
states s0, s1, · · · such that s0 ∈ S0, sn ∈ S , and si , si+1 ∈ T ,
for all i (0 ≤ i < n). We say a path of a property automa-
ton s0, s1, · · · , simulates an execution path of a program
s ′1, s

′
2, · · · , if P(si) agrees with s ′i for all i (0 < i). We say a

property automaton accepts an execution path from initial
state s ∈ S0, if there is a path in the property automaton
starting from s that simulates the execution path. It can be
proved [32] that the property automaton constructed above,
from initial state s ∈ S0, accepts exactly the set of execu-
tions that satisfy N (s).2

3.2 Product Automaton Construction
and Marking

Our algorithm handles the case when each initial state of a
program P is required to satisfy a different A-LTL/LTL for-

2We ignore the eventuality constraint [30] (a.k.a self-
fulfillment [24]) at this point. However, later steps will en-
sure eventuality to hold in our approach.

mula. Given a program P = (SP ,SP
0 ,TP ,LP ) and a formula

mapping function Ψ : SP
0 →A-LTL/LTL, we use the following

algorithm to mark the states of P with sufficient/necessary
conditions in order for P to satisfy Ψ.

A product automaton is defined to be a tuple:
Q = (SQ ,SQ

0 ,TQ), where SQ is a set of states with two
fields: (pstate,nextform). The pstate field represents one
state of program P . The nextform field contains an A-
LTL/LTL formula declaring what should be true in the next
state. SQ

0 is a set of initial states, SQ
0 ⊆ SQ . TQ is a set

of transitions, TQ : SQ × SQ . Given a program automaton
P , and a mapping function Ψ from its initial states to a set
of A-LTL/LTL formulae, we generate a product automaton
PROD(P , Ψ) as follows:

1. Calculate the relational image of the initial states of P
under the mapping function Ψ.

Φ = {φ | ∃ s ∈ S0, φ = Ψ(s)}.
2. Construct a property automaton PROP(Φ) with the

set of initial formulae Φ using the property automaton
construction algorithm introduced in Section 3.1.

3. For each initial state of the program si ∈ SP
0 , add a

pseudo program state psi (a program state that was
not originally in the state space SP ) and a transition
(psi , si) to P , and label psi with LP (psi) = true.

4. For each pseudo program state psi , create an initial
product state sQ

0 , where sQ
0 ∈ SQ

0 and sQ
0 = (psi , φ).

5. Create the cross product of P and PROP(Φ) from the
above initial states [30, 4].

Marking states: Given a program P and an initial for-
mula mapping function Ψ, we first construct the product
automaton PROD(P , Ψ), then we construct the marking of
each program state MARK (s) to be the set of nextform fields
of states in PROD(P , Ψ) that correspond to s. Our mark-
ing algorithm generates the function MARK over selected
states. We also applied optimizations to the algorithm so
that we do not need to store the entire product automaton.
Further details about the algorithm are available in [32].

The markings generated by the marking algorithm con-
tribute to the assumptions and guarantees in our model
checking approach. Specifically, the marking of a state con-
tains the necessary conditions that the state must satisfy in
order for the program to satisfy Ψ.

Theorem 1. For a program P with initial states S0 and
an initial formula mapping function Ψ, let MARK be the
marking for the states generated using the marking algorithm
above, and let θ be the conjunction of the marking of a state
s, θ =

V
MARK (s), then P satisfies Ψ implies that s satis-

fies θ. That is

(P |= Ψ) ⇒ (s |=
V

MARK (s)).

Proof. The proof is described in [32].

Additionally, for a state s, if s satisfies all the formulae in
the marking of s, then all paths starting from si ∈ S0 going
through s satisfy Ψ(si).

Theorem 2. For a program P with initial states S0 and
an initial formula mapping function Ψ, using the marking
procedure above, for any state s of P, let θ be the conjunc-
tions of all the marking of s: θ =

V
MARK (s), then s sat-

isfies θ implies all paths of P starting from si ∈ S0, going
through s satisfy Ψ(si).

Proof. The proof is described in [32].
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3.3 Interface Definition
We use an interface structure to record assumptions and

guarantees. An interface I of a program is a function from
a program state to a set of A-LTL formulae.

