Machine Learning & Google Big Query

Data collection and exploration – notes from the field
• Limited to support of Machine Learning (ML) tasks
 – Review tasks common to ML use cases
 • Data Exploration
 • Text Classification

• Field notes on BigQuery (BQ):
 – Has limitations which make it unsuitable for many data service use cases
 – Be patient with Cloud SDK & AppEngine APIs
 • Badly documented APIs and Google training is not up to the task
 • Stark absence of players (internet search results mostly limited to Google docs)
 • Plan on spending lots of time reverse engineering these APIs
 – Unstable APIs
 • Changes are improvements, mostly
 • Upgrade breakages were common-place

Introduction
• Origins are from the Dremel project at Google
 – Highly parallelized
 • Across commodity servers
 – Column storage
 – No indexes
 • Single scan of disk

• Top level structure is a Project
 – Billing, users/groups
 – Dataset(s) belong to Project
 • Lowest level of access control

• Accessed via
 – BigQuery web GUI console
 • High latency when interacting with list of UI objects
 – Command line scripts
 – REST API via Google client

• SQL?
 – BQ SQL is not the SQL your are used to
 • In some regards that is a good thing, but perhaps the losses are too big

Google BigQuery
- No updates of data
 - Must handle updates outside of Big Query
 - Random writes require very complex custom code
 - There are conventions that simplify the complexity
 - No need to purchase proprietary ETL toolset
 - None of them scale, none are fault tolerant
 - Put a software engineer on the team
 - Adopt suite of open source tools
 - Remember you are creating mini software products
 - Run on-premise or on GCP?
 - (N) Google Compute Engine (GCE) + SSD + Docker containers of ETLs

- No deletes of data
 - Same issues as updates

- High batch latency between source and BQ
 - Queries will be out of date by hours

- Purchase of Google Cloud Storage service is necessary
 - Functions as the staging data source service to BQ

- Arbitrary queries are not supported
 - Indexes are not supported so neither are random reads
 - Scan of everything always happens
 - Have to create custom pre-computed materialized views
 - These are always specific to a given use case
 - Moreover, always have to re-compute them programmatically, on schedule, and fault-tolerant

- BQ SQL
 - Don’t even think about doing a port to BQ

Big Query when viewed from an RDBMS mindset
• You can
 – Bulk load new data into new table
 – Append new data to existing table

• Is a fully managed data service

• Very fast read access to 10s of TBs
 – De-normalization might not be necessary
 • JOIN 10s of 3NF tables
 • Avoid sub-selects
 – At most, just ‘Write it the way you need to read it’
 • Columnar data model

• Powerful text query via regular expression statements
 – BQ SQL + regular expressions = actionable text information

• Nested entities intrinsic to Business domain
 – Big Query entity mirrors business domain entity

• Join together disparate sources easily
 – Cast into standardized ML model

Big Query Features
ML Business Use Cases in the cloud must be grounded

• Do you really know your business use case(s)?
 – Stop and think
 • It’s the only way to avoid buying fool’s gold
 – Understand the explicit business objective(s)
 • Domain manager and domain subject matter expert define and prioritize objective(s)
 – If they can’t make the objective explicit then the initiative will fail for lack of leadership
 • No need to hire a business analyst

• Written definition clearly describes: functionality/information valuable to consumer
 – Uses language that is ubiquitous to the business

• Absolutely critical to managing project risks
 – Presence of use cases differentiates the principled professionals from those who are not
 • Absence of use case indicates small degree of trust in themselves, their products, services and organization, as well as in the domain manager and domain SME.

• Proof of Concept? Proof of Value?
 – Without a use case you’ve proven nothing, you’ve proven no real business value.
• $ value of use case is well understood
 – The shared business value creates the *us*, the team
 – Know your ROI, even if it is an R&D exercise
 • Tie it to acquisition, preservation or growth of capital
 – Staff team only with those who can maintain that focus and shoulder that obligation

• Written description that can be used for
 – Project planning, and
 – Conversations about the business use case

• Tests that can be used to determine when the solution to use case is both complete and valid
 – If you do not know what the finish line is, then you will never cross it

• Technical team determines how to develop & operate solution to use case

Criteria of good Business Use Case(s)
• Domain model is exactly how the business works (or will work)
 – Team - domain management, domain subject matter experts, technical members
 • Continually trying new approaches to see what will work best
 • Unless domain managers want to innovate, ‘actionable insights’ will remain just another over-used marketing slogan
 – Minimize scope, get small, really small, and very focused
 • Machine Learning (ML) system must change quickly in the face of changing needs
 • ML must be easy and inexpensive to change
 – Testable, can be empirically proven to meet core business objective(s)

