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Abstract

We present a new methodology for modeling
and predicting future events through machine
learning and data mining techniques from tex-
tual data. Modeled events span across varied
domains including politics, economy and soci-
ety. The model employs human-style predic-
tion techniques such as causality inference, gen-
eralization and projection based on past expe-
rience. For this purpose, we use news archives
that date back 150 years as a vast source of text
representing “past-experiences” and inference
patterns. Empirical evaluation on real news ar-
ticles shows that the ability of our algorithm to
predict future events is similar to that of hu-
mans.

1 Introduction

Predicting events in politics, economics, society, etc.
is an intriguing task that is usually performed by hu-
man experts possessing extensive domain-specific and
common-sense knowledge. Much of the causal knowl-
edge that helps humans understand the world is found
in texts, that expresses people’s beliefs. Understand-
ing causality and the ability to predict are fundamental
capabilities of intelligent behavior and are essential for
decision making and other human common-sense reason-
ing, such as question-answering.

Psychological studies [Kahneman and Tversky, 1973]
provide evidence that humans are good at certain types
of event predictions – especially as they base on their
lifetime knowledge about how the world behaves. They
posses wide common-sense knowledge about how the
world is now, how it was before, what happens after
an action, and which event causes another.

Can we endow a machine with such rich capabilities to
allow it to predict events? Specifically, can we obtain all
this expertise which humans are exposed to throughout
their lifetime experience? The World Wide Web encap-
sulates much of our humans knowledge. It treasures in-
formation about historical events through news archives
and encyclopedias. It has dynamic updates about cur-
rent events through online news papers updating every

minute. On top of all the past and current human his-
tory, the web has many common sense ontologies that
can be utilized to extract causality patterns and gener-
alize events. This knowledge can serve as the basis for
performing true human-like prediction – with the abil-
ity to learn, understand language, possess intuitions and
general world knowledge.

Although some works dealt with entity and relation
extraction [Carlson et al., 2010], including causal extrac-
tion specifically [Chan and Lam, 2005], and temporal
information extraction [Ling and Weld, 2010] from the
web, to the best of our knowledge, none have dealt with
causality prediction. Other related works deal with in-
formation overflow – a somehow related work is [Shahaf
and Guestrin, 2010] which, given two news articles, pro-
vides a coherent small number of news items that con-
nects them. In our work we receive an event and predict
its e↵ect.

Time and time again we can draw parallels from what
is happening today, to historical examples in the past.
And although it is impossible for history to repeat itself
exactly, there are indeed recurring themes and patterns,
in the historical time line of mankind. Therefore, finding
similar occurrences in the past, and observing what they
caused, might give us great insight on the present. In-
terestingly, psychological studies ([Kahneman and Tver-
sky, 1973]) show that people also predict by similarity.
We present a new methodology for predicting events us-
ing a learning algorithm, which given an event repre-
sented in natural language, predicts a future event it can
cause. We first introduce a method for event representa-
tion inspired by Kim’s (1993) property exemplification
of events theory and Schank’s (1972) conceptual depen-
dency theory. We then present a prediction algorithm,
that uses world knowledge to generalize the events it
was trained on in the past. During prediction, when
presented with a never-seen-before event, it matches the
event to a similar generalized or specific event in the past.
It then projects the present event to a predicted future
event, using a cause-e↵ect clause pattern it learnt during
training. For example, given a present event “elections
in Tehran”, and a matched past causality of “elections in
Baghdad” caused “protests in Iraq”, the algorithm will
output “protests in Iran” rather than the naive output



of “protests in Iraq”.
For training the algorithm, we have created a graph of

300 millions fact nodes connected by more than one bil-
lion edges. Temporal data expressing causality was ob-
tained mainly from the New-York-Times archives (dat-
ing back to 1851). We applied semantic natural lan-
guage modeling techniques on the textual data, creating
a structured representation of the knowledge.

We present an empirical framework for evaluating the
performance of the algorithms. Given a set of events
extracted from the 2010 news, humans were asked to
indicate what they believe would happen as a result of
these events. Given the human predictions and the algo-
rithm predictions of those events, we asked an additional
group to conclude which predictions seemed more logi-
cal. The results suggest that the ability of the algorithm
to predict future events is at least as good as the human
ability to predict.

