
Data collection and exploration –
notes from the field

Machine
Learning &
Google Big
Query

• Limited to support of Machine Learning (ML) tasks
– Review tasks common to ML use cases

• Data Exploration
• Text Classification

• Field notes on BigQuery (BQ):
– Has limitations which make it unsuitable for many data service use cases
– Be patient with Cloud SDK & AppEngine APIs

• Badly documented APIs and Google training is not up to the task
• Stark absence of players (internet search results mostly limited to Google docs)
• Plan on spending lots of time reverse engineering these APIs

– Unstable APIs
• Changes are improvements, mostly
• Upgrade breakages were common-place

Introduction

• Accessed via
– BigQuery web GUI console

• High latency when interacting with
list of UI objects

– Command line scripts
– REST API via Google client

• SQL?
– BQ SQL is not the SQL your are

used to
• In some regards that is a good thing,

but perhaps the losses are too big

• Origins are from the Dremel
project at Google
– Highly parallelized

• Across commodity servers

– Column storage
– No indexes

• Single scan of disk

• Top level structure is a Project
– Billing, users/groups
– Dataset(s) belong to Project

• Lowest level of access control

Google BigQuery

• Purchase of Google Cloud Storage service is
necessary
– Functions as the staging data source service to BQ

• Arbitrary queries are not supported
– Indexes are not supported so neither are random

reads
– Scan of everything always happens
– Have to create custom pre-computed materialized

views
• These are always specific to a given use case

• Moreover, always have to re-compute them programmatically,
on schedule, and fault-tolerant

• BQ SQL
– Query reference

(https://cloud.google.com/bigquery/query-
reference?hl=en)

– Don’t even think about doing a port to BQ

• No updates of data
– Must handle updates outside of Big Query

– Random writes require very complex custom code
• There are conventions that simplify the complexity

• No need to purchase proprietary ETL toolset

– None of them scale, none are fault tolerant

– Put a software engineer on the team

– Adopt suite of open source tools

– Remember you are creating mini software products

– Run on-premise or on GCP?
• (N) Google Compute Engine (GCE) + SSD + Docker containers of

ETLs

• No deletes of data
– Same issues as updates

• High batch latency between source and BQ
– Queries will be out of date by hours

Big Query when viewed from an RDBMS mindset

• Powerful text query via regular expression
statements

– BQ SQL + regular expressions = actionable
text information

• Nested entities intrinsic to Business domain

– Big Query entity mirrors business domain
entity

• Join together disparate sources easily

– Cast into standardized ML model

• You can

– Bulk load new data into new table

– Append new data to existing table

• Is a fully managed data service

• Very fast read access to 10s of TBs

– De-normalization might not be necessary

• JOIN 10s of 3NF tables

• Avoid sub-selects

– At most, just ‘Write it the way you need to
read it’

• Columnar data model

Big Query Features

• Written definition clearly describes:
functionality/information valuable to
consumer
– Uses language that is ubiquitous to the business

• Absolutely critical to managing project risks
– Presence of use cases differentiates the

principled professionals from those who are not
• Absence of use case indicates small degree of trust in

themselves, their products, services and
organization, as well as in the domain manager and
domain SME.

• Proof of Concept? Proof of Value?
– Without a use case you’ve proven nothing,

you’ve proven no real business value.

• Do you really know your business use
case(s)?
– Stop and think

• It’s the only way to avoid buying fool’s gold

– Understand the explicit business objective(s)
• Domain manager and domain subject matter expert

define and prioritize objective(s)
– If they can’t make the objective explicit then the

initiative will fail for lack of leadership

• No need to hire a business analyst

ML Business Use Cases in the cloud must be grounded

• Written description that can be used
for
– Project planning, and
– Conversations about the business use

case

• Tests that can be used to determine
when the solution to use case is both
complete and valid
– If you do not know what the finish line

is, then you will never cross it

• Technical team determines how to
develop & operate solution to use
case

• $ value of use case is well
understood
– The shared business value creates the

us, the team
– Know your ROI, even if it is an R&D

exercise
• Tie it to acquisition, preservation or growth

of capital

– Staff team only with those who can
maintain that focus and shoulder that
obligation

Criteria of good Business Use Case(s)

• Think of the DM as an ontology
– Things of interest to you, and their

characteristic properties, as well as their
relationships and the properties of those
relationships

• Often implemented as an object
model
– Literal and accurate business meanings

assigned to data as well as behavior(s)
• JSON document captures definition of Big

