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Abstract 

 

Enormous progress has been made on causal inference and modeling in areas outside of 

economics. We now have a full semantics for causality in a number of empirically relevant 

situations. This semantics is provided by causal graphs and allows provable precise formulation 

of causal relations and testable deductions from them. The semantics also allows provable rules 

for sufficient and biasing covariate adjustment and algorithms for deducing causal structure from 

data. I outline these developments, show how they describe three basic kinds of causal inference 

situations that standard multiple regression practice in econometrics frequently gets wrong, and 

show how these errors can be remedied. I also show that instrumental variables, despite claims to 

the contrary, do not solve these potential errors and are subject to the same morals. I argue both 

from the logic of elemental causal situations and from simulated data with nice statistical 

properties and known causal models. I apply these general points to a reanalysis of the Sachs and 

Warner model and data on resource abundance and growth. I finish with open potentially fruitful 

questions. 
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Introduction 

 

 Enormous progress has been made on causal inference and modeling outside of 

economics. Starting with work in artificial intelligence and philosophy of science (Pearl 2009, 

Sprites et. al 2000), the semantics of some causal relations have been clarified to such an extent 

that it is quite possible to describe the logical rules identifying accurate versus biased causal 

inference across a range of modeling situations. Structural equation modeling and potential 

outcome approaches are now known to be logically equivalent with each other; graphical model 

results show how each can be expressed in graph-based terms and show that they imply the same 

structures and analyses. Epidemiology, biology, medicine, machine learning, marketing, and 

other areas have noticed these results and now regularly use them to provide rigorous tools for 

causal inference, both from experimental and observational data. 

 

 Unfortunately, important parts of empirical economics have missed the boat. At its worst,  

causally uninterpretable or at least causally biased results are produced by multiple regression 

and other related techniques. At its best, empirical economics using experimental or 

quasiexperimental methods successfully builds on recent developments in causal inference. 

These approaches, however, are based on the idea of experimental treatment which sometimes 

does not translate easily into assessing the causal relations of complex economic models. 

However, by far the biggest problem is traditional econometric practice on observational data. 

That is my target here, though some of the points that follow will bleed over into some 

experimental practices. The difficulties I pinpoint are not inevitable but avoidable; the goal is not 

just critique but promotion of techniques known to avoid identifiable errors and to make causal 

reasoning about observational evidence more rigorous. Along the way I describe a number of 

open issues that should be of interest to both economists and philosophers of science. 

 

 The arguments I make about standard observational econometric practice flow from 

results that are not controversial in some areas outside economics. They rest on provable results 

and are well known to computer scientists, epidemiologists, and others. My points are mostly 

illustrations of this work (Elwert and Winship 2014 for example). However, these illustrations 

have large implications for much current econometric work that often go unnoticed in 

observational empirical economics, even though some of the basic ideas go back to founders of 

econometrics such as Haavelmo (Pearl 2014; Heckman and Pinto 2015). 

 

 I make my case by two routes, one logical and one empirical. The logical angle describes 

results in the logic of causal modeling and how they demonstrate when statistical adjustment 

practices are biased and when they are successful and necessary. The empirical route repeats the 

logical one by producing simulated data with known ideal properties and then showing that 

standard econometric practices lead to mistaken inferences about that data. 

 

 The discussion that follows also makes and uses some points about philosophy of 

science. The idea that testing is holistic has played an important role in philosophy of science 

over the last century (Stanford 2017). More recently, the idea that mechanisms are essential to 

science has received widespread support (Craver and Tabery 2019). I look at these themes as 

they surface in debates over causality in economics. The holism of testing does not necessarily 

entail the drastic skeptical or social constructivist conclusions often drawn; for causal inference, 
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we can specify sometimes quite clearly how evidential blame and credit is distributed and 

sometimes can show that a given set of data cannot decide between competing causal models. 

We can sometimes also show when mechanistic evidence is useful for causal inference, when it 

is essential, and when it is positively harmful. I will illustrate these points as I analyze causal 

inference practices. 

 

 The chapter proceeds as follows. Section 1 provides some brief relevant philosophy of 

science background. Section 2 describes advances in causal inferences based on causal graphical 

models. Three elemental causal relations are discussed in Section 3 using the causal graph 

approach. Casual logic followed by statistical analysis of simulated data both show that standard 

econometric practices can lead to systematic error in assessing these fundamental causal 

structures. Section 4 argues that instrumental variables do not solve the problems of Section 3. 

Section 5 illustrates the points made about causal inference by looking detail at the Sachs and 

Warner (1995;1997; 2001) empirical work on the resource curse. I conclude with a sketch of 

related open questions. 

 

 

Section 1: Some Brief Philosophy of Science Background 

  

 There are some general philosophy of science results that I will use to help frame the 

discussion that follows. I will start with the more abstract philosophical issues and then go on to 

more specific issues about causation. 

 

 Philosophers have long used the Duhem-Quine thesis that theory testing is holistic to 

derive various morals. The Duhem-Quine thesis says in one form that every test of a hypothesis 

requires auxiliary assumptions—hypotheses or knowledge about the experimental setup for 

example. Another version of the Duhem-Quine thesis makes the stronger assertion that only 

entire theories are tested. If data contradicts prediction, either the hypotheses or auxiliary 

assumptions may be guilty and we cannot tell which; if the data fits predictions, that might be 

due to the truth of the hypothesis or to error in the auxiliaries. From the second, stronger Duhem-

Quine thesis many drastic claims have been drawn. If only wholes—complexes of theoretical 

claims, auxiliary hypotheses about experimental set ups, etc.— are tested, then falsifying 

evidence can always be handled by making a change somewhere. Thus, theories are 

underdetermined by their evidence and theory choice is not a fully rational affair. Kuhnian and 

social constructivist approaches build on this reasoning. 

 

 The stronger, second Duhem-Quine thesis does not follow from (and is the not the same 

as) its weaker relative. That testing is holistic does not entail that only wholes are tested. The 

very complexity of theory and evidence that holism describes can under the right conditions 

allow us to distribute credit and blame to parts of the web of assertions that makes up theory. We 

will see below that graphical causal models can help show us when and where credit and blame 

can be attributed and when our evidence cannot decide between competing theories—that when 

and where we can attribute credit depends on local knowledge and context. This general 

conclusion about the holism of testing instantiates a view about philosophy of science that might 

be called contextualism (Kincaid 2005, 2006; Williams 1999): assessments of evidence for 
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particular hypotheses always depends on empirical background knowledge and rarely can be 

determined by scientific logic alone.2 

 

 Causal inference in economics also raises another important philosophy of science 

debate. Over the last 20 years there has been a rising chorus praising the importance of 

mechanisms in science. On my view (Kincaid 1996, 1997, 2011, 2012), the claims about 

mechanisms espoused can be in turn important, true but trivial, unclear, inconsistent, and/or 

unmotivated depending on the notion of mechanisms, the purpose they serve, the empirical 

background and more. Mechanism claims may be about evidence or explanation, about 

intervening causes or underlying structures, and many more parameters. At least one relatively 

clear thesis from this multitude is that causal claims can only be confirmed by providing the 

intervening mechanism linking cause and effect—showing the causal “channels” from a variable 

such as resource abundance to the ultimate casual outcome of growth. We will see in our 

discussion various ways this thesis is relevant to causal inference in economics, both positive and 

negative. 

 

 There are also various points about causation in general that I need to make clear as 

background to the discussion of graphical causal models. First and quite importantly, causal 

graphical models and their equivalents are independent of statistical questions in two senses. 

First, graphical causal models entail relations in the data that logically have nothing to do with 

traditional statistical estimation and hypothesis testing. The causal logics I describe below are 

relevant even when we have no samples but instead a fully enumerated population where the 

values of variables are known with certainty. So, these causal logics can be entirely separate 

from sampling error, asymptotic properties, and so on. This will be important later on, especially 

when we discuss instrumental variables. Traditional statistical issues can be combined with 

graphical causal models. That can be done in in a sample to population estimation framework. 

We can also bring in statistical inference by thinking of economic processes, for example, as we 

might think about error probabilities in choice experiments or as random shocks to variables. 

However, the fundament point remains that causal logic is different and independent of sampling 

and estimation logic, even if we ultimately want to combine them. Much confusion in the 

econometrics literature is caused by not keeping the distinction between the two clear.  