To gain some intuition about the type of predictions
the algorithm issues we present here two examples. The
algorithm, given the event “Magnitude 6.5 earthquake
rocks the Solomon Islands”, predicted that “Tsunami-
warning will be issued in the Pacific Ocean”. It learnt
this based on past examples it was trained on, one of
which was “Tsunami warning issued for Indian-Ocean”
after “7.6 earthquake strikes island near India”. The
predictive template inferred by the algorithm was: if an
earthquake occurs next to an Island, a tsunami warning
will be issued for its nearest ocean. An additional ex-
ample of a prediction issued by the algorithm, is given
the event “Cocaine found at Kennedy Space Center”,
it outputted the following predictions: “few people will
be arrested”, as the past event “police found cocaine in
lab” caused the event “2 people arrested”. As can be
seen from the examples, not all of the predicted events
will really take place in reality. However, most people
will agree that they do seem logical.

The main contributions of this paper are threefold:
First, we present a method of modeling events and con-
struct the world’s largest causality graph, using novel
causality mining techniques and data sources. Second,
we present a novel method for prediction of general fu-
ture events using their patterns in the past. Finally, we
present a new architecture design for mining events, and
a testing methodology for evaluating news prediction al-
gorithms, and evaluate our algorithms.

2 Problem Definition

In this section we discuss the event-causality inference
problem.

2.1 Event Representation
One of the theories to discuss how an event should be
represented is Kim’s Property Exemplification of Events
theory [Kim, 1993]. Kim’s discussion starts with the as-
sumption of the availability of a set of entities O. These
entities represent physical and abstract objects in the
real world: people, instances, and types. Our repre-
sentation of events complies with this theory, which, in

broad strokes, states that events are structured and de-
fined by a triplet [O,P, t]: (1) An object or several ob-
jects (Oi ✓ O); (2) a relation or property (P ✓ O ⇥O),
and (3) a time interval (t).

Kim’s theory provides a hight-level view on events.
To enhance the structure representation of an event we
turn to Conceptual Dependency (CD) [Schank, 1972]
theory. Inspired by this this theory, we further structure
the event to have roles in addition to the property rela-
tion. Each event will be composed of a temporal action
or state that the event’s objects exhibit (P ), the actor
that conducted the action, the object on which the action
was performed, the instrument the action was conducted
with, and the location of the event. Formally, it is rep-
resented as an ordered set e = hP,O1, . . . , O4, ti, where
P is the action, Oi ✓ 2O and t is a time-stamp . For
example, the event “The U.S army destroyed a ware-
house in Iraq with explosives”, which occurred on Oc-
tober 2004, is modeled as: Destroy (Action); U.S Army
(Actor); warehouse (Object); explosives (Instrument);
Iraq (Location); October 2004(Time).

2.2 Learning Problem Definition

We treat causality inference as a learning problem. Let
Ev be the set of events as described above. The goal
concept is a set of ordered-pairs of events that share a
causality relation among them: Gc = {hei, eji|ei, ej 2
Ev}, where ei is an event causing ej . Given training
examples T ✓ Gc, the algorithm produces a predictor
h : Ev ! Ev based on these examples. The predictor
can then be applied on a new event ei 2 Ev to output
an element in the goal concept hei, eji 2 Gc.

2.3 Generalizations

The goal of learning is to generalize the training exam-
ples supplied, in order to be able to handle never seen
new examples. The learning examples are composed of
events, which in turn are composed of two main com-
ponents – the objects and the properties that they hold
at the time of the event. In this section we present how
both components of the event can be generalized.

Generalizing Objects

A common practice is to map an object o 2 O to a
concept c 2 C. To allow generalization of the objects
we assume the availability of a concept graph over those
concepts. Formally, we assume a concept graph GO =
(V,E), where V ✓ 2O. We also assume a labeling on the
edges that represents the relation between the objects.

Generalizing Properties

In order to generalize the actions in the events we adopt
the Conceptual Dependency (CD) paradigm of actions
groups [Schank, 1972]. In this theory, Schank discusses
how to map each action to 11 classes of actions, such
as: move, PTrans, speak, Mbuild etc. This enables us to
classify the event property P to higher action classes.



2.4 Hypothesis Space
We define an event Gen(e) = e0 = hP 0, O0

1, . . . , O
0
4, ti to

be a generalization of an event e = hP,O1, . . . , O4, ti, if
there exists a path in the graph Go between Oi to O0

i
and if P 0 and P belong to the same class of actions.
The hypothesis space is the set of all possible predictors
h : Ev ! Ev. The hypothesis in our learning scheme is a
generalized pair of events: hGen(ei), Gen(ej)i, ei 2 Ev.