I : S(P)→ 2A-LTL/LTL.

We can compare two interfaces IG and IA with an ⇒ oper-
ation, which returns true if and only if for all states s, the
conjunction of the formulae corresponding to s in IG implies
the conjunction of the formulae corresponding to s in IA.

IG ⇒ IA ≡ ∀ s : S(P), IG(s) ⇒ IA(s).

We also define a special top interface 1, which will serve as
the initial value in the model checking algorithms presented
in the next section:

1 = λ(x : S(P)).true.

4. MODULAR VERIFICATION
Next, we present the new modular model checking algo-

rithms that can be used to analyze adaptive programs. Re-
call that the general approach is to verify that: (1) each
steady state program adheres to its local properties; (2) the
global invariants hold for the adaptive program regardless
of adaptations; and (3) when the program adapts within its
steady-state programs, the corresponding transitional prop-
erties are satisfied.
Formal Verification Problem Statement.

Assume that we are given an n-plex adaptive program M
with steady-state programs P1,P2, · · · ,Pn , and adaptation
sets Ai,j , for some i , j (i &= j ). Also assume that we are
given a local property φi for each steady-state program, and
global invariant properties INV for the n-plex adaptive pro-
gram M , all written in LTL. We want to verify the following
properties by model checking:

• For an arbitrary execution σi initiated from program
Pi1 , with k − 1 (k ≥ 2) times of adaptation through
Pi2 ,Pi3 , · · ·Pik where ij &= ij+1 satisfies

φi1⇀φi2 · · ·⇀φik ,
that is sequentially satisfying φi1 · · ·φik .

• Any execution of M with k (k ≥ 0) times of adaptation
satisfies INV .

4.1 Modular Model Checking Algorithms
In the following, we present three modular model checking

algorithms for adaptive programs and then apply them to
the verification of the adaptive routing protocol. The first
algorithm checks whether a simple adaptive program satis-
fies its transitional property. The second algorithm extends
the first algorithm in order to check the transitional prop-
erties of an n-plex adaptive program. The third algorithm
checks the global invariants of an n-plex adaptive program.
All three algorithms have four key steps:

1. Verify base conditions: Use a traditional model
checker to verify that each steady-state program ad-
heres to a set of base conditions.

2. Compute guarantees: Use the marking algorithm to
annotate each state of each steady-state program with
guarantees that are satisfied by those states when there
is no adaptation. These guarantees can be inferred
from the base conditions and the conditions identified
as true for each state in the original model. AMOebA
stores the guarantees in interface structure IG .

3. Compute assumptions: Use the marking algorithm
to annotate each state of the steady-state programs
with assumption that must be satisfied by the state
in order for the adaptive program to satisfy the guar-
antees. AMOebA stores the assumptions in interface
structure IA.

4. Compare guarantees with assumptions: Com-
pare interface IA to interface IG . If the guarantees
imply the assumptions, then the process returns suc-
cess. Otherwise, it returns with a counterexample.

4.1.1 Simple Adaptive Programs
We first introduce the modular model checking procedure

for a simple adaptive program. Given a source program Pi ,
a target program Pj , an adaptation set Ai,j , a source lo-
cal property φi , a target local property φj , and an adaptive
constraint Ωi,j , the algorithm determines whether the adap-

tation from Pi to Pj through Ai,j satisfies φi
Ωi,j
⇀ φj , that is,

changes from satisfying φi to satisfying φj .

ALGORITHM 1: Transitional properties for simple
adaptive programs

input Pi , Pj : EFSM
input Ai,j : FSM
input φi , φj , Ωi,j : LTL
output ret: boolean
local IA, IG : Interface
begin
0. Initialize : Initialize two interfaces.

IA := #
IG := #

1. Verify base conditions :
• Verify programs Pi and Pj against properties φi and

φj locally using traditional LTL model checking.
2. Compute guarantees :

• Construct marking MARK by running the marking al-
gorithm on Pj with initial formula φj .