 

 Graphical causal models are also independent of statistical questions in that they are prior 

to them. Causal relations seem irreducible to statistical relations—that is the truth in the 

“correlation is not causation” slogan. Regularity and counterfactual accounts of causation as  

analyses in purely noncausal terms have well-known fundamental difficulties. However, the 

correlation is not causation slogan is wrong if it implies that we cannot learn anything about 

causes from correlations or that we can never have good evidence for causes based on 

correlations. In practice, appeal to the slogan can be a lazy refusal to do the hard work needed to 

make causal claims (especially when giving policy advice which has to be causal). The 

fundamental fact seems to be that, to use Cartwright’s (1989) phrase, “no causes in, then no 

causes out.” We can make compelling causal inferences when we have the right background 

 
2 Examples are the use of time order in observational studies to rule out certain possible causal relations or the 

estimation of time preferences in experimental setting using in part prior knowledge of risk preferences. Neither 

causal statistical logic in the first case nor experimental setup in the second by itself allows for justifiable inferences 

without this prior knowledge. 
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causal knowledge—for example, time ordering of variables—in addition to statistical 

information about the relations between variables. But alleged solutions to causal problems such 

as confounding by common causes that claim to be purely statistical are mistaken and always 

rely, if they actually work, on implicit causal assumptions. 

 

 Furthermore, the causal logics described here apply most conclusively and clearly to 

specific kinds of causal situations. As philosophers have been fond of pointing out, the term 

“cause” has diverse connotations. Here the distinction between sufficient causes and what I will 

call causal complexity is important. Sufficient causes are the garden variety of billiard ball 

causes where one factor has its own influence on some outcome independently of other causes. 

Causal complexity refers to more complicated relations such as necessary causes, thresholds, 

binding constraints, and so on. The latter are not describable as just the combination of a batch of 

independent separable causes. Casual complexity frequently shows up when we get to concrete 

details in cases studies, in historical analysis, and so on. There are multiple complexities 

involved in keeping these different senses of cause clear, and I will return to these problems 

when I discuss open issues in the last section. But for most of this paper and for the causal logics 

that follow, at issue is the simplest case where we have multiple, independent sufficient causes. 

 

 Finally, we need to make some distinctions when we talk about “identifying causes.” In 

particular, we need to note the difference between identifying the existence of causal effects and 

identifying effect sizes, between showing there is a causal connection and measuring its 

magnitude. Though obviously importantly connected, these are not the same. Failing to 

distinguish them can cause problems. 

 

 Just to clarify, the section has set up some philosophy of science ideas used in the rest of 

the paper: 

 

• Testing is holistic and thus so is testing of causal claims, but both philosophers of science 

(Kuhn 1962) and economists (e.g. Bardsley et. al 2009) have mistakenly drawn skeptical 

conclusions about scientific inference that do not follow from the holism of testing 

• The different and complex relations between various causal hypotheses and auxiliary 

assumptions can actually provide the basis for compelling causal inferences in the right 

circumstances 

• Causal inference is never going to be purely a statistical matter but instead relies on 

background causal assumptions; when those assumptions have their own evidence, in the right 

circumstances causal inference can be quite reliable 

• Causal assertions and evidence logically can be evaluated independently of sampling issues 

and separating the two is essential avoid confusion 

• Understanding causal inference requires separating different senses of cause, e.g. sufficient, 

additive causes versus necessary, nonaddictive causes and distinguishing the presence of causal 

effects from casual effect sizes. My focus here is almost entirely on the simplest case of 

sufficient, additive causes. 

 

Section 2: Graphical Causal Models and the Logic of Causal Inference 

 While a definition of cause in noncausal terms is unlikely, there has nonetheless been 

tremendous progress in the last twenty years in producing a semantics for causality. Here by a 
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‘semantics’ I mean something akin to the logician's formal semantics: definitions, axioms, and 

implications therefrom. The key steps seem to have roughly simultaneous routes from two 

sources: Pearl (2009) and other work in artificial intelligence and computer science and Sprites, 

Glymour, and Scheines (2000) and others in philosophy of science. The idea, simply put, is that 

interconnected causal claims have implications for what conditional independencies we should 

see in the data if those claims are true.  

 

 The basic tool to illustrate causal implications is the directed graph, drawing on the 

graphs of Bayesian networks. The graph has nodes—variables--and potential links between them 

called edges, with a directed arrow representing a causal relation. Nodes with arrows leading into 

them are ‘descendents' and nodes from which the arrows come are ‘parents.’ A path is an edge or 

set of edges linking nodes. A direct path is an edge that goes through no other node and an 

indirect path does. A graph is acyclic if no node has a path leaving and returning to itself. Nodes 

which have no edges coming into them represent exogenous causes and those that do have 

incoming paths are endogenous. Formally, a graph is a set exogenous variables U, endogenous 

variables V, and a set of functions f that defines the edges between them. 

 

 A graph with a set of directed edges then entails various claims of dependency (labelled 

associational, statistical, or probabilistic) and independency, where conditional independencies 

are essential for causal inference. Conditional independencies are simply the association of two 

variables given another, e.g. p(A and B)/p(C).  For example, causal model 1 graphed in Figure 1 

has the following conditional independencies: 

 

x1 ⊥ x3 | x4 

x2 ⊥ x4 | x1, x3 

 

where, ⊥ signifies probabilistic independence and | signifies conditionality. Holding x4 constant,  

x1 and x3 are not associated though they may be associated in the data. Obviously, these 

conditional independencies are very important for testing. If such conditional independencies are 

found in the data the model is supported and if they are not there, the model is rejected. 
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 Having an explicit model with a list of its implications as in causal model 1 has another 

virtue: it allows us to see if there are other models with different causal relations that also imply 

the same statistical conditional independencies. For example, the graph of causal model 1 has the  

equivalent models illustrated by the equivalence class in Figure1 (an “equivalence class” here 

refers to all causal models consistent with a set of conditional independencies). The undirected 

edges in the equivalence class represent possible causal arrows going in either direction. The 

causal independencies implied by causal model 1 do not tell us which of these possibilities is 

correct. Thus, there are four other models compatible with the conditional independencies that 

causal model 1 predicts—causal model 1 is underdetermined by all its possible implications. 

However, it is incompatible with any model that does not have the causal effects of x1 and x3 on 

x2. 

 Thus, stating the model, identifying its implications about conditional independencies, 

and determining other equivalent models are essential for knowing what the data can and cannot 

 Figure 1. A causal model and its equivalent class of other models 

consistent with it. Undirected arrows show that causal relations could 

run in either direction. 
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tell us. The example of Figure 1 shows that while a model as a whole may be underdetermined 

by the data, not everything in it is.3  Figure 1 represents a case where the classical thesis of 

undeterdetermination of theory by evidence is true when we compare models as a whole. 

However, such underdetermination does not prevent us from knowing about more partial claims, 

namely, the causal arrows shared by all the models.  

  

 Thus, we know that if we start with a proposed model, then we can determine which data 

in a set are entailed by that model and thus which are incompatible with it. We can also see what 

other models are compatible with that set of implied relations in the data. This kind of 

investigation works top down: we have a set of variables and a possible model, and we see what 

can learn from its entailments about expected relations in the data. In particular, we can derive 

the effects, positive and negative, of controlling or adjusting for any variable given the possible 

causal model. It is this point from causal modeling results that I apply in most of the chapter. 

  

 It is, however, possible using graphical models to go a more inductive route that starts 

with the data and infers to the model or models. Search, however, is constrained by the 

assumptions of the graphical causal logic--for example, 1.) unexplained correlations, ones which 

do not go away on conditioning, entail causal relations and 2.) associations that do go away upon 

conditioning do not represent direct causa links. Various algorithms have been produced that use 

given data plus causal logic to try to infer possible causal models consistent with that data 

(Spirtes et. al 2000; Glymour et. al 2019). The outputs are most often equivalence classes like 

those in Figure 1. They do not estimate parameters but instead tell us whether the data support 

some causal relation between any pair of variables.  

  

 It can be shown, either analytically or by simulation, what specific algorithms, based 

explicit assumptions, can find about the true causal data generating process. Search procedures 

start from the bottom—from the data—and generate models consistent with all the data; top 

down inferences based on possible causal structure tell us what some of the data must be like and 

what structure is common to any models consistent with it. The top down and bottom up 

methods can be combined in a pincer movement to narrow down what the evidence shows. 

However, as noted above, this chapter concentrates almost entirely on using graphical models to 

determine what they entail about the data, not on searches from the data. The latter are not 

needed for my main points. 