Query entity/table
• Flattening object model may not be needed

– Business finds it easy to understand the
DM and easier to query the DM than a
domain data cast into a relational
schema

• Domain model is exactly how the
business works (or will work)
– Team - domain management, domain

subject matter experts, technical
members
• Continually trying new approaches to see

what will work best
• Unless domain managers want to innovate,

‘actionable insights’ will remain just
another over-used marketing slogan

– Minimize scope, get small, really small,
and very focused
• Machine Learning (ML) system must change

quickly in the face of changing needs
• ML must be easy and inexpensive to change

– Testable, can be empirically proven to
meet core business objective(s)

Domain Driven Design and ML

• From Google Cloud Storage (GCS), (truncate) bulk upload static
snapshots into Big Query table/entity
– Method supported via Big Query web-based console

• BQ console is too labor intensive for operations, fine for exploration

– Programmatically control batch upload processes
• Most stable portions of APIs

– JSON representation of Big Query table/entity
• Business domain model with nested entities are supported

– CSV input file with header line or JSON format input file
• JSON rep + Header useful specs for extractor

No updates! No deletes! There’s only snapshots

• Preprocess data sets prior to uploading into GCS
– Partition data sets by time (_CCYYMMDD for a given day)

• 1 partition per slice in time
– In BQ 1 partition = 1 table/entity

• Create View over partitions to provide consumer(s) with 1 entity to query in BQ

– Google AppEngine (GAE) kills process running for >10 seconds
• GAE is a no go when updating large data volumes

• Google Dataflow?
– It is an Idempotent RESTful service

• Client makes the same call repeatedly while producing the same effect

• ETLs can rarely be applied repeatedly without effecting results (negatively)

– Documentation looks weak, small population of users (once again)

– Update/delete processes are typically disk I/O intensive
• Run update/delete processes on-premise, or on GCP instance, use (local) SSDs

• Co-locate process with the data file(s), avoid moving data over network to the process

– Big Query Streaming API was under construction
• Did not function as documented (once again)

Remediation via Conventions

• Avoid merging business channel domains
– Learn the lessons from enterprise DW and BI debacles
– Intra domain use cases are doable

• But only if the will to act exists within leadership

• Real change is always disruptive

– Blending business channel domains greatly increases probability of failure
• Scope creep

• Lack of shared incentives across business channel domains are the invisible barriers

• Culture stresses competition over collaboration

• If new use case just queries existing schema then you do not need
DDD task

Business Domain Model as Big Query Schema

• Representative Sampling
– Less time consuming on BQ, therefore may

be less expensive relative to alternative
columnar data services

– Increases chances of being able to generalize
the results from the population

– Common batch processing approach when
model is re-trained using all data

• Correlation research
– Examine many variables simultaneously

• Relatively easy inclusion of many variables

• Join many tables in a single query

• Passive confirmatory data analysis
– Tables support tests of formal model on the

pattern you think you found in the data

• Use to transform large volumes of raw data
into a representation suitable for ML models

• Big Query Console and APIs can support
exploratory steps in data analysis
– Storing very large numeric summary tables

• Collect classic statistics output

– Data source for basic visualization to search
for patterns in the data

– Typical suite of mathematical functions
supported in BQ SQL
• Natural logarithm, Base-2, Base-10, radians, etc.

Data Exploration

• Classify by searching for hidden patterns in unstructured text
– Regular expressions are supported in Big Query SQL

• Search through text for terms using REGEX_MATCH()

– Can be used on integer and float data cast to string

• Be sure to remove new line from within uploaded text, else load will fail!

– Build vocabulary from very large corpus of text
• Store counts of the # of times the term occurs

– Counts can be used to support Naïve Bayes classifier

Text classification

• Is BigQuery ready for the enterprise?
– Best kept in department (or R&D) for the time

being
– Consider cloud-based Mesos + Apache Hadoop

+ Spark + MLlib + Dremel + Parquet
• Very well documented + large dev and ops

populations

• Questions?

• Know your ML business use case
– Experiment with BQ’s ability to support ML

task(s)
– Avoid hard project deadlines (bad docs; very

small community of users; volatile APIs)

• Understand the limitations and features of
BigQuery
– Are you ready to pay the design, development

and testing of custom update and delete code?
– Have you priced in the cost of the

update/delete custom code?

• Well suited for:
– Transforming very large data sets into ML

models
– Exploring very large data sets
– Text classification

Closing