• Calculate the state intersection tosi of Ai,j and Pj ,
where tos stands for target of outgoing adaptation states.

tosi := S(Ai,j ) ∩ S(Pj )
• Construct interface IG such that the conditions associ-

ated with states in tosi are the same as their markings
in MARK , and the conditions associated with states
not in tosi are true:

IG := λ(x : State).(if x ∈ tosi

then MARK (x)

else true endif )

3. Compute assumptions :
• Construct marking MARK ′ by running the marking

algorithm on Pi with initial formula φi .
• Calculate the state intersection sosi of Pi and Ai,j ,

where sos stands for source of outgoing adaptation state.
• Construct marking MARK ′′ by running the marking al-

gorithm on Ai,j with the initial formula mapping func-
tion Ψ as follows:

(a) For each s ∈ sosi , a formula (x
Ωi,j
⇀ φj ) is a conjunct

of Ψ(s) iff x ∈ MARK (s)′.
• Construct interface IA such that

IA := λ(x : State).(if x ∈ tosi (1)

then MARK ′′(x)

else true endif )

4. Compare guarantees with assumptions :
Compare IG and IA, ret := IG ⇒ IA.

end
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4.1.2 N -plex Adaptive Programs
This algorithm extends the previous algorithm to a gen-

eral n-plex adaptive program M . Given a set of steady-
state programs Pi , a set of adaptation sets Ai,j , a set of
local properties φi , and a set of adaptive constraints Ωi,j ,
the algorithm determines

1. For all i &= j , whether the adaptation from Pi to Pj

through Ai,j satisfies φi
Ωi,j
⇀ φj , that is, changes from sat-

isfying φi to satisfying φj .

2. Whether any execution from Pj1 , going through

Pj2 ,Pj3 , · · ·Pjk (ji &= ji+1) satisfies φj1

Ωj1,j2⇀ φj2 · · ·φjk , that
is, sequentially satisfying φj1 · · ·φjk .

This algorithm repeatedly applies Algorithm 1 to each
single adaptation from Pj1 to Pjk . As some of the marking
and comparison operations overlap, the algorithm is opti-
mized by removing the redundancies.

ALGORITHM 2: Transitional property for n-plex
adaptive programs

input Pi (i = 1 · · ·n): EFSM
input Ai,j (i , j = 1 · · ·n): FSM
input φi , Ωi,j (i , j = 1 · · ·n): LTL.
output ret: boolean
local IA, IG : Interface
begin
0. Initialize : Initialize two interfaces.

IA := #
IG := #
For each program Pi
1. Verify base conditions :

• Verify programs Pi , against properties φi locally
with traditional LTL model checking.

2. Compute guarantees :
• Generate markings MARK by running the marking

algorithm on Pi with initial formula φi .
• Calculate the state intersection tisi of Pi and Aj ,i

for all j '= i , where tis stands for target of incoming
adaptation states.

• Update interface IG with I ′G such that the condi-
tions associated with states in tisi are the conjunc-
tion of their values in IG and their markings in
MARK , and the conditions associated with states
not in tisi are those in IG ;

I ′G := λ(x : State).(if x ∈ tisi

then MARK (x) ∧ IG(x)

else IG endif )

3. Compute assumptions :
• For each j '= i , do

(i) Calculate the state intersection sosi,j of Pi and
Ai,j .

(ii) Construct marking MARK ′ by running the mark-
ing algorithm on Ai,j with initial formula map-
ping function Ψ as follows:

For each s ∈ sos, a formula (x
Ωi,j
⇀ φj ) is a conjunct

of Ψ(s) iff x ∈ MARK (s).
(iii) Calculate the state intersection tosi,j of Pj and

Ai,j .
(iv) Update interface IA with I ′A such that

I ′A := λ(x : State).(if x ∈ tosi,j

then MARK ′(x) ∧ IA(x)

else IA(x) endif )

4. Compare guarantees with assumptions :
Compare IG and IA, ret := IG ⇒ IA.

end

4.1.3 Global Invariants
Given a set of steady-state programs Pi , a set of adapta-

tion sets Ai,j , and a global invariant INV , the global invari-
ant model checking algorithm determines whether all ex-
ecutions of an n-plex adaptive program satisfy the global
invariant INV .

ALGORITHM 3: Global invariants
input Pi (i = 1 · · ·n): EFSM
input Ai,j (i , j = 1 · · ·n): FSM
input INV : LTL
output ret: boolean
local IA, IG : Interface
begin
0. Initialize : Initialize two interfaces.