  

 In addition to finding models consistent or inconsistent with the data, causal graphs are 

also an essential guide in deciding on what variables to "adjust" or control for in any specific 

statistical analysis of a data set. The independencies and dependencies implied by an explicit 

causal model are the route to the idea of statistical control or conditioning. When a variable is 

controlled, it creates conditional independencies or dependencies according to what kind of link 

is involved. Figure 2 illustrates. When a common cause or a mediator is involved, then distal and 

 
3 The model of Figure 1 is incompatible with the association between x2 and both x1 and x3 

disappearing if we hold x4 constant, with the association of x1 and x2 disappearing if we hold x3 

constant, and with the association between x3 and x2 if we hold x1 constant. Correlations 

between x4 and x1 and x4 and x3 are not sufficient for determining which way the causation 

runs, and there are no conditional independencies that would decide this for us.  
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outcome are independent of each other given commoncause or mediator, where given here means 

controlled or fixed. Additionally, when the link involved is not a common cause or mediator but 

instead a collider--a node that has two directed arrows coming into it--then controlling or fixing 

the collider creates a dependency when none existed before (Figure 2).  

 

 

 
 

 The implied independencies of Figure 2 are: 

Figure 2. A causal model with the three elemental component for causal analysis: 

mediators, common causes, and colliders. 
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1. distal ⊥ outcome | commoncause, mediator 

2. common cause ⊥ mediator | distal 

3. common cause ⊥ collider | distal, outcome 

4. mediator ⊥ collider | distal, outcome 

 

These provide a rich set of implications to test against data. Nonetheless, these implications of 

Figure 2 are still consistent with models that allow mediator to cause distal and/or collider to 

cause distal—thus there are three other models in the equivalence class. Following these 

implications gives us a natural way to talk about identified and unidentified models that does not 

mix up causal issues with sample to population estimates. These implications are nonparametric 

as well. No specific functional forms are required to determine the dependencies and conditional 

independencies entailed by a graphical causal model and thus those issues are also set aside. 

Only when we begin to estimate effect sizes with tools like SEMs or propensity scores do we 

have to make more concrete assumptions. 

  

 Pearl’s semantics use what he calls a 'do operator.' A do operator analyzes the impact of 

taking some variable in a graph and setting it to a specific value. This is in fact making a 

(possibly hypothetical) intervention on some variable X by setting (X=x) and thus "wiping out" 

all the arrows coming into X. Then the logical implications of causal relations in the graph can 

show us the effects of adjusting for a variable by asking what the implications are of a do 

operation. In Figure 1a, p(X1 and X3) = 0/do (X2 =x), i.e. conditional on setting X2 to x. 

  

 This leads to rules about the appropriate adjustment of variables in a causal graph if we 

want to find the effect of one variable on another. We use the causal graph to ask what variables 

Z need to be adjusted to estimate the true causal relation between two others X and Y in the 

graph. The essential thing is to adjust sufficiently that we ensure that there is what Pearl calls no 

'backdoor path' between X and Y. A backdoor path is a biasing path that in a graph is represented 

by a.) a set of paths, directed or undirected that link X and Y besides their causal link that does 

not b.) go through a collider. Colliders 'block' paths and prevent them from being biasing; 

conditioning on colliders opens them up and allows biasing paths between the variables whose 

arrows point to them. Common causes are open biasing backdoor paths and in need of 

adjustment in some form.  

  

 These are important points for knowing what the data can and cannot tell us. The 

example of Figure 1 shows that while the model as a whole may be underdetermined by the data, 

not everything in it is. So, the right side of Figure 1 represents a case where the classical thesis of 

undeterdetermination of theory by evidence is true when we compare models as a whole. 

However, such underdetermination does not prevent us from knowing about more partial claims, 

namely, the causal arrow shared by all the models.  

  

 This illustrates our early points about contextualism and holism. Given background 

knowledge of the set of possible causes, a proposed model of those variables, and the logic of 

causal inference we can show what we can know and not know. We know that any data 

consistent with consistent with causal model 1 will be consistent with the set of models 
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represented by the equivalence class on the right in Figure 1. We also know that given these 

variables and data on their association consistent with it, X1 and X3 are causes of X2. 

  

 The causal graphical approach and the three elemental relationships—mediators, 

common causes, and colliders—lend themselves naturally to sophisticated testing methods. Most 

directly related to the graphical models are structural equation models. These models have an 

equation for each arrow in the model. The combined set of equations then entails a covariance 

matrix which can be estimated by OLS regression in the simplest case and by maximum 

likelihood or other methods in more complex causes. SEMs are relatively unknown in economics 

despite the long history of simultaneous equation modeling. I will discuss some of the reasons 

SEMs have not caught on economics in the final section. SEMs will play a role in the next 

section showing how multiple regression gets things wrong in simulated data.4 

  

 An alternative to SEMs and graphical causal models is framing causality in potential 

outcomes or counterfactual terms and using methods such as propensity score (Austin 2011) and 

G estimation (Naimi 2017). Propensity scores calculate the probabilty of treatment assignment 

conditional on baseline characteristics; G estimation provides estimation of differences in 

potential outcomes using less restrictive assumptions than multiple regressions. Much of the 

work on RCTs, natural experiments and instrumental variables such as found in the mostly 

harmless econometrics literature takes this approach rather than the causal SEM perspective. 

These approaches hope to mimic randomized assignment and do not rely directly on causal 

graphical models. However, they are provably equivalent to graphical models and their methods 

have limitations that SEMs do not have, though there is still debate in this regard (Imbens 2020; 

Pearl 2014a, 2014b; Leamer 2010). 

  

 I am not going to discuss the potential outcomes approach in any detail for several 

reasons. In order to keep my main points clear and the scope of discussion manageable, I limit 

my discussion to graphical models. More importantly, the main problem with the potential 

outcome approach is that the causal models presupposed are hard to make explicit. As a result, 

there is a considerable reliance on unformalized intuition; regressions are used in an ad hoc way 

without clear causal models. The result is that obstacles to inference are hard to make clear and 

express. The situation is like that with verbal arguments and piecemeal analyses in the face of 

general equilibrium situations—it is hard to keep clear what is going on until a full formal 

treatment is given. Causal graphical models do that in the way the potential outcome framework 

often does not. I will return to this point later. 

  

 

 

 

 
4 Structural equation modeling is a form of simultaneous equation modeling, but the SEM approach has a provable 

causal interpretation and resulting methodological implications and rigor that simultaneous equations used in 

economics do not. Essential parts of Pearl's (2009) approach do indeed stem in from Haavelmo (1943), but his 

causal notions were dropped as econometrics progressed after him. Current simultaneous equations methods in 

econometrics have much the same problems as do single equation multiple regression paradigm. See Heckman and 

Pinto (2015) and Pearl's (2013) illuminating response. 
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Section 3 Good and Bad Econometric Practices 

 

 Anybody who reads or does empirical economics with purely observational data faces the 

problem of what variables to include in equations to be tested. The problem arises regardless of 

whether we are using ordinary least squares, maximum likelihood, or other tools. Various purely 

statistical criteria can be brought to be bear, but they are usually about estimation from samples, 

not causality. A high R-squared for example tells us next to nothing about causality, as is 

obvious from the fact that a high R squared is compatible with a tiny bivariate regression 

coefficient.  

  

 The most common approach in the face of this uncertainty in equations errs on the side of 

inclusion, thinking that adding more controls cannot hurt and may help. This advice to go for 

more controls rather than fewer has support from well-known commentators on the econometrics 

literature (Angrist and Pischke 2015, p. 60).5  Qualifications are sometimes added, but the 

problem is the lack of a clear causal framework for guidance. The major worry for inference is 

taken to be “omitted variable bias” but that is really multiple things and we need a system to sort 

them out.7 

  

 This section uses the causal graph framework of the previous section to identify good, 

bad and neutral inference procedures in certain econometric practices with observational data.8 

We begin with three possible confounding situations: common causes, which is the best-known 

case, mediating variables, and colliders.9 In each case I assume we are dealing with only 

observable or 'manifest' variables to keep things simple and clear.  Common causes, mediators, 

and colliders are each  a possible source of error and bias, and properly handled, each a situation 

where causal inference can go well. These elementary cases keep their properties when 

embedded in larger models. These three ways of confounding and their extensions can be 

expressed more formally, more completely, and in ways to allow them to be combined while still 

being able to trace their interactions by the use of explicit graphical models so that we can for 

any possible causal relation we can identify the good, bad and neutral statistical judgements (or 

actual interventions) to estimate the true causal effect. SEMs are one natural way to test these 

more complex models. 