3 The Prediction Algorithm

In this section we present a learning algorithm that
learns how to generalize from past events in order to
produce a predictor h, that given a present event can
predict its e↵ect. The solution builds on the case-based
reasoning (CBR) framework [Aamodt and Plaza, 1994].
Given training examples and a new instance, this frame-
work is described by 4 main stages: retrieving stored
training examples most similar to the new instance (re-
trieving), combining the matched training instance with
the new instance to produce a new solution(reusing), up-
dating the stored instances (revising), and finally adding
the new instance to the stored examples (retaining). In
this work we implement the first two stages.

Retrieving Stage In order to define the similarity
of two events, we first define the Events Edit Dis-
tance de. Let ei = hP i, Oi

1, . . . , O
i
4, t

ii and ej =
hP j , Oj

1, . . . , O
j
4, t

ji be two events. Let Gu
o and Gu

p be
the undirected versions of the objects graph Go and the
action graph Gp respectively 1. We define de(ei, ej) =
distGu

p

(P i, P j)+
P

k distGu

o

(Oi
k, O

j
k), where, distG is the

length of the shortest path among all paths in G.
Given a new event ei, the algorithm retrieves the

top most similar events S = {he, emi 2 T} by de.
Those matched events are then generalized: Gen(S) =
{he1, e2i|9e, em 2 Ev : he, emi 2 S, e1 2 Gen(e), e2 2
Gen(em)}. We define specificity weight of an event to
be ⇠(e) = |{he, eji 2 S

S
Gen(S)|e, ej 2 Ev}|, rep-

resenting the variance in the e↵ects of the event e,
and a support score #(he0i, e0ji) = |{hei, eji 2 S|e0i 2
Gen(ei), e0j 2 Gen(ej)}, which indicates how many
supportive evidence in the examples we have for this
event pair or generalized event pair. The final sim-
ilarity measurement of two events is: Sim(ei, ej) =
max

e

m

,he
i

,e

m

i2Gen(S)#(ei,em)·d
e

(e
i

,e
j

)

⇠(e
i

) . In principal, we pre-
fer matched events or generalized events which had many
examples in the training (support) and cause little spe-
cific events (i.e. were not generalized too much). We
apply the described distance on the cause events in
S
S
Gen(S), retrieving the top most similar events.

Reusing Stage Predicting the e↵ects of the matched
events directly has some drawbacks. Assume an event
ei=”Earthquake hits Haiti“ occurred today, and during
retrieving, it was matched to the pair h“Earthquake hits

1
The actions are grouped into classes, but we treat it as a 2-level graph.

Turkey” , ”Red Cross help sent to Ankara“i. Obviously,
predicting that Red Cross help will be sent to Ankara be-
cause of an earthquake in Haiti is not logical. We would
like to be able to generalize the past cause and e↵ect
pair and learn a predicate clause that connects them, e.g.
for ”Earthquake hits [Country Name]“ yield ”Red Cross
help sent to [Capital of Country]“. During the reusing
stage, such a clause will be applied to the present event
ei producing its e↵ect with regard to ei. In our example,
the logical predicate clause would be CapitalOf, as Cap-
italOf(Turkey)= Ankara. When applied on the current
event ei: CapitalOf(Haiti) = Port-au-Prince, the output
will now be ”Red Cross help sent to Port-au-Prince”.
Notice that the application of the clauses can only be
applied on certain types of objects – in our case, coun-
tries. The clauses can be of any length, e.g., h“suspect ar-
rested in Brooklyn”, “Bloomberg declares emergency”i
produces the clause Mayor(BoroughOf(x)), as Brooklyn
is a borough of New York, whose mayor is Bloomberg.

We will now show how to learn such clauses, and how
they should be applied. Recall that the graph GO is an
edge-labeled graph, where each edge is a triplet hv1, v2, li,
where l is a predicate (e.g. “CapitalOf”). The learning
procedure is divided to 3 main steps: First, finding an
undirected path pi of length at most k in GO between
the objects of the cause event to the e↵ect event; Second,
constructing a clause using the labels of the path pi as
the predicates. We call this the predicate projection of
size k , pred = l1, . . . , lk from an event ei to an event
ej . Finally, the projection is applied to the new event
e = hP i, O1, . . . , O4, ti by finding an undirected path in
GO from Oi with the labels of pred. The projection
results are all the objects in the vertex reached. For-
mally, pred can be applied if 9V0 : O ✓ V0, 9V1 . . . Vk :
(V0, V1, l1), . . . (Vk�1, Vk, lk) 2 Edges(Gu

O). The projec-
tion results are all the objects o 2 Vk.