IA := #
IG := #

For each program Pi
1. Verify base conditions :

• Verify programs Pi against global invariants INV
with traditional LTL model checking.

2. Compute guarantees :
• Construct the program composition

Ci = comp(Pi , union(Ai,1,Ai,2, ·Ai,n )).
• Construct marking MARK by running the marking

algorithm on Ci with initial formula INV .
• Calculate the target states of all incoming transi-

tions tisi = Pi ∩Aj ,i for all j '= i .
• Update interface IG with I ′G such that the condi-

tions associated with states in tisi are the same
as the conjunction of their values in IG and their
markings in MARK , and the conditions associated
with states not in tisi are the values in IG ;

I ′G = λ(x : State).(if x ∈ tisi

then MARK (x) ∧ IG(x)

else IG endif )

3. Compute assumptions :
• Calculate the state intersection tosi of Ai,j and Pj

for all j '= i
• Update interface IA with I ′A such that

I ′A = λ(x : State).(if x ∈ tosi

then MARK (x) ∧ IA(x)

else IA(x) endif )

4. Compare guarantees with assumptions :
Compare IG and IA, ret := IG ⇒ IA

end

4.2 Adaptation Model Checking Process
Given an n-plex adaptive program, the overall process to

verify its local properties, transitional properties, and global
invariants are as follows.

1. Use traditional model checking approach to verify each
steady-state program against its local properties and the
global invariants locally.

2. Apply Algorithm 2 to verify transitional properties for
the adaptive program.

3. Apply Algorithm 3 to verify global invariants for the
adaptive program.

We illustrate this process by verifying the adaptive routing
protocol adheres to its local properties, transitional proper-
ties, and global invariants (Section 2).
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4.2.1 Applying Algorithm 2
First, we apply Algorithm 2 to verify the transitional

properties for the adaptive routing protocol. Figure 2 de-
picts the markings that result from verifying the transitional
properties for both P1 and P2. Specifically, the guarantee
markings created in step 2 are prefixed with “g.*”. The as-
sumption markings created in step 3 are prefixed with“a.*”.
Both sets of markings are annotated in the state in braces.

1. Verify base conditions. We use Spin to model check
the local properties, LP1 and LP2.

2. Compute guarantees. Next, we use the marking algo-
rithm to annotate each state of the steady-state programs
with obligations. We compute guarantees by marking the
initial states with local properties.

ready2

ready1

[(trusted()==false &&
  encrypted()==false]

routed2−
safe

[trusted()==true ||
encrypted()==true]

received = true;
ready = false;

receivePacket()/

received = true;
ready = false;

receivePacket()/
{g.LP2 /\
  ! sent U 
    encrypted}

{g.[] ! unsafe
a.(LP2       LP1) /\
  (! sent U encrypted
         LP1)}

/ready = true sendPacket()/sent=true; received=false; ready=true

[trusted()==true]

/ready = true

a1 a2 a3 a4

received1

received2

sentPacket()/
sent=true; received=false;
ready=true

routed1

routed2−
unsafe

sent = false

sent = false

P1: Safe Configuration

P2: Normal Configuration

encryptPacket()

{g.[] ! unsafe} {g.[] ! unsafe}

{g.LP2} {g.LP2}

{g.LP2}

Figure 2: Markings for transitional properties

3. Compute assumptions. In this step, we start from
the guarantee markings generated in the previous step. For
each state in a steady-state program Pi with outgoing adap-
tive transitions going towards program Pj , we generate an
obligation φ⇀LPj from each condition φ in its guarantee
marking, where LPj is the local property for Pj . Then we
propagate the generated obligations to the states in Pj along
the adaptive transitions to form their assumption markings.
For example, the guarantee marking for routed2-unsafe is
LP2 and (!sent U encrypted). From this marking, we gen-
erate obligations LP2⇀LP1 and (!sent U encrypted)⇀LP1,
respectively. These obligations are propagated to the state
routed1, then we create the assumption marking LP2⇀LP1

and (!sent U encrypted)⇀LP1 for routed1. We repeat this
process for all states in P1 and P2 with outgoing adap-
tive transitions, and the resulting assumption markings are
shown in Figure 3, prefixed with a.*.