 

 The simplest case is adjusting for common causes. If X and Y are each caused by a single 

common cause, then conditioning on the common cause in a multiple regression removes the 

spurious correlation and provides an unbiased estimate of their true causal relation. If X and Y 

 
5 Also see (Imai, Keele, et al., 2014, pp. 482– 487) “irrelevant covariates may complicate the modeling but does not 

compromise the identification of causal mediation effects”. 
7 Omitted variable bias in the most obvious sense of other independent variables that are also causes of the 

dependent variable is in general not a big problem. Simulated data with a true regression coefficient of .61 between 

x1 and x2 leaving out a second cause X3 of X2 produces an estimate in this run of the data of .64. Adding the 

missing cause improves that to .63. The standard errors are basically unchanged in specifications. Adding further 

covariates in this case contributes to precision, which is a statistical, not causal, issue. 
9 I have not explored the relation of these kinds of causal errors from including the wrong variables to earlier 

literature (Leamer 1978) on specification searches. Ideally on my view the causal points made here could/should be 

embedded in a full Bayesian treatment--there has been significant progress in Bayesian SEMs--but this is a project 

for the future. 
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are independent, conditional on the common cause, then there is evidence of no causal relation. 

This causal logic is obviously clearly understood, and I will not further illustrate it here.   

 

 Nonetheless, once common causes are embedded in more complex causal circumstances, 

inferences about them can be misguided because of other not so obvious complications. One 

complication, still entirely in the framework of common causes, is worth mentioning, because it 

illustrates the morals we see below showing that a clear causal model is essential to inference. 

The example I have in mind shows that an omitted variable in the form of a confounding 

common cause can be handled without controlling for—conditioning on— the common cause 

itself and without randomization or instrumental variables. Consider the graph in Figure 3. We 

can control for commoncause without including it in a regression. We can do so by conditioning 

on ccmediator. Doing so blocks the biasing path from distal to outcome. Valid inferences about 

causal relations and effect size are then possible. The graphical causal model and the rules of 

causal inference make this obvious. Yet, the point is hard to see and to describe in a principled 

way if there is not an explicit causal model with explicit implications. A common inference in 

regression studies is that when including an additional control variable reduces the correlation 

between the independent variable and the dependent variable, we have good evidence that the 

control is a common cause. The example of Figure 3 shows that inference can be a bad one. 
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Figure 3. A biasing common cause that works through a mediator. 

 

 

 This example also shows that claims that mechanisms are needed for confirmation are too 

coarse. What is need for causal inference depends on the causal structure at issue and the data 
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available. In this case I can increase my confidence without knowing precisely what the 

confounder is. 

  

  move next to mediating variables. Their possible role is also easy to understand but, 

surprisingly, not clearly studied in the econometrics literature, especially but not exclusively that 

concerning observational data. Usual talk of “endogeneity” is often ambiguous and most often 

refers to correlations between a right-hand side variable and the error term or, less often, reverse 

causation from dependent to independent variables in a regression. Mediation involves neither. It 

is simply one right hand side variable having some or all of its causal influence through another 

right-hand side variable. So, graphically, mediation involves either only indirect (mediated) 

effects (Figure 4a) or both direct and mediated effects (Figure 4b). 

 

 
 

 

Figure 4. Full mediation (a) and mediation plus direct effect (b). 

 

 

a
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In mediation model 4a, we know via causal logic that: 

 distal is independent of outcome / mediator 

 

 This means that conditioning on mediator in a multiple regression will remove the 

correlation between distal and outcome. If we are basing our causal claims on multiple 

regression coefficients which regress outcome on distal and mediator, then we will conclude that 

distal has no causal influence. This results no matter how we calculate the coefficients, i.e. by 

least squares or maximum likelihood. This inference will be entirely independent of sampling 

and estimation issues, for it follows from the causal logic even when we know the entire 

population with certainty. 

  

 This causal logic is obvious, but it is useful to see it confirmed by regression results. In 

this first case and all that follow using simulated data,  a sample is generated with 1000 

observations randomly selected from normally distributed variables with specified (and 

standardized) coefficients based on the relevant causal model.  So, for the simple bivariate case, 

values of the independent variable are randomly selected from a normal distribution and then 

values of the dependent variable are selected consistent with the specified regression coefficient 

and with random errors with a mean of zero and standard deviation of 1.11  Thus, the simulated 

data has all the properties needed for successful inference using OLS and maximum likelihood. 

  

 The results of regressing outcome on distal and mediator are unsurprising (Table I).  

 

Table I. Regression results for the model of Figure 4a with no direct effects of distal. 

 

A.  outcome regressed on distal only 

Estimate       Std. Error   t value   Pr(>|t|)     

distal    4.791e-01    2.779e-02   17.24   <2e-16 *** 

 

B.  outcome regressed on distal and mediator 

 Estimate       Std. Error   t value   Pr(>|t|) 

distal    7.543e-03     3.565e-02   0.212    0.832    

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

 

Coefficients used to generate simulated data: 

 outcome  =  .76 * mediator 

 mediator  =  . 63  * distal 

  

 

In A the regression coefficient is .48. This is close to the values used to generate the data (listed 

at the bottom of the table) because the expected effect of distal on outcome is simply their 

product. In B distal has lost its statistical significance and is much smaller than the estimated 

value identified in A-it has gone from .48 to .007.  Obviously including the mediator in the 

 
11 TETRAD 6 causal modeling software (Center for Causal Discover, Carnegie Mellon University) was used for 

simulations and the R package Lavaan 6 (Rosseel 2012) used for the regressions and SEMs. Dagitty (Textor 2016) 

software for causal graphs and implications was also immensely useful 
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regression gives us a mistaken causal conclusion, namely, that distal has no influence on 

outcome. It does give us evidence that mediator is an intervening variable, but does not tell us 

the relation between distal and outcome, because Figure 4a entails the same dependencies and 

independencies as the model of Figure 5, where the causal direction is reversed. 

 

 
 Figure 5. Causal model with same dependency implications as those in Figure 4a. 

 

  

 

 These results again illustrate our philosophy of science points from the beginning about 

the holism of testing and the need for mechanisms. The data can bear differentially on parts of 

the model--they tell us that mediator is between distal and outcome but not the direction of the 

causal relation. 

  

 Turning to the more complex model of Figure 4b where distal has both indirect effects 

through moderator and its own direct effects, data were again generated with known causal 

relations and effect sizes and with the same desirable statistical properties.  The regression 

results when we include either distal alone or distal and mediator as right-hand side variables are 

in Table II. 
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Table 2:  Regression results using simulated data generated using the model from Figure 4b 

where distal has both direct and indirect effects. 

 

A.  outcome regressed on distal only 

 Estimate Std. Error     t value    Pr(>|t|)       

distal 8.478e-01   1.679e-02    50.51    <2e-16 *** 

 

B.  outcome regressed on distal and mediator 

 Estimate Std. Error     t value    Pr(>|t|)       

distal 5.502e-01   12.534e-02     21.72    <2e-16 *** 

mediator 3.723e-01   2.534e-02    14.70    <2e-16 *** 

 

______________________________________________________________ 

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

Coefficients used to generate simulated data:  

outcome  =  .39 * mediator 

mediator  =  . 78  * distal 

outcome =  .52 * distal 

_______________________________________________________________ 

 

 

 

 

 

 

 

 Regression A accurately reflects the true total effect in the simulated of distal on 

outcome. The total effect in the simulated data is just the direct effect (.52) plus the indirect 

effect (.78 x .39) and thus has a value of .82. Regression A shows a coefficient of .85 of distal on 

outcome, thus accurately reflecting the true causal model generating the data. However, 

including mediator in the regression biases the results. Now we might infer that distal does cause 

outcome, but our estimate will be biased downward because mediator absorbs part of the effect 

of distal on outcome. Thus, the coefficient for distal in regression B of .55 is smaller than the 

true causal relation which is .82 in the simulated data.  

 

 There are straightforward and well-known ways to avoid these wrong conclusions 

(VanderWeele 2015; Hayes 2013), though it rare to see them explicitly used in economics. For 

our simple model the correct value can be found by two regressions. Regress outcome on distal 

and then on distal and mediator, though steps have to be taken to correct standard errors. The 

first regression gives you the total effect of outcome. Substracting the value of distal in the 

second regression from its value in the first provides the indirect effect of outcome. For complex 

models, we have to move to full structural equation models and maximum likelihood estimation. 

