Machine Learning & Google Big Query

Data collection and exploration – notes from the field

- Limited to support of Machine Learning (ML) tasks
 - Review tasks common to ML use cases
 - Data Exploration
 - Text Classification
- Field notes on BigQuery (BQ):
 - Has limitations which make it unsuitable for many data service use cases
 - Be patient with Cloud SDK & AppEngine APIs
 - Badly documented APIs and Google training is not up to the task
 - Stark absence of players (internet search results mostly limited to Google docs)
 - Plan on spending lots of time reverse engineering these APIs
 - Unstable APIs
 - Changes are improvements, mostly
 - Upgrade breakages were common-place

Introduction

- Origins are from the Dremel project at Google
 - Highly parallelized
 - Across commodity servers
 - Column storage
 - No indexes
 - Single scan of disk
- Top level structure is a Project
 - Billing, users/groups
 - Dataset(s) belong to Project
 - Lowest level of access control

- Accessed via
 - BigQuery web GUI console
 - High latency when interacting with list of UI objects
 - Command line scripts
 - REST API via Google client
- SQL?
 - BQ SQL is not the SQL your are used to
 - In some regards that is a good thing, but perhaps the losses are too big

Google BigQuery

- No updates of data
 - Must handle updates outside of Big Query
 - Random writes require very complex custom code
 - · There are conventions that simplify the complexity
 - · No need to purchase proprietary ETL toolset
 - None of them scale, none are fault tolerant
 - Put a software engineer on the team
 - Adopt suite of open source tools
 - Remember you are creating mini software products
 - Run on-premise or on GCP?
 - (N) Google Compute Engine (GCE) + SSD + Docker containers of ETLs
- No deletes of data
 - Same issues as updates
- High batch latency between source and BQ
 - Queries will be out of date by hours

- Purchase of Google Cloud Storage service is necessary
 - Functions as the staging data source service to BQ
- Arbitrary queries are not supported
 - Indexes are not supported so neither are random reads
 - Scan of everything always happens
 - Have to create custom pre-computed materialized views
 - These are always specific to a given use case
 - Moreover, always have to re-compute them programmatically, on schedule, and fault-tolerant
- BQ SQL
 - Query reference (https://cloud.google.com/bigquery/query-reference?hl=en)
 - Don't even think about doing a port to BQ

Big Query when viewed from an RDBMS mindset

- You can
 - Bulk load new data into new table
 - Append new data to existing table
- Is a fully managed data service
- Very fast read access to 10s of TBs
 - De-normalization might not be necessary
 - JOIN 10s of 3NF tables
 - Avoid sub-selects
 - At most, just 'Write it the way you need to read it'
 - Columnar data model

- Powerful text query via regular expression statements
 - BQ SQL + regular expressions = actionable text information
- Nested entities intrinsic to Business domain
 - Big Query entity mirrors business domain entity
- Join together disparate sources easily
 - Cast into standardized ML model

Big Query Features

- Do you really know your business use case(s)?
 - Stop and think
 - It's the only way to avoid buying fool's gold
 - Understand the explicit business objective(s)
 - Domain manager and domain subject matter expert define and prioritize objective(s)
 - If they can't make the objective explicit then the initiative will fail for lack of leadership
 - No need to hire a business analyst

- Written definition clearly describes: functionality/information valuable to consumer
 - Uses language that is ubiquitous to the business
- Absolutely critical to managing project risks
 - Presence of use cases differentiates the principled professionals from those who are not
 - Absence of use case indicates small degree of trust in themselves, their products, services and organization, as well as in the domain manager and domain SME.
- Proof of Concept? Proof of Value?
 - Without a use case you've proven nothing, you've proven no real business value.

ML Business Use Cases in the cloud must be grounded

- \$ value of use case is well understood
 - The shared business value creates the us, the team
 - Know your ROI, even if it is an R&D exercise
 - Tie it to acquisition, preservation or growth of capital
 - Staff team only with those who can maintain that focus and shoulder that obligation

- Written description that can be used for
 - Project planning, and
 - Conversations about the business use case
- Tests that can be used to determine when the solution to use case is both complete and valid
 - If you do not know what the finish line is, then you will never cross it
- Technical team determines how to develop & operate solution to use case

Criteria of good Business Use Case(s)

- Domain model is exactly how the business works (or will work)
 - Team domain management, domain subject matter experts, technical members
 - Continually trying new approaches to see what will work best
 - Unless domain managers want to innovate, 'actionable insights' will remain just another over-used marketing slogan
 - Minimize scope, get small, really small, and very focused
 - Machine Learning (ML) system must change quickly in the face of changing needs
 - ML must be easy and inexpensive to change
 - Testable, can be empirically proven to meet core business objective(s)