4. Compare guarantees with assumptions. In the
adaptive routing protocol, we find that the guarantee for
state routed1 (LP1) does not imply the condition
(!sent U encrypted) ⇀LP1 in its assumption. This assump-
tion condition requires the obligation encrypted to be sat-
isfied before the adaptation, while the guarantee does not

ensure this obligation. Therefore, the model checking for
the transitional property fails. As such, we generate a coun-
terexample showing a path that violates the transitional
properties. In this example, we return the trace (ready2,
received2, routed2-unsafe, routed1). Clearly, the failure is
caused by the adaptive transition a3 (from routed2-unsafe
to routed1). We remove a3 from the adaptive program and
repeat steps (3) and (4). The algorithm returns success.

4.2.2 Applying Algorithm 3
Next, we apply Algorithm 3 to verify the global invari-

ants. Figure 3 depicts the markings that result from veri-
fying the global invariants for both P1 and P2. Specifically,
the guarantee markings created in step 2 are prefixed with
“g.*”. The assumption markings created in step 3 are pre-
fixed with “a.*”.

1. Verify base conditions. We use Spin to determine
that both P1 and P2 satisfy the invariant inv (page 3).

2. Compute guarantees. In the adaptive routing proto-
col, since P1 satisfies inv , we conclude that state ready1
satisfies inv , therefore, we mark ready1 with the obliga-
tion inv . Then we propagate this obligation to its successor
state(s) received1 as follows: First, it satisfies inv . Sec-
ond, since received is true in the state, it must also sat-
isfy !ready U sent . Therefore, we mark received1 with obli-
gations inv and !ready U sent . Similarly, we compute the
guarantees for the rest of the states.

ready2
[(trusted()==false &&
  encrypted()==false]

routed2−
unsafe

routed2−
safe

[trusted()==true ||
encrypted()==true]

received = true;
ready = false;

receivePacket()/

received = true;
ready = false;

receivePacket()/
ready1

{g.inv /\ 
  ! ready U sent
a.inv /\
  ! ready U sent}

{g.inv /\ 
  ! ready U sent
a.inv /\
  ! ready U sent}

{g.inv /\ 
  ! ready U sent}

{g.inv /\ 
  ! ready U sent
a.inv /\
  ! ready U sent}

/ready = true sendPacket()/sent=true; received=false; ready=true

routed1
[trusted()==true]

/ready = true

a1 a2 a4

received1

received2

sentPacket()/
sent=true; received=false;
ready=true

sent = false

sent = false

P1: Safe Configuration

P2: Normal Configuration

encryptPacket()

{g.inv} {g.inv}

{g.inv}

Figure 3: Markings for global invariant inv

3. Compute assumptions. In the adaptive routing pro-
tocol, we propagate the markings of received1 to state re-
ceived2 along the adaptive transition a1 and mark received2
with inv and !ready U sent . Our process ensures that the
assumption marking includes exactly the set of conditions
that received2 must satisfy in order for all executions start-
ing from ready1, taking adaptive transition a1, and tak-
ing no more adaptations, to satisfy the global invariant inv .
Similarly, we propagate the marking of routed1 to routed2-
unsafe, and from received2 to received1.
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4. Compare guarantees with assumptions. Next we
compare the guarantees with the assumptions. For each
state, if the conjunction of its guarantee marking logically
implies all the conditions in its assumption marking (checked
automatically), then the process returns success, otherwise,
it returns with a counterexample. For example, the guar-
antee marking for received2 indeed implies the assumption
marking for received2. This result implies that all execu-
tions starting from ready1, taking adaptive transition a1,
with no adaptation afterwards, satisfy inv . We perform the
comparison on every state of the steady-state programs with
incoming adaptive transitions. Successful comparisons guar-
antee that any execution starting from ready1 or ready2,
undergoing one step of adaptation, satisfies inv .

