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This talk is dedicated to the crew of the Niña, lost at sea since
June 2014.

Figure : Article from Dayly Camera, 6/27/2013

Florian Sobieczky Lost at See



Lost at See

Satellite Imagery used for Sea Surface observation

Figure : 239 + 162 victims of airplane accident overseas
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Motivation and Problem Formulation

Satellite Imagery used for Sea Surface observation

Figure : Image from sample gallery of Digital Globe.

What do satellite sea surface images look like?
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Motivation and Problem Formulation

Satellite Imagery used for Sea Surface observation

Figure : Image from sample gallery of Digital Globe.

How can boats, debris, or other objects be detected?
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Motivation and Problem Formulation

Satellite Imagery used for Sea Surface observation

Figure : Image from sample gallery of Skytruth (Copyright Google 2007).

What are the statistical properties of ‘natural ocean pictures’?
How do objects appear ‘untypical’ in these statistics?
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Motivation and Problem Formulation

Amount of Data

Figure : Image from Texas Equusearch
I Typical GEO-TIFF file size (e.g. samples from DIGITAL

Globe): 10000x10000 pixels, corresponding to (3km)2.

I Search area above ' 555.000(km)2 ' 61.000 GEOTiffs

I about 2.5 Million 500x500 Pixel images ' 1 month (1 sec/pic
of size 500 x 500 pixels)
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Scale Spaces

Scale Spaces

I Space of images S : D → R
(e.g. D = (εZ)2

⋂
[0, 1]2, and R = {0, . . . , 255}

or D = R2, and R = R)

I A scale space is an indexed family of images (Index:
Scale-Parameter; e.g. ε > 0) relative to some (inital) image

I Φt : S × S → S, with t ∈ (0,∞) =: ‘Scale parameter’

I V discrete (Lindeberg 94) or continuous (Iijima ’62, Otsu ’81,
Witkin 83, Koenderink 84)

I Idea: Splitting up information of image into different scales
which label different ‘derived images’ according to different
degree of detail (Burt 81, Crowley 81, Witkin 83)

I Typical Applications: Scale-Detection, Feature-Recognition,
Edge-Detection, Image-Registration, Object-Classification
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Scale Spaces

Scale Spaces: Examples

I Gaussian Scale Space: Φt [g ] = φt ∗ g(x) with
φt(x) = exp(−x2/t)/(2πt2).

I Φt [g ](x) = Ex [g(Bt)] with Bt Brownian Motion

I Φt [g ](x) = Ex [g(Xt)] where Xt is a diffusion, so

Φt [g ](x) =

∫
Ω
g(y)K (x , y , t)dy

where K (x , y , t) 6= K (x − y , 0, t), so this Scale Space doesn’t
have translational invariance (not a convolution). (see Leo
Grady: ‘Random Walks for Image Segmentation’, IEEE Tr.
PAMI, 2006)

I Non-linear: u(t, x) = Φt [g ](x) =
∫

Ω g(y)K (u(t, y); x , y , t)dy
(see J. Weickert: ‘Anisotropic Diffusion’, Teubner, 1998)
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Scale Spaces

Properties of Scale Spaces

Figure : San Francisco at Golden Gate Bridge, Sample of Digital Globe

I Usually defined by ‘Scale-Space Axioms’, Causality, Linearity,
Scale Invariance, Semi-group property, Isotropy, Homogeneity,
...

I Unique solution fulfilling all properties: Gaussian Scale Space
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Scale Spaces

Two scale spaces for edge-preserving smoothing

Figure : GIMP’s ‘Selective Gaussian Blurr’ (top row) and Random Walk
Smoothing (bottom row). Original: Left Column. Random Walk is the
‘Delayed Random Walk’ after 2, 3 and 4 steps, with threshold of 20
greyvalues out of 256. Gaussian blurr with comparable removal of noise
sooner deteriorates fine detail.
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Scale Spaces

L. Grady’s Model:

I In Grady’s Model, graph Laplacian L is set up for a weighted
lattice graph, wheights ∼ exp(−a|f (x)− f (y)|), x , y ∈ V .

I Several exit points are defined (RW is ‘killed’ there),
one for each Segment: ‘Boundary of the Graph’.

I Each exit carries label.

I Instead of computing the eigenvectors, for each point x ∈ V
and time t > 0 the exit measure (harmonic measure) is
computed

I Point x obtains label of exit with highest exit measure.