A SEM was fitted to the simulated data used for the analyses of Table II. The results are as in 

Table III. 
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Table III. SEM estimates of simulated data involving distal with direct and indirect effects 

through mediator. 

 

  Estimate  Std. Err  z-value  P(>|z|) 

  outcome ~                                            

    distal           0.550    0.025   21.749    0.000 

  mediator ~                                           

    distal           0.799    0.019   42.056    0.000 

  outcome ~                                            

    mediator      0.372    0.025   14.718    0.00 

TOTAL EFFECT outcome ~ distal   .848 

 

 The results of Table III use the standard SEM notation where "~" can be read as "is 

caused by."  The coefficients are standardized estimates. The key point here is that the true 

values can be found --the SEM for this data set estimated total effects of .85 when the true 

relation used to simulate data was .82 but with random errors. The standard multiple regression 

including both the mediator and the independent variable underestimates this value considerably 

(over 30%).  

  

 I have presented the two basic cases involved in mediation. However, as we saw with 

common causes (and will see with colliders), the basic cases can be expanded into other easily 

imaginable circumstances. One obvious case for mediators arises when we have data on a 

mediator’s causal effects other than its effect on the outcome. Even if the distal cause does not 

work through these descendants of mediators, conditioning on the effects of mediators will bias 

the estimated influence of the distal cause on the outcome just as would conditioning on the 

mediator itself. Intuitively, conditioning on the mediator’s effects restricts its variation in the 

causally relevant range and thus partially holds the mediator constant, thus confounding the 

relation between the distal cause and the outcome. Anywhere standard econometrics are run 

using many right-side variables where theory tells us little about their interconnection, this kind 

of situation will be a risk. Cross-country growth regressions come to mind as a likely example. 

 

 Thus far we have covered two of the three basic causal complexities out of which most 

complex causal accounts have to be built. We turn now to the third elemental causal complexity, 

namely, colliders. A simple collider is illustrated in Figure 6a and a collider combined with a real 

direct effect in Figure 6b. Our causal logic tells that conditioning on a collider opens up an 

otherwise blocked path between variables--conditioning creates an open biasing path and thus 

correlation between the variables on the path. So, in Figure 6a by conditioning on collider we 

open a path between distal and outcome even though there is no causal relation and thus we 

make a wrong inference. In Figure 6b there is a real causal relation between distal and outcome 

and multiple regression will find that relation. However, the causal logic says regression will 

overestimate the strength of the causal relation due to the bias from conditioning on collider. 

  



  20 

 
Figure 6. A collider causal relation (A) and collider with direct cause (B). 
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 Regression on simulated data again confirms the problem. Data are produced in the same 

fashion as before: random samples are taken of the independent variables from a normal 

distribution with specified parameters and then values of the dependent variables are chosen as a 

function of the independent variable(s) and an i.i.d. error term. Starting first with the model of 

Figure 6a, data were simulated to match Figure 6a and regressed producing the results in Table 

IV. 

 

 

Table IV. Outcome is the dependent variable in a regression on data with no causal relation 

between it and distal. 

 Estimate       Std. Error   t value    Pr(>|t|)     

distal      -4.529e-01  3.210e-02  -14.11   <2e-16 *** 

collider    7.315e-01  3.210e-02   22.79   <2e-16 *** 

______________________________________________________________ 

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

Coefficients used to generate simulated data:  

collider  =  .61 * distal 

outcome =  .48 * distal 

_______________________________________________________________ 

 

 

 

We thus get a statistically significant and large correlation between distal and outcome, -.45 

standardized and significant at the .001 level. But we know there is no such causal relation in our 

simulated data. They were produced by a causal model--a set of equations--where there is no 

effect of distal on outcome. 

  

 Look now at the more complex case where there is a collider but there is also a direct 

causal effect of distal on outcome. By the causal semantics, the effect size should be biased 

because of the correlation created by conditioning on collider. In a regression on simulated data 

where there is both a collider and direct effect of known values, we get the results of Table V. 

The actual value of the causal relation between distal and outcome is .36. Both the sign and size 

of the coefficients are wrong. 

 

Table V Outcome is caused by distal but a collider is conditioned on. 

              Estimate     Std. Error    t value  Pr(>|t|)     

distal      -9.838e-02  2.378e-02  -4.138  3.8e-05 *** 

collider    8.310e-01  2.378e-02  34.952  < 2e-16 *** 

______________________________________________________________ 

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

Coefficients used to generate simulated data:  

collider  =  .30 * distal + .66 * outcome 

outcome =  .36 * distal 

_______________________________________________________________ 
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 So, we see once again that the Angrist et. al recommendation that it is generally good to 

add more covariates is wrong.1013 Adding the collider reduces the true coefficient of distal on 

outcome of .36 to .09. Similarly, the methodological claim that we need to add mechanisms to 

have warranted causal claims is wrong. Or, perhaps we should put the point in terms of 

vagueness: what part of the causal process and with what inferential procedures is a mechanism 

essential or valuable? Collider processes added to multiple regression inference demonstrably 

lead to error.     

  

 As with common causes and mediators, this kind of bias can be produced without 

conditioning on a collider if the causal structure produces a collider on conditioning. Consider 

the causal model in Figure 7. What happens if we condition on—include in a regression—a  

"potential collider." Though not directly a collider--the two variables whose causal relation we 

are estimating do not themselves directly causally effect a collider-- conditioning on it produces 

collider-like bias. The path from distal to potcollider to other to outcome is opened up by 

conditioning. The estimate of the influence of distal will be biased upward. 
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Figure 7. Indirect collider. 

 

 The collider case, like the mediator situation, shows that standard econometric practice, 

when it is unclear about its proposed causal models, can lead at least to uninterpretable results 

and at worst to clear error. Graphical causal models can help make the causal relations more 

explicit and can provide the tools, for example in the form of SEMs tested by maximum 

likelihood, to provide decisive evidence about whether those causal relations are real. These can 
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make the argumentation economists use considerably more rigorous and disciplined.14 We would 

expect this to be mostly likely in circumstances where prior theory cannot simplify what are 

probably complex relationships with many factors.  

  

 We will develop these ideas further in the empirical case studies in Section 4. However, 

we need next to ask whether the above complexities can be solved by the use of instrumental 

variables. Many seem to think so. 

 

 

Section 4: Instrumental Variables to the Rescue? 

  

 It is widely claimed that instrumental variables (IVs) can solve 'endogeneity' problems. 

There has been, the enthusiasm goes, a “credibility revolution” in the practice of econometrics 

(Angrist and Pischke 2010 for the claim; Leamer 2010 and Deaton 2010 for early critique). We 

now know, it is claimed, how to avoid all these dreary and unconvincing structural regressions 

and do proper science. Instrumental variables and associated techniques mimic the logic of 

experiments. With them, much clearer inferences will surface. 

 

 Unfortunately, and unsurprisingly, there is a bit too much hype here. Our old axiom that 

testing is holistic should make us suspicious of claims for a simple inference strategy that 

promises to eliminate apparent complexities. It is great if you can get such simple rules, but they 

are unlikely. Instrumental variables do not solve all problems that fall under the endogeneity 

label. The complexities discussed in Section 3 are among the ones instrumental variables cannot 

dissolve. 

  

 That IVs are not a panacea should be obvious from the standard criteria for them: the 

variable in question z should be correlated, preferably strongly, with the independent variable x 

and not correlated with the error term. These are statistical criteria. We already know that no 

causes in, no causes out--it takes causal assumptions to get causal conclusions from statistical 

findinds. So, IVs used purely in terms of associations are unlikely to ensure that we are making 

the right causal inferences. Reiss (2005) showed some time ago cases where the statistical 

criteria by themselves cannot ensure the correct causal inference. 

  

 The confusion between statistical issues and causal ones has a long history in economics 

(and elsewhere of course). IVs are often motivated in terms of providing consistent estimates. 

Providing consistent estimates in the traditional statistical sense of the term is an issue about 

asymptotic results in estimating from samples to populations--in short, a sampling issue, not a 

causal one. It is only recently that IVs have gotten a more explicit causal role, and the two 

roles—providing consistent statistical estimation of population values and identifying causes in 

situations of potential confounding—are often not clearly separated in the literature. 