4.3 Incremental Model Checking
When a steady-state program Pi of the adaptive program

is changed after a successful model checking has been per-
formed, we only need to repeat Algorithm 2 and Algo-
rithm 3 on Pi (and/or related adaptations) to determine
whether the specification are still satisfied. Assume that if
after reapplying marking algorithm on Pi , we compute the
interfaces to be I ′A and I ′G , then

• if I ′G ⇒ IG and IA ⇒ I ′A, then we have I ′G ⇒ I ′A, then no
more model checking is required;

• if IA &⇒ I ′A, then the model checking for outgoing adap-
tations from Pi needs to be repeated;

• if I ′G &⇒ IG , then the model checking for incoming adap-
tations to Pi needs to be repeated.

The model checking results for all other parts still apply and
therefore are reused.

When a new steady-state program Pn+1 is incrementally
introduced to an n-plex adaptive program after the adaptive
program has been successfully verified with our algorithms,
we will need to model check Pn+1 and all the adaptations
going into and out of Pn+1.

4.4 Claims
The following theorems capture the claims that we make

as to how our approach addresses the verification problems
presented in Section 2.3.

Theorem 3. For a simple adaptive program from Pi to
Pj , if Algorithm 1 returns true, then

• All non-adaptive executions within Pi (or Pj ) satisfy
the local property φi (or φj ).

• All adaptive executions starting from Pi and adapting

to Pj satisfy φi
Ωi,j
⇀ φj .

Theorem 4. For an n-plex adaptive program M, if Al-
gorithm 2, returns true, then:

• All non-adaptive executions within a single steady-state
program Pi satisfy the local property of Pi .

• Any execution σj starting from Pj1 , going through
Pj2 , · · ·Pjk (ji &= ji+1) satisfies

φj1

Ωj1,j2⇀ φj2

Ωj2,j3⇀ φj3 · · ·
Ωjk−1,jk

⇀ φk .

Theorem 5. For an n-plex adaptive program M, if Al-
gorithm 3 returns true, then all execution paths of M sat-
isfy the global invariant INV .

Further details are provided in [32].

5. SCALABILITY AND COMPLEXITY
Briefly, we discuss AMOebA performance, including per-

formance and scalability. The algorithm introduced in Sec-
tion 4 stores in memory the guarantee and assumption mark-
ings of all the states in the adaptive program, which may
occupy a large amount of memory. However, in later steps,
only markings of the interface states are used. For the
AMOebA implementation, the required memory space is
significantly reduced by storing the markings for only the
interface states instead of for all the states during the mark-
ing computations [32].

AMOebA improves scalability of model checking adap-
tive programs by reducing the time/space complexity of
the model checking algorithms. We illustrate this point
by comparing our approach to the alternative approaches
that we described in Section 2.3, namely, the pairwise ap-
proach [1] and the monolithic approach [8, 26]. Assume an
n-plex adaptive program M contains steady-state programs
P1,P2, · · · ,Pn . We denote the size of the steady-state pro-
gram Pi as | Pi |, and we assume all steady-state programs
are of similar size | P |: | P |≈| Pi |, for all i . We assume
that the size of adaptive states and transitions are signif-
icantly smaller than the steady-state programs (which we
consider a key characteristic of adaptive software). Then we
have | M |≈ n ∗ | P |, where | M | is the size of M .

The results of comparison are displayed in Table 1, where
the key differences between the monolithic approach, pair-
wise approach, and our approach are bolded. Essentially,
the monolithic approach requires the same order of time,
but n times more memory space than AMOebA. The pair-
wise approach requires the same order of space, but requires
n times more execution time than AMOebA. Additionally,
AMOebA supports the verification of A-LTL properties and
can also be further optimized to verify incrementally devel-
oped software by reusing existing verification results.

Approach Time Space A-LTL
Complexity Complexity

AMOebA O(2|INV | | M |) O(2|INV | | P |) Yes

Monolithic O(2|INV | | M |) O(2|INV | | M |) No

Pairwise O(n(2|INV | | M |)) O(2|INV | | P |) No

Table 1: Model Checking Comparison

6. RELATED WORK
In this section, we discuss existing modular verification

techniques of non-adaptive programs and non-modular ver-
ifications of adaptive programs.

6.1 Modular Model Checking
Our work has been significantly influenced by several ex-

isting modular model checking approaches for non-adaptive
programs. In this section, we focus on the analysis of the dif-
ferences and relationships between our approach and other
modular verification approaches.