4 Mining Causality

In the previous section we present a high-level algorithm
that requires training examples T , knowledge about en-
tities GO, and events’ action classes P . One of the main
challenges of this work was to build a scalable system to
obtain those requirements.

We present a system that mines news sources to ex-
tract events, constructs their canonical semantic model,
and builds a causality graph on top of those events. The
system crawled, for more than 4 months, several dynamic
information sources, the main one being the New-York-
Times archives (which on part of the data optical char-
acter recognition (OCR) was performed), gathering data
of more than 150 years (1851� 2009).

For generalization of the objects, the system auto-
matically reads web content and extracts world knowl-
edge. The knowledge was mined from structured and
semi-structured publicly available information reposi-
tory. The causality graph building was distributed over
20 machines, using a Map-Reduce framework. This pro-
cess e�ciently unites di↵erent sources, extracts events,



and disambiguates entities. The resulting causality
graph is composed of over 300 million entity nodes, one
billion static edges and over 7 million causality edges.

On top of the causality graph, a search and indexing
infrastructure was built to enable search over millions
of documents. This highly scalable index allows a fast
walk on the graph of events, enabling e�cient inference
capabilities during the reusing phase of the algorithm.

4.1 World knowledge mining
The entity graph Go is composed of concepts
from Wikipedia, ConceptNet[Liu and Singh, 2004],
WordNet[Miller, 1995], Yago[Suchanek et al., 2007], and
OpenCyc. The concepts are interlinked using Linked-
Data cloud (e.g., DBpedia). The billion labeled edges of
the graph Go are the predicates of those ontologies.

4.2 Causality events mining and extraction
Our supervised learning algorithm requires many learn-
ing examples to be able to generalize well. As the
amount of temporal data is extremely large, spanning
over millions of articles, the goal of getting human anno-
tated examples becomes impossible. We therefore pro-
vide an automatic procedure to extract labeled examples
for learning causality from dynamic content. Specifically
in this work, we used the New-York-Times archives for
the years 1851 � 2009, WikiNews and BBC – over 13
million articles in total.

The system mines unstructured natural language text,
found in the dynamic web content, and searches for
causal grammatical patterns. We construct those pat-
terns using causality connectors [Wol↵ et al., 2002;
Levin and Hovav, 1994]. The connectors are divided
to three groups: causal connectives (e.g. because, af-
ter), causal prepositions (e.g. due to, because of) and
periphrastic causative verbs (e.g. cause, lead to). We
constructed a set of rules for extracting a causality
pair. Each rule is structured as: hPattern, Constraint,
Priorityi, where Pattern is a regular expression contain-
ing a causality connector, Constraint is a syntactic con-
straint on the sentence on which the pattern can be ap-
plied, and Priority is the priority of the rule if several
rules can be matched. For example, for the causality
connector “after”, the pattern “After [sentence1], [sen-
tence2]” is used, with the constraint that [sentence1] can-
not start with a number. This pattern can match the
sentence “after Afghan vote, complaints of fraud surface”
but will not match the sentence “after 10 years in lans-
ing, state lawmaker Tom George returns”. An additional
pattern example is “[sentence1] as [sentence2]” with the
constraint of [sentence2] having a verb. Using the con-
straint, the pattern can match the sentence “Nokia to
cut jobs as it tries to catch up to rivals” is matched, but
not the sentence “civil rights photographer unmasked as
informer”. The result of a rule application is a pair of
sentences – one tagged as a cause, and one tagged as an
e↵ect.

Given an extracted natural-language sentence, repre-
senting an event (either during learning or prediction),

the following procedure transforms it into a structured
event:

1. Root forms of inflected words are extracted us-
ing a morphological analyzer derived from WordNet
[Miller, 1995] stemmer. For example, in the article
title from 10/02/2010: “U.S. attacks kill 17 mil-
itants in Pakistan”, the words “attacks”, “killed”
and “militants” are transformed to “attack”, “kill”
and “militant” respectively.