  

 IVs only give reasonable causal information in the right causal circumstances. We need, 

as usual, to have specific kinds of causal background knowledge to make them work. Without 

that aid, they can lead to error. To be more specific, IVs can handle common causes in the right 

situation.  They are no solution for mediators and colliders.  

 
14 This point was made long ago by the early developers of graphical causal modeling. See Glymour et. al (1994). 
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 As before, I first give the causal logic and then provide empirical illustrations from 

known simulated data. I start with mediators. Figure 8 illustrates the general situation. The 

conclusion that instruments do not solve mediator confounding is obvious from our previous 

discussion of mediators and the fact that instruments are about the true effect of distal causes on 

outcomes. Instruments cannot correct errors from conditioning on mediators. 

  

 Once again data were simulated according to the model of Figure 8 with nice statistical 

properties and a strong instrument ensured. The results from a standard 2SLS are in Table VI. 
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Figure 8. Causal diagram of the use of instrumental variables in situation where mediator is 

conditioned on. 
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Table VI:  2SLS on simulated data from causal model with mediator and instrument. 

 

A.  outcome regressed on distal and instrument only 

 Estimate Std. Error     t value    Pr(>|t|)       

distal                   0.41788     0.03914   10.678    <2e-16 *** 

 

 

Diagnostic tests: 

                       df1 df2 statistic  p-value     

Weak instruments   1 998    648.28  < 2e-16 *** 

Wu-Hausman         1 997     19.49 1.12e-05 *** 

 

 

B.  outcome regressed on distal, mediator and instrument 

 Estimate Std. Error     t value    Pr(>|t|)       

distal                   -0.03441             0.03583        -0.960               0.337     

moderator             0.83043             0.02662         31.190            <2e-16 *** 

 

Diagnostic tests: 

                 df1 df2 statistic  p-value     

Weak instruments   1 998    648.28  < 2e-16 *** 

Wu-Hausman         1 997     19.49 1.12e-05 *** 

 

______________________________________________________________ 

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

Coefficients used to generate simulated data:  

outcome  =  .76 * mediator + .53 commoncause 

mediator  =  . 56  * distal 

distal = .64* instrument 

_______________________________________________________________ 

 

 

 The diagnostic tests show that the instrument is indeed a strong instrumental variable, 

which is no surprise since we made it so in the data. The weak instrument test confirms that there 

is strong correlation with the independent variable; the Wu-Hausman test shows that the 

instrument is consistent and ordinary OLS is not. Furthermore, our sample size is 1000, so there 

should not be small sample problems that can arise with instrumental variables. By standard 

econometric practices our estimate of distal on outcome should be valid. Part A of Table VI 

shows that the instrument does indeed work well when the mediating variable is not included in 

the regression: the estimated value of the coefficient on distal is .417 and the value used in the 

model to simulate the data .426. 

  

 However, our instrumental variable gives us the wrong answer when the mediator is 

included (Table V1 B). Despite being instrumented, distal has a statistically insignificant 
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coefficient of  -.034, thus of the wrong sign and far from the  size of the true value of .426 in the 

simulated data. Clearly, in the face of conditioning on mediators, instrumental variables give 

unreliable results, even when there is no doubt that they cause the independent variable and 

influence the outcome entirely through it (the instrument diagnostics remain strong when the 

mediator is included--see Table VI B). 

  

 This is confirmed by estimating a SEM model which shows (Table VII) unsurprisingly 

that the model of Figure 8 fits the data very well and produces accurate estimates of the 

coefficients used in the simulation of the data, unlike the standard instrumental variable 

regressions with mediators. IVs do not solve the problems caused by including mediators in 

standard econometric methods. 

 

 

Table VII. SEM applied to simulated data used in IV regressions of Table VI. 

 

Regressions: 

                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 

  distal ~                                                               

    instrument        0.644    0.024   26.928    0.000    0.644    0.624 

    commoncause       0.274    0.024   11.296    0.000    0.274    0.262 

  outcome ~                                                              

    commoncause       0.527    0.004  136.832    0.000    0.527    0.526 

    mediator         0.755    0.004  199.525    0.000    0.755    0.767 

  mediator ~                                                            

    distal            0.541    0.026   21.175    0.000    0.541    0.556 

 

TOTAL EFFECT distal ~ outcome .41 

 

Fit statistics: 

  Comparative Fit Index (CFI)                    0.999 

  Tucker-Lewis Index (TLI)                       0.998 

  RMSEA                                                     0.035 

  90 Percent confidence interval - lower         0.000 

  90 Percent confidence interval - upper         0.066 

  P-value RMSEA <= 0.05                          0.752 

 

  

 A similar analysis applies to colliders. Figure 9 depicts the use of an instrument where we 

have a confounder, so an instrument is needed. However, there is also a collider. We know from 

the causal logic that conditioning on colliders creates correlations where there is no causation. 

Again, a perfect instrument--one that causes the outcome only through the endogenous variable 

and is strongly correlated with it--does not solve the problem. 
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Figure 9. Instrumental variable with confounder and collider. 

  

 

 The statistical analysis again parallels the logic. An instrumental variable analysis of 

simulated data ensuring a strong instrument nonetheless give us wrong information. Distal has a  

impact on outcome in the simulated data of .25 but the instrument analysis gives the results in 

Table XIII.  The instrument used in a regression without the collider gives a slightly upwardly 

biased estimate. When the collider is included the coefficient doubles: conditioning on colliders 

can correlations where there is no real relation. The instrument in both cases easily passes the 

standard tests for validity. The SEM results in part C of Table VIII again show that the true 

values can be recovered from the data if a full causal model is estimated .  The model does show 

strong fit to the data--a good model has CFI and TLI values near 1 and RMSEA shows good fit 

the closer it is to 0 and that is exactly what we see here. 
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Table VIII. IV analysis and SEM analysis of data generated with strong instrument and collider. 

 

A.  outcome regressed on distal only with instrument 

 Estimate Std. Error     t value    Pr(>|t|)       

distal             0.384               0.042              9.016                <2e-16 *** 

 

Diagnostic tests: 

                 df1 df2 statistic p-value     

Weak instruments   1 998    518.34  <2e-16 *** 

Wu-Hausman         1 997     97.67  <2e-16 *** 

 

 

B.  outcome regressed on distal and collider with instrument 

 Estimate Std. Error     t value    Pr(>|t|)       

distal       6.973e-01  2.576e-02   27.07   <2e-16 *** 

collider     5.745e-01  1.506e-02   38.13   <2e-16  

*** 

 

diagnostic tests: 

                 df1 df2 statistic p-value     

Weak instruments   1 997    457.09 < 2e-16 *** 

Wu-Hausman         1 996     28.27 1.3e-07 *** 

 

 

C. SEM results from analysis of simulated data 

 

Regressions: 

                   Estimate  Std.Err  z-value  P(>|z|)    

  outcome ~                                                              

    distal            0.295    0.023   12.607    0.000***     

   

Fit statistics: 

  Comparative Fit Index (CFI)                    1.000 

  Tucker-Lewis Index (TLI)                       1.002 

  Akaike (AIC)                                5068.412 

  Bayesian (BIC)                              5112.582 

   RMSEA                                          0.000 

   

______________________________________________________________ 

 

Significance codes:   

‘***’ 0.001  ‘**’ 0.01     ‘*’ 0.05 

Coefficients used to generate simulated data:  

outcome  =  .25 * distal  - .6 *  commoncause 

collider  =  -.86  * distal + 1 * outcome 

distal = .56 * instrument + -.61 * commoncause 
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 The moral of the section then is that instrumental variables do nothing to prevent some 

standard kinds of bias in regression. When complex models are used without explicit causal 

assumptions, regression and related techniques can produce causally unintepretable results, 

regardless of whether variables have been "instrumented." 

 

    

Section 5 Some Data Reanalyzed: Making Causal Arguments 

 

 In this section I move from making general points using causal logic and simulated data 

to discussing some of these issues in the context of real data on important topics. My general 

point across the paper is that empirical work in economics using observational data would be 

improved by disciplining it with explicit causal models and the appropriate logic and tools.10  I 

begin to investigate how that can be done by looking at an important debate over the last 25 

years--whether there is a 'resource curse' that partly explains low economic growth. I take 

publicly available date for key papers about the controversy and use the causal framework from 

above to reanalyze the conclusions drawn. 