Krishnamurthi, et al [20] introduced a modular verifica-
tion technique for aspect-oriented programs. They model a
program as a finite state machine (FSM), where an aspect
is a mechanism used to change the structure of the program
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FSM. An aspect includes a point-cut designator, which de-
fines a set of states in the program, an advice, which is an
FSM itself, and an advice type, which determines how the
program FSM and the advice FSM should be composed.
By model checking the program and the aspect individu-
ally, they verify CTL properties of the composition of the
program and the aspect. In other work [11, 23], they intro-
duced modular model checking techniques for cross-cutting
features, which basically follows the same idea.

Our approach is largely inspired by their approach. The
two approaches share the following similarities: (1) The ob-
jective of both approaches is to decompose the model check-
ing of a large system into the model checking of smaller
modules. (2) We both use the traditional assume/guarantee
reasoning developed by Bowman and Thompson. (3) We
both define interface states and use conditions to mark these
states. Then we reason about the conditions among these
states to draw conclusions about the entire system. (4)
There are behavioral changes involved in both approaches,
although in different ways. (5) Neither of our approaches
are complete.

However, despite the similarities, the two approaches also
have significant differences, and their approach is not appli-
cable to our verification problems. (1) The most prominent
difference is the fundamental difference between the under-
lying structures for the temporal logics that we handle. CTL
is evaluated on states. The classic model checking method
for CTL is accomplished by using state marking [10]. Their
approach reused the classic CTL state marking algorithm
on interface states, which can be considered a natural ex-
tension to the basic CTL model checking idea. However,
LTL/A-LTL is evaluated on execution paths. Model check-
ing of LTL cannot be solved by marking its states. Rather,
tableau-based or automaton-based methods are convention-
ally used for path-based logic model checking. The challenge
overcome by our approach is to design a novel marking algo-
rithm to be applied to the interface states for a path-based
logic, which has not been previously published in the litera-
ture [32]. Our algorithm also deals with eventuality, which
is also a challenge for LTL/A-LTL, but not for CTL model
checking. (2) Our approaches also differ in the way the sys-
tem behavior may change. With their approach, one may
consider the behavioral change from the base to the feature
as an adaptation. They require the execution to change back
to the base, which behaves analogously to a stack. However
our approach enables arbitrary adaptation sequences, such
as an adaptation through a sequence of programs A to B
to C to A, etc. (3) Our approaches differ in the definition
of modules. In their approach, a module refers to a sepa-
rate (physical) piece of code, such as the base program or
a feature. However, in our approach, each module refers to
different behaviors. It may be exhibited by the same piece of
code under different modes, or different pieces of code. (4)
Finally, our approach supports the verification of A-LTL,
which has not been previously addressed.

Henzinger et al [15] proposed the Berkeley Lazy Abstrac-
tion Software verification Tool (BLAST) to support extreme
verification (XV). XV is modeled to be a sequence of pro-
gram and specifications (Pi , Φi), where Φi is the specifica-

tion for the ith version of the program Pi , and Φi are non-
decreasing, i.e., Φi ⊆ Φi+1. In order to reduce the cost

of each incremental verification when verifying the ith pro-

gram, they generate an abstract reachability tree Ti . When
model-checking Pi+1, they compare Pi+1 to Ti to deter-
mine the part of Pi+1, if any, should be re-verified. Our
approach differs in that they verify propositional, instead
of temporal logic properties. Also, their approach is for
general programs, while our incremental verification is opti-
mized specifically for adaptive programs. We consider their
approach to be complementary to ours because, in practice,
each steady-state program is developed incrementally from
some common base program. Their approach can verify the
local properties and global invariants of each steady-state
program locally for the base condition verification.

Alur et al [2] introduced an approach to model-checking
a hierarchical state machine, where higher-level state ma-
chines contain lower-level state machines. As the same state
machine may occur at different locations in the hierarchy, its
model checking may be repeated if we flatten the hierarchi-
cal state machine before applying traditional model check-
ing. Their objective is to reduce the verification redundancy
when a lower-level state machine is shared by a number of
higher level state machines. Their approach can be applied
to optimize our solution in that the steady-state programs
may share parts of their behavior (sub-state machines). We
can use their approach to reduce the redundancy when ver-
ifying the shared behavior.