I Advantage: L with boundary is invertible (RW properly
substochastic):
Solving a linear system, instead of computing eigenvectors

I Solves ’Bottleneck’ Problem.
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Scale Spaces

L. Grady’s Model

Figure : Result of a Segmentation using Seeds (=Starting points of
Random Walks) and the Harmonic Measure (=Hitting measure)
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Statistics of Natural Images

Wavelet-coefficients

I Wavelets form a complete l2-basis for S

I Wavelets are localized (their support is a bounded region in
image)

I (Simplest) ‘Haar’-wavelet –
g(x) = 1

2 (g(x) + g(x + 1)) + g(x)− g(x + 1)

I Observation: Coefficients of 1-st subband follow distribution
on ‘natural images’

I Idea: Use to determine ‘untypical’ features in image
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Statistics of Natural Images

Wavelet-coefficients

Figure : From Buccigrossi, Simoncelli: ‘Image Compression via Joint
Statistical Characterization in the Wavelet Domain’: Measured
Distribution of discrete Gradient (= coefficient of First Sub-band)
g(x + 1)− g(x): Natural Images have usually a wider Peak...
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Statistics of Natural Images

Wavelet-coefficients

Figure : The Images ‘Bark’, ‘Boats’, ‘CTScan’, and ‘Toys’
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Fast detectors of Sea Surface Objects

What to look for

I The ‘naked eye’ is still one of the best filters.

I Task is to filter out ‘any strange object’ to reduce the amount
of data that has to be viewed.

I Use changes of the function across 1-dim. Profiles

I Use untypical statistic of objects

I Possibly use Scale Space to make features more pronounced

Florian Sobieczky Lost at See



Lost at See

Fast detectors of Sea Surface Objects

What to look for

I The ‘naked eye’ is still one of the best filters.

I Task is to filter out ‘any strange object’ to reduce the amount
of data that has to be viewed.

I Use changes of the function across 1-dim. Profiles

I Use untypical statistic of objects

I Possibly use Scale Space to make features more pronounced

Florian Sobieczky Lost at See



Lost at See

Fast detectors of Sea Surface Objects

What to look for

I The ‘naked eye’ is still one of the best filters.

I Task is to filter out ‘any strange object’ to reduce the amount
of data that has to be viewed.

I Use changes of the function across 1-dim. Profiles

I Use untypical statistic of objects

I Possibly use Scale Space to make features more pronounced

Florian Sobieczky Lost at See



Lost at See

Fast detectors of Sea Surface Objects

What to look for

I The ‘naked eye’ is still one of the best filters.

I Task is to filter out ‘any strange object’ to reduce the amount
of data that has to be viewed.

I Use changes of the function across 1-dim. Profiles

I Use untypical statistic of objects

I Possibly use Scale Space to make features more pronounced

Florian Sobieczky Lost at See



Lost at See

Fast detectors of Sea Surface Objects

What to look for

I The ‘naked eye’ is still one of the best filters.

I Task is to filter out ‘any strange object’ to reduce the amount
of data that has to be viewed.

I Use changes of the function across 1-dim. Profiles

I Use untypical statistic of objects

I Possibly use Scale Space to make features more pronounced

Florian Sobieczky Lost at See



Lost at See

Fast detectors of Sea Surface Objects

Sea Surface Object detection on Satellite Images

Hm

Slope: m Slope and height: m and H

m

Figure : Models for features to detect, and their smoothed version.
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Fast detectors of Sea Surface Objects

Example for an object to be reviewed by naked eye

Figure : Example of possible object (life-raft etc.) shown in the media in
connection with the search for flight MH370
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Fast detectors of Sea Surface Objects

Example for an object to be reviewed by naked eye

Figure : Object can be easily recognized by strong gradient around
object, nowhere else to be found in the image
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Fast detectors of Sea Surface Objects

Wavelet-coefficients

Figure : If wave crests are too pronounced, looking for largest gradients
will confuse filter.
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Fast detectors of Sea Surface Objects

Quantization of picture: Work on Bitplanes alone

Figure : Solution: Look at quantized picture, and take gradient then.
This increases the focus on parts in which the large gradients belong to
object0-boundaries (due to repetition)
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Fast detectors of Sea Surface Objects

Example for an object to be reviewed by naked eye

Figure : If also blurring of Random Walk Scale Space is applied, then
weight of least significant bits is reduced in smoothed areas.
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Fast detectors of Sea Surface Objects

The Nina

Figure : On Oct 15, 2013, Media (e.g.Dayly Mail.com) reported Texas
EquuSearch found satellite image well fitting the ‘Nina’ at -28.784317,
164.45064.
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Fast detectors of Sea Surface Objects

The Nina

Figure : Thank you for your interest!
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