• Think of the DM as an ontology
 – Things of interest to you, and their characteristic properties, as well as their relationships and the properties of those relationships

• Often implemented as an object model
 – Literal and accurate business meanings assigned to data as well as behavior(s)
 • JSON document captures definition of Big Query entity/table
 • Flattening object model may not be needed
 – Business finds it easy to understand the DM and easier to query the DM than a domain data cast into a relational schema

Domain Driven Design and ML
• From Google Cloud Storage (GCS), (truncate) bulk upload static snapshots into Big Query table/entity
 – Method supported via Big Query web-based console
 • BQ console is too labor intensive for operations, fine for exploration
 – Programmatically control batch upload processes
 • Most stable portions of APIs
 – JSON representation of Big Query table/entity
 • Business domain model with nested entities are supported
 – CSV input file with header line or JSON format input file
 • JSON rep + Header useful specs for extractor

No updates! No deletes! There’s only snapshots
• Preprocess data sets prior to uploading into GCS
 – Partition data sets by time (_CCYYMMDD for a given day)
 • 1 partition per slice in time
 – In BQ 1 partition = 1 table/entity
 • Create View over partitions to provide consumer(s) with 1 entity to query in BQ
 – Google AppEngine (GAE) kills process running for >10 seconds
 • GAE is a no go when updating large data volumes
 • Google Dataflow?
 – It is an Idempotent RESTful service
 • Client makes the same call repeatedly while producing the same effect
 • ETLs can rarely be applied repeatedly without effecting results (negatively)
 – Documentation looks weak, small population of users (once again)
 – Update/delete processes are typically disk I/O intensive
 • Run update/delete processes on-premise, or on GCP instance, use (local) SSDs
 • Co-locate process with the data file(s), avoid moving data over network to the process
 – Big Query Streaming API was under construction
 • Did not function as documented (once again)

Remediation via Conventions
• Avoid merging business channel domains
 – Learn the lessons from enterprise DW and BI debacles
 – Intra domain use cases are doable
 • But only if the will to act exists within leadership
 • Real change is always disruptive
 – Blending business channel domains greatly increases probability of failure
 • Scope creep
 • Lack of shared incentives across business channel domains are the invisible barriers
 • Culture stresses competition over collaboration

• If new use case just queries existing schema then you do not need DDD task

Business Domain Model as Big Query Schema
• Use to transform large volumes of raw data into a representation suitable for ML models

• Big Query Console and APIs can support exploratory steps in data analysis
 – Storing very large numeric summary tables
 • Collect classic statistics output
 – Data source for basic visualization to search for patterns in the data
 – Typical suite of mathematical functions supported in BQ SQL
 • Natural logarithm, Base-2, Base-10, radians, etc.

• Correlation research
 – Examine many variables simultaneously
 • Relatively easy inclusion of many variables
 • Join many tables in a single query

• Passive confirmatory data analysis
 – Tables support tests of formal model on the pattern you think you found in the data

• Representative Sampling
 – Less time consuming on BQ, therefore may be less expensive relative to alternative columnar data services
 – Increases chances of being able to generalize the results from the population
 – Common batch processing approach when model is re-trained using all data

Data Exploration
• Classify by searching for hidden patterns in unstructured text
 – Regular expressions are supported in Big Query SQL
 • Search through text for terms using REGEX_MATCH()
 – Can be used on integer and float data cast to string
 • Be sure to remove new line from within uploaded text, else load will fail!
 – Build vocabulary from very large corpus of text
 • Store counts of the # of times the term occurs
 – Counts can be used to support Naïve Bayes classifier
• Know your ML business use case
 – Experiment with BQ’s ability to support ML task(s)
 – Avoid hard project deadlines (bad docs; very small community of users; volatile APIs)

• Understand the limitations and features of BigQuery
 – Are you ready to pay the design, development and testing of custom update and delete code?
 – Have you priced in the cost of the update/delete custom code?

• Well suited for:
 – Transforming very large data sets into ML models
 – Exploring very large data sets
 – Text classification

• Is BigQuery ready for the enterprise?
 – Best kept in department (or R&D) for the time being
 – Consider cloud-based Mesos + Apache Hadoop + Spark + MLlib + Dremel + Parquet
 • Very well documented + large dev and ops populations

• Questions?

Closing