  

 Sachs and Warner (1995, 1997, 2001) in several highly cited papers claim to find that an 

initial large share of natural resources inhibits economic growth over time. Aside from 

addressing an important issue about growth and being influential on subsequent literature, Sachs 

and Warner's key papers have been carefully scrutinized for reproducibility (Davis 2013). Their 

results have almost all been successfully repeated. That does not mean their interpretations of 

their analyses are correct. However, the successful replications do mean that Sachs and Warner's 

regression results are computationally dependable. This puts aside worries about which 

specifications they actually used and whether they are reliable, allowing us to focus on the causal 

interpretations of their findings. 

  

 Sachs and Warner compile an international data set measuring GDP and a set of other 

national-level covariates over the period from 1970 to 1989. The key covariate in their papers is 

a measure of natural resource level at the beginning of the panel. Their central conclusion is that 

resource abundance is the 'main' causal factor explaining slow growth.  

  

 Sachs and Warner also make statistical arguments about some of the possible pathways 

from resource abundance to low growth. They suggest that:  

 

1. higher resources in the initial period contribute to higher corruption which in turn causes 

slower growth 

2. higher resources in the initial period contribute to protectionism which in turn causes 

slower growth 

3. higher resources in the initial period make investment goods more expensive--because 

higher natural resources means higher prices for nontraded goods--  thus reducing 

investment and then growth 

4. higher resources in the initial period shifts labor away from learning by doing sectors and 

thus decreases labor productivity and consequently growth 
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However, Sachs and Warner are explicit that resource abundance on their view also directly 

causes decreased growth apart from its indirect effects listed in (1) to (4). 

  

 The above causal claims are clearer than the presentation in Sach and Warner. Their 

discussion of causal processes is quite brief and the meaning of claims that resources are the 

main cause is never clear-- no metric is ever explicitly given.  

  

 We do get more clarity from looking at their regressions, illustrating the contextualist 

idea that 'models' come to different things and have to be understood as embedded in context. 

The verbal model presented above--a sort of unspecified prior in Bayesian terms-- coexists with 

the mathematical equations for regression which lead to empirical tests. We have to look at both 

the verbal and mathematical aspects to see what Sachs and Warner are trying to do.  

  

 The key mathematical and empirical components are found in five regression equations 

(Sachs and Warner 1997, Table 1) that are tested against their data set. The equations listed in 

their order with regression coefficients in parentheses (all of which are statistically significant) 

are in Table IX. The full model is equation 1.5. 

 

Table IX. Association between Growth and Other Key Variables 

 

Equation 1.1 Equation 1.2 Equation 1.3 Equation 1.4 Equation 1.5 

initial GDP  

(-.11) 

initial GDP 

(-.96)  

initial GDP 

(-1.34)  

initial GDP  

(-1.76) 

initial GDP  

(-1.79) 

initial resources 

(-9.43) 

initial resources 

(-6.96) 

initial resources 

(-7.29) 

initial resources 

(-10.57) 

initial resources 

(-10.26) 

 open to trade 

(3.06) 

open to trade 

(2.42) 

open to trade 

(1.33) 

open to trade 

(1.34) 

  investment 

(1.25) 

investment 

(1.02) 

investment 

(.81) 

   rule of law 

(.36) 

rule of law 

(.40) 

    export prices 

(.09) 
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 Keeping in mind the results from our analysis of causality, what can be gleaned from 

these results? I put aside questions about the reliability and validity of the indicators used to 

measure variables, questions about outliers, and other such statistical issue. My question is what 

causal conclusion could we draw from these regressions if there were no such measurement 

issues? 

 Sachs and Warner (1997) claim that: 

 

1. initial resources "is not simply a proxy for institutional quality or import-substituting 

industrialization policy" (p. 13) 

2. "the adverse effect [of resources] is not operating mainly by lowering investment rates, 

since the negative correlation is maintained even after controlling for investment rates" 

(p. 13) 

3. "resource intensity is not simply a proxy for adverse trends in global export prices of 

resource intensive economies" (p. 13) 

4. "evidence suggests that the indirect effects are not large; otherwise the additional controls 

should drive the estimated coefficient on SXP [resources] down as we read from left to 

right in table 1" (p. 25) 

5. that the “estimated direct effect of SXP [resources] on growth is large in comparison with 

these estimates of the indirect effects.” (p. 26) 

  

 Some of these claims are warranted, some are not. I take it that the claim that resource 

intensity is not a "proxy" for export prices, institution quality, or import substitution policy to 

means that the correlation between resources and growth is not just the result of other common 

causes of these two (Sachs and Warner never clarify what they mean by “proxy”). The 

regressions warrant that claim, since if resource -GDP correlations were just the result of 

common causes then adding these variables as regressors would remove the correlation between 

growth and resources. Of course, both could be true--resources could be both a negative cause of 

growth, and growth and resources jointly caused by other factors. There is no way for these 

simple regressions in Table IX to support or rule out that possibility. Indeed, also seeing the 

effect of leaving the resources variable out of the equations in the table would at least be 

suggestive evidence about their direct effect, though that is not done. 

  

 Another warranted claim is that the regressions in Table IX support the conclusion that 

the negative effect of resources on growth is not entirely mediated by the other variables. If it 

were, the coefficient on resources would go to zero when other factors are included. It does not. 

So, Warner and Sachs are right to say that they have some evidence that resources have a direct 

effect on growth. Of course, the evidence for both of these claims about the role of resources is 

quite tentative, because other causal stories are not investigated. 

 

 Sach and Warner's claims about effect size, however, are unwarranted. They report 

unstandardized regression coefficients which are nearly uninterpretable as effect sizes between 

variables because they are on different scales. However, the much bigger problem is that the 

Sachs and Warner’s regressions do not control for relations between the variables--they do not 

measure direct and indirect effects and consider neither colliders nor common causes of variables 
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that do have direct or indirect effects on growth. Without examining these possibilities, claims 

about effect sizes even of standardized variables are unwarranted.  

  

 Sachs and Warner do suggest and look at some evidence for the mechanisms connecting 

resources and growth. They regress investment on resources and several other variables, they 

regress the price of investment goods on resources and several other variables, and they regress 

national savings on resources and other variables. They find statistically significant effects. 

However, these regressions do not help much. First, they find (Sachs and Warner 1997, Table 

IX) that there is a positive effect of resources on investment, while their hypothetical mechanism 

expects the opposite. More importantly, there is no way for these piecemeal regressions to test 

the presence or effect size of these possible pathways for all the reasons discussed earlier in the 

chapter. 

  

 What Sachs and Warner need is an explicit causal model representing their various 

suggestions about processes and then to test it against their data. That means they need a 

structural equation model and statistical means to simultaneously estimate parameters. Maximum 

likelihood is the natural tool. 
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Figure10. A causal model that closely matches the claims of Sachs and Warner 

 

 

 Figure 10 is a graph of the causal model that seems to make the most sense of the various 

claims that Sachs and Warner make about resource abundance and growth. Initial GDP and 

resources are strictly exogenous because they measure variables at the beginning of the period 

studied.  The other causal arrows are placed following their proposed mechanisms. So, resource 
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abundance has a direct effect on growth and an indirect effect mediated by the mechanisms they 

propose. 

  

 This model has the following implications about conditional independencies: 

• gdp ⊥ tradeopen | initialgdp, invest, resources, rulelaw 

• initialgdp ⊥ resources 

• initialgdp ⊥ rulelaw 

• initialgdp ⊥ tradeopen 

• rulelaw ⊥ tradeopen | resources 

 

These implied independencies in the data can be investigated by maximum likelihood. 

Because we know a priori that resources and initial GDP are exogenous, and because the model 

has multiple causal relations, there are no other models that entail the above independencies. In 

that sense there is not an underdetermination problem. However, that does not mean the full 

data set--not just the implications listed above--might not support other competing models. 

  

 The estimated coefficients from a SEM using the structure in Figure 10 are shown in 

Figure 11 and the model stats are shown in Table XI. 

                                                       

 
  

Figure 11. SEM estimates of Sachs and Warner model. 
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Table XI. Fit statistics for estimated model described in Figure 11. 

 

  Comparative Fit Index (CFI)                    0.649 

  Tucker-Lewis Index (TLI)                       0.017 

 Akaike (AIC)                                            675.594 

  Bayesian (BIC)                                        705.547 

  RMSEA                                                    0.490 

  P-value RMSEA <= 0.05                          0.000 

 

 The model makes a sort of intuitive sense, with coefficients consistent with the story 

that Sachs and Warner tell.  However, the model fits the data very poorly according to 

numerous standard model fit statistics as seen in Table XI. 