Many others, including Kupferman and Vardi [22], Flana-
gan and Qadeer [12], have also proposed modular model
checking approaches for different program models. They fo-
cus on verifying concurrent programs, where modules are
defined to be concurrent threads (processes). We consider
their approaches to be orthogonal and complementary to our
approach.

6.2 Correctness in Adaptive Programs
Model checking has been applied to verify adaptive be-

havior by several researchers. Kramer and Magee [19] used
property automata to specify the properties for the adaptive
program and used LTSA to verify these properties. Allen
et al. [1] integrated the specifications for both the architec-
tural and the behavioral aspects of dynamic programs using
the Wright ADL. In our previous work [31], we introduced
a model-based adaptive software development process that
uses Petri nets to model the behavior, and then uses existing
Petri net-based model checking tools to verify these models
against interesting properties. None of the above approaches
address the verification problem modularly. Compared to
these approaches, AMOebA is less complex, more scalable,
and supports not only LTL, but also A-LTL. More details
regarding this comparison are given in Section 5.

Many others have also worked on providing assurance
to adaptive systems, several of which describe algorithms
to ensure that the system is in a quiescent state when a
component is removed. Chen et al [5] proposed a graceful
adaptation protocol that enables adaptations to be coordi-
nated across hosts transparently to the application. Ap-
pavoo et al [3] proposed a hot-swapping technique, i.e., run-
time object replacement. We have previously introduced a
safe adaptation protocol [34]. These approaches provide safe
adaptation protocols based on run-time dependency anal-
ysis, instead of model checking approaches as proposed in
this paper. Kulkarni et al [21] introduced an approach us-
ing proof-lattices to verify that all possible adaptation paths
do not violate global propositional constraints.
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7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a modular approach to model-

checking adaptive programs against their global invariants
and transitional properties expressed in LTL/A-LTL. A key
contribution of this approach is the ability to verify transi-
tional properties which, previously, had not been analyzable.
For validation purposes, we have implemented our approach
in a prototype model checker AMOebA using C++, and
have used the tool to verify a number of adaptive programs.

We note the potential for improving model checking per-
formance by combining our approach with existing tech-
niques [1, 2, 11, 12, 15, 16, 19, 20, 22, 23]. We are investigat-
ing strategies to combine our approach with others to further
reduce the complexity of adaptive program model checking.
Run-time verification of adaptive programs against their
global invariants and transitional properties [14] is also part
of our ongoing work [6].
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APPENDIX
A. PARTITIONED NORMAL FORM

In our work, we use the Partitioned Normal Form (PNF) [4]
notation introduced by Bowman and Thompson to handle
obligation propagation. We rewrite each A-LTL/LTL for-
mula into its PNF as follows:

(pe∧empty)∨
_

i

(pi∧©qi),

where pe stands for the proposition where empty is true (i.e.,
deadlock state), and pi depicts the proposition where the
next state satisfies qi (i.e., non-deadlock state). Formally,
pe, pi and qi satisfy the following constraints:

• pe and pi are all propositional formulae
• pi partitions true, i.e.,

W
i pi ≡ true and pi∧pj ≡ false

for all i &= j .
All A-LTL/LTL formulae can be rewritten in PNF by ap-
plying PNF-preserving rewrite-rules [4]. As the adapt oper-
ator is not included in the original paper by Bowman and
Thompson, we introduce the following A-PNF rewrite-rule:

φ
Ω
⇀ψ = (empty∧false)∨

_

i

_

j

(pφ
i ∧pΩ

j ∧peφ∧©((qΩ
j ∧ψ)∨(qφ

i ⇀ψ)))∨

_

i

(pφ
i ∧¬peφ∧©(qφ

i ⇀ψ)),

where φ and ψ are A-LTL/LTL formulae, and we use super-
scripts on pi , qi and pe to represent the formula from which
they are constructed. Since pe and pi are all propositions,
their truth values can be directly evaluated over the label of
each single state. Therefore, the obligations of a given state
can be expressed solely by a next state formula: the qi part
of a disjunct when the state has successor states, and/or
empty in case the state is a deadlock state.
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