- Think of the DM as an ontology
 - Things of interest to you, and their characteristic properties, as well as their relationships and the properties of those relationships
- Often implemented as an object model
 - Literal and accurate business meanings assigned to data as well as behavior(s)
 - JSON document captures definition of Big Query entity/table
 - Flattening object model may not be needed
 - Business finds it easy to understand the DM and easier to query the DM than a domain data cast into a relational schema

Domain Driven Design and ML

- From Google Cloud Storage (GCS), (truncate) bulk upload static snapshots into Big Query table/entity
 - Method supported via Big Query web-based console
 - BQ console is too labor intensive for operations, fine for exploration
 - Programmatically control batch upload processes
 - Most stable portions of APIs
 - JSON representation of Big Query table/entity
 - Business domain model with nested entities are supported
 - CSV input file with header line or JSON format input file
 - JSON rep + Header useful specs for extractor

No updates! No deletes! There's only snapshots

- Preprocess data sets prior to uploading into GCS
 - Partition data sets by time (_CCYYMMDD for a given day)
 - 1 partition per slice in time
 - In BQ 1 partition = 1 table/entity
 - · Create View over partitions to provide consumer(s) with 1 entity to query in BQ
 - Google AppEngine (GAE) kills process running for >10 seconds
 - GAE is a no go when updating large data volumes
 - Google Dataflow?
 - It is an Idempotent RESTful service
 - Client makes the same call repeatedly while producing the same effect
 - ETLs can rarely be applied repeatedly without effecting results (negatively)
 - Documentation looks weak, small population of users (once again)
 - Update/delete processes are typically disk I/O intensive
 - Run update/delete processes on-premise, or on GCP instance, use (local) SSDs
 - Co-locate process with the data file(s), avoid moving data over network to the process
 - Big Query Streaming API was under construction
 - Did not function as documented (once again)

Remediation via Conventions

- Avoid merging business channel domains
 - Learn the lessons from enterprise DW and BI debacles
 - Intra domain use cases are doable
 - But only if the will to act exists within leadership
 - Real change is always disruptive
 - Blending business channel domains greatly increases probability of failure
 - Scope creep
 - Lack of shared incentives across business channel domains are the invisible barriers
 - Culture stresses competition over collaboration
- If new use case just queries existing schema then you do not need DDD task

Business Domain Model as Big Query Schema

- Use to transform large volumes of raw data into a representation suitable for ML models
- Big Query Console and APIs can support exploratory steps in data analysis
 - Storing very large numeric summary tables
 - Collect classic statistics output
 - Data source for basic visualization to search for patterns in the data
 - Typical suite of mathematical functions supported in BQ SQL
 - Natural logarithm, Base-2, Base-10, radians, etc.

- Representative Sampling
 - Less time consuming on BQ, therefore may be less expensive relative to alternative columnar data services
 - Increases chances of being able to generalize the results from the population
 - Common batch processing approach when model is re-trained using all data
- Correlation research
 - Examine many variables simultaneously
 - Relatively easy inclusion of many variables
 - Join many tables in a single query
- Passive confirmatory data analysis
 - Tables support tests of formal model on the pattern you think you found in the data

Data Exploration

- Classify by searching for hidden patterns in unstructured text
 - Regular expressions are supported in Big Query SQL
 - Search through text for terms using REGEX_MATCH()
 - Can be used on integer and float data cast to string
 - Be sure to remove new line from within uploaded text, else load will fail!
 - Build vocabulary from very large corpus of text
 - Store counts of the # of times the term occurs
 - Counts can be used to support Naïve Bayes classifier

Text classification

- Know your ML business use case
 - Experiment with BQ's ability to support ML task(s)
 - Avoid hard project deadlines (bad docs; very small community of users; volatile APIs)
- Understand the limitations and features of BigQuery
 - Are you ready to pay the design, development and testing of custom update and delete code?
 - Have you priced in the cost of the update/delete custom code?
- Well suited for:
 - Transforming very large data sets into ML models
 - Exploring very large data sets
 - Text classification

- Is BigQuery ready for the enterprise?
 - Best kept in department (or R&D) for the time being
 - Consider cloud-based Mesos + Apache Hadoop + Spark + MLlib + Dremel + Parquet
 - Very well documented + large dev and ops populations
- Questions?

Closing