  

 So, the top down approach testing implied independencies does not support the Sachs 

and Warner model. If we turn instead to a bottom up causal search, we find the results of 

Figure 12.  These results were produced by running the FCI algorithm (Spirtes et. al 2000) 

on the Sachs and Warner data. The algorithm is guaranteed to find any causal models 

consistent with the data under certain assumptions, specifically that correlations that persist 

when all other variables are conditioned on show causal relationships and when two 

variables are not correlated, they are not causes of each other (no perfectly offsetting causes 

in opposite directions). The algorithm does not assume no hidden or unobserved variables. 

Given that we know the resources (“sxp”) and initial GDP (lgdpea70) are from the start of 

consistent with the data under certain assumptions, specifically that correlations that persist 

when all other variables are conditioned on show causal relationships and when two 

variables are not correlated, they are not causes of each other (no perfectly offsetting causes 

in opposite directions). The algorithm does not assume no hidden or unobserved variables. 

Given that we know the resources (“sxp”) and initial GDP (lgdpea70) are from the start of 

the time period, we can conclude that the Sachs and Warner data support: 

 

 

• a negative causal effect of resources on growth 

• a causal effect of initial GDP on rule of law 

• a causal relation, direction unknown between rule of law and how open a country is to 

trade 

• a causal relation, direction unknown, between how open a country is to trade and GDP 

growth 

  

 Thus, systematically studied for causality, Sachs and Warner’s claim that there is a 

resource curse holds up. Their claims for its effect size is unwarranted. Parts of their 

proposed mechanisms are not ruled out; other parts—those working through investment, for 

example, are not supported. These conclusions are derived from the causal logic of models 

and are not reports about statistical inferences from samples to populations.  
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Figure 12. The set of causal models supported by the Sachs and Warner (1997) data 

according to the FCI search algorithm. Undirected lines suggest causal relations going in 

either direction. 
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Conclusion: Open Issues 

  

 I have shown that some standard economic practices sometimes may lead to fallacious 

causal inferences. Put in the affirmative, some economic practice can be improved by more 

explicit causal reasoning. Economists often make causal arguments and they may often be 

persuasive. However, they are also often informal. There are now tools to replace informal 

causal reasoning with much more rigorous logic. I have shown how this is possible for the 

elemental components of causal analysis and provided one example illustrating how to apply the 

basic elements to more complex causal situations. 

  

 However, I have left many questions hanging or unaddressed. I sketch some of these now 

in hopes of encouraging others to pursue them. I group the questions into three categories: 1.) 

where can the points made in this chapter be fruitfully used in thinking about economics, 

including the trend of randomized field experiments,  2.) history, philosophy and social studies 

of science questions about why the revolution in causal analysis has deeply influenced 

epidemiology and other fields but not economics, and 3.) questions about economic causal 

relations that are more complex than those studied in this chapter.  

  

 A key open issue is where and how the kind of analyses I have provided can be applied 

fruitfully to practices in economics. I think there are many possibilities. The elements of causal 

inference, causal adjustment, and causal bias and the tools I have described to deal with them 

should be able to help empirical economists working with observational data produce more 

rigorous and regemented arguments. Studies looking at the real argumentation from a causal 

perspective such as that I provided for the resource curse argument should be possible in a wide 

variety of areas. 

  

 At a more principled or theoretical level, the perspective of this chapter should also 

provide illuminating things to say about the RCT and quasiexperiment trend in empirical 

economics and about the long tradition of simultaneous equations and empirics in econometric 

practice. I have said little about either. However, my comments on instrumental variables are 

certainly relevant to at least assessing so-called natural experiments. Others (Pearl 2018; Leamer 

2010) have already made some related points. 

  

 The simultaneous equations tradition in economics likewise could be approached with the 

framework presented here (see Hoover 2001for some efforts). While this tradition has much in 

common historically with the approach to causality I have outlined, my sense is that it still has 

trouble separating statistical issues from causal ones and that it still works with piecemeal 

regressions rather than full causal models that are testable as SEMs. As is hopefully now clear, 

arguing about causality without fully explicit causal models and sticking only to partial 

regressions makes progress hard. There should be room for more fruitful interaction between the 

causal graphical approach and the simultaneous equations approach in economics. 

  

 The graphical causal framework and the structural equation modeling that can instantiate 

it has had little use in economics. An interesting puzzle is why. The roots of these approaches go 

back in part to Haavelmo (see Pearl 2014). Of course, economists like almost everyone in the 
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1950s through the 1980s repeated the correlation is not causation mantra (Hoover 2004). Yet, 

epidemiology, significant parts of biology, and other social sciences have outgrown that and now 

use explicit causal modeling techniques to draw causal conclusions from correlational data 

(Shipley 2016 is a very good example). Imbens (2020) claims that the current 'harmless 

econometrics' movement finds the randomized clinical trial and natural experiments paradigm a 

more fruitful approach. The use of propensity scores, difference in difference analyses, and so on 

follows from that. However, it is provable that these potential outcomes frameworks along with 

related counterfactual approaches are logically equivalent to SEMs and graphical models. Or, 

perhaps better put, RCTs, natural experiments, propensity scores, SEMs, and so on can, as tools 

for causal inference, all be brought under the umbrella of causal graphical models. Thus, 

presumably, a more nuanced account is needed to explain the lack of take up. 

  

 The puzzle about take up leads naturally to the next question about the current 

enthusiasm for "harmless econometrics" and RCTs. Much has already been said about these 

approaches as used in areas outside economics. The discussion above about instruments could be 

fruitfully extended to the methods of harmless econometrics. That discussion showed that 

instruments without theory--without explicit motivated causal models--lead to error. This 

conclusion fits and amplifies doubts about the current excitement over trials and quasi-

experiments from the structural econometric point of view. However, filling in the details with 

the insights of graphical causal models applied to these trends remains a topic worth further 

exploration. 

  

 Yet a further set of large open questions concerns concepts of causation that are more 

complex or different from those presupposed by regression and structural equation modeling. 

This chapter has discussed 'sufficient' causation. By that I mean causes that have an influence on 

their own, independent of other causal influences.  This does not preclude other causes of the 

same effect; sufficient causes also need not be operative at all times and places.  

  

 However, the idea of sufficient causes as just defined does not fit easily with other causal 

notions that economists (and everybody else) often use. Anscombe (1957) long ago noted that 

many of our causal concepts are what might be called "thick"--they presuppose a variety of 

connotations specific to the causal concept in question as embodied in terms such as 'prevent,' 

'constrain,' 'enable,' and so on. So, in development economics it is common to talk about factors 

that are preconditions for growth--they do not ensure growth but you cannot have growth without 

them. Education is probably such a factor--Cuba has very high levels of education by 

international standards, but low growth; education is necessary but not sufficient for 

development. Or, we identify thresholds for factors, binding or constraining factors, forcing 

factors, contingent causes, and so on (Rodrik 2009 on causes of growth is a good illustration). In 

all these cases it is not easy to think of these causes as independent elements that have a specific 

effect on their own. 

  

 At this point it is not clear, at least to me, how these complex types of causality can be 

analyzed in the sufficient cause framework exemplified by regression and SEMs (see Vander 

Weele 2015 for some efforts here). DAGs as developed by Pearl are nonparametric--they only 

describe dependencies, not their functional forms. In that sense they allow more complex 

causality. How that works out when turning DAGs into models for the estimation of effect sizes 
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is unclear. Interaction terms are sometimes included in SEMs. However, that work is 

undeveloped and interaction terms are hard to interpret causally in general. The sufficient cause 

framework wants to see every cause as having its own part of the effect that is constant 

regardless of the level of other causes. That makes things statistically much easier. Yet that is not 

the metaphysics of thick causal concepts like 'threshold' or 'binding constraint'. 

  

 Sociologists and political scientists have developed over the last two decades innovative 

ways to think about complex causality. Sometimes called qualitative comparative analysis 

(QCA, Regin 1987; Rihouz 2013), boolean analysis of necessary and sufficient conditions is 

used to analyze complex causality. There is ongoing debate about its evidential status for causal 

claims (Hug 2013). However, it clearly at least adds some discipline to complex causal claims. 

QCA is basically unknown in economics. But its possible applications in areas such as 

development economics or economic history seem obvious. 

  

 Thus, as I have hopefully shown, the moral is that there is still much to learn about 

causality in economics and we have some good tools to do so.  
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