Machine Learning in Finance and Trading
Machine Learning in Finance and Trading

- Quantitative Trading/Investing
- Algorithmic Trading/Investing
- Programmatic Trading/Investing

- Data oriented
- Numbers oriented
- Stock markets are made of numbers
Machine Learning in Finance and Trading

AN ENGINEER SYLLOGISM

1: I am good at understanding numbers.

2: The stock market is made of numbers.

3: Therefore, I—wow, where did all my money just go?
Overview

- Advantages & Disadvantages
- Terms
- Investing and Trading
- Timeframes, Costs, & Liquidity
Advantages & Disadvantages

- **Advantages**
 - Take the emotion out
 - Clear path/strategy
 - Mathematically optimal

- **Disadvantages**
 - Market is 70+ % non-emotional algos already
 - Backed by well paid quants
 - Optimal for assumptions only
 - Still no guarantee of a profit
 - Markets change
Advantages & Disadvantages

1: I am good at understanding numbers.
2: The stock market is made of numbers.
3: Therefore, I—wow, where did all my money just go?

An Engineer Syllogism
Terms

- Investing vs Trading
- Time Frames
- Costs: data, trading, risk, regulatory
- Stochastic, and worse
Investing

- Long(er) term holdings
- Portfolios and Portfolio Balancing
- ‘Universal Portfolios’
 - Thomas Cover, Stanford (& extensions)
 - Step-by-step refinement
 - Mathematically optimal
 - Ignores costs
 - Large firms, low costs, have the advantage
 - Index funds take advantage of this
Trading

- Classic Exchange Arbitrage
 - Sell something on NYSE for 100.10 *right now* what you can buy on NASDAQ for 99.90 *right now*

- Statistical Arbitrage
 - Most common for machine learning and quantitative trading
Statistical Arbitrage

- Stock XYZ has an average price of 100, with a variation of 5% over some time period.
 - Buy at a low fluctuation point, say 95
 - Sell at a high fluctuation point, say 105
 - Value At Risk – 95 for whatever the average time period is.
Statistical Arbitrage (better)

- Stocks A & B (idealized)
 - Same industry, size, price, and variation
- Synthetic (A-B) – avg cost 0
 - When A-B >0, Sell A (short) & Buy B
 - Sell A at 105, Buy B at 95 - Immediate 10 profit
 - When they return to avg prices, Sell B and Buy (cover) A.
 - If market goes up or down, A & B tend to move together.
Statistical Arbitrage (better)

- Looking for correlations between stocks (may vary by timeframe)

- Can extend to other asset classes, such as bonds, options, commodities, futures, options on futures, etc.

- ~36 k listed stocks in the US
 - ~600 k listed stock options
Other ‘Synthetics’ Arbitrage

- Index Arbitrage
 - S&P 500 (SPY)
 - Nasdaq 100 (QQQQ)
 - ... ETFs, sector funds, etc.

- Realm of High Frequency Traders
 - They know the index weights and prices tick-by-tick.
 - Buy SPY, sell the 500 components (or vice versa)
Opportunities to identify profitable trades are almost boundless

- ~36k listed stocks => ~648 M pairs
- Compounded by different asset classes
- ...different markets
- ...different time frames
...on the other hand, there are costs and risks

- Costs
 - Trading fees, clearing fees, exchange fees
 - Volume based, risk based
 - Short sale interest
 - Adding/taking liquidity
 - Data fees
 - Hourly plus – very low cost
 - Consolidated – many 100s $ per month
 - Direct feeds – many 1,000s $ per month
 - Proprietary formats
...on the other hand, there are costs and risks

- **Risks**
 - **Liquidity**
 - Can you trade? Not all stocks trade every day
 - ~800 stocks ‘actively’ traded daily
 - **Time frames**
 - Longer your timeframe, the more external influences can impact your correlations
 - Shorter timeframes reduce risk, increasing profitability, but they much higher costs
Trading as Competition

- 70+ % of the trading volume today is algos
- Much of the time they are competing with one another via technology (speed) on nearly risk-free strategies (high speed index arbitrage)
- Their trading fees can be pennies per share (or even negative) based on volumes and liquidity
- Huge investments in equipment & staff
Trading as Competition

- Large firms must make huge profits to cover huge costs
 - Making $1M per day is no good if your costs are $2M per day.

- Firms ‘blow up’ all the time
 - Knight Capital lost ~$478M in 45 minutes of trading. That killed their company.
Trading as Competition

- Ignoring technology / speed plays like Index arbitrage, trading firms are changing strategies all the time.

- Some firms create new strategies on the order of one every 6 weeks.
It Always Changes

- Stochastic – for a given set of initial conditions, the next step is random

- If someone trades a correlation, they change the market
 - Prices change in response to the trade
 - Occasionally others may notice, and trade it too
 - Correlations will disappear if traded large enough or long enough.
Summary

- Possible correlations are almost limitless
 - But they change with time

- Costs impact strategies
 - Investment portfolio balancing can be optimal if costs are negligible
 - More frequent trading is costlier.