2. Part-Of-Speech tagging ([Marne↵e et al., 2006]) is
performed, and the verb is identified. The class of
the verb is identified using the VerbNet vocabulary
[Hoa Trang Dang and Rosenzweig, 1998], e.g., kill
belongs to P =murder class.

3. A syntactic template matching the verb is applied to
extract the semantic relations and thus the roles of
the words. Those templates are based on VerbNet,
which supplies for each verb class a set of syntac-
tic templates. These templates match the syntax
to the thematic roles of the entities in the sentence.
We match the templates even if they are not contin-
uous in the sentence tree. This allows the match of
a sentence even where there is an auxiliary verb be-
tween the subject and the main transitive verb. In
our example, the template is “NP1 V NP2” which
transforms NP1 to “Agent”, and NP2 to “Patient”.
Therefore, we match U.S. attacks to be the Actor,
and the militant to be the Patient . If no template
can be matched, the sentence is transformed into
a typed-dependency graph of grammatical relations
[Marne↵e et al., 2006]. In the example, U.S. attacks
is identified as the subject of the sentence (candi-
date for Actor), militants as the object (candidate
for Patient), and Pakistan as the preposition (can-
didate for Location or Instrument, based on heuris-
tics, e.g., locations lexicons). Using this analysis,
we identify that the Location is Pakistan.

4. Each word in Oi is mapped to a Wikipedia-based
concept. If a word matches more than one concept,
we perform disambiguation by computing the cosine
similarity between the body of the news article and
the body of the Wikipedia article associated with
the concept: e.g., U.S was matched to several con-
cepts, such as: United States, University of Salford,
and Us (Brother Ali album). The most similar by
content was United States Wikipedia concept.

5. The time of the event t is the time of the publication
of the article in the news, e.g., t =10/02/2010.

In our example, the final result is the event e = hMurder-
Class, United States Of America, Militant, NULL ,Pak-
istan, 10/02/2010i .

In many cases additional heuristics were needed in or-
der to deal with the briefness in news language, e.g:

1. Missing Context – In “McDonald’s recalls glasses
due to Cadmium traces”, the extracted event “Cad-
mium traces” needs additional context – “Cadmium
traces [in McDonald’s glasses]”. Heuristically, if an



object is missing, the first sentence ([sentence1])
subject is used.

2. Missing entities and verbs – the text “22 dead”
should be structured to the event “22 [people] [are]
dead”. Heuristically, if a number appears as the
subject, the word people is added and used as the
subject, and “be” is added as the verb.

3. Anaphora resolution – the text “boy hangs him-
self after he sees reports of Hussein’s execution” is
modeled as “[boy1] sees reports of Hussein’s execu-
tion” causes “[boy1] hangs [boy1]” [Lappin and Le-
ass, 1994].

4. Negation – the text “Matsui is still playing de-
spite his struggles” should be modeled as: “[Matsui]
struggles” causes the event “Matsui is [not] play-
ing”. Modeling preventive connectors (e.g., despite)
requires negation of the modeled event.

5 Empirical Evaluation

A variety of experiments were conducted to test the per-
formance and behavior of our algorithm.

5.1 Methodology
We implemented the algorithms described above and
evaluated their performance. The prediction algorithm
was trained using news articles from the period 1851 �
2009. The web resources snapshots mentioned in Sec-
tion 4 dated until 2009. The evaluation is performed on
separate data – Wikinews articles from the year 2010.
We refer to this data as the test data. The evaluation
procedure is divided to the following steps:

1. Event identification – our algorithm assumes that
the input to the predictor h is an event. To find
news titles that represent an event, we randomly
sample n headlines from the test data. For each
headline a human is requested to decide whether the
headline is an event which can cause other events.
We denote the set of headlines labeled as event as
E. We again randomly sample k titles from E. We
denote this group as C.

2. Algorithm event prediction – we run our algorithm
on each event title ci 2 C. The algorithm performs
event extraction from the headline, and produces an
event eai with the highest score of being caused by
the event represented by ci. The result of this stage
are the pairs: {(ci, eai )|ci 2 C}.

3. Human event prediction – we present a human with
an event title ci 2 C, asking what this event might
cause. We denote the human result as ehi . The hu-
man is requested to provide the answer in a struc-
tured manner (as our algorithm produces). The re-
sult of this stage are the pairs: {(ci, ehi )|ci 2 C}.

4. Human evaluation of the results – Present m people
with a triplet (ci, ehi , e

a
i ). We ask to evaluate the

precision of the pair: (ci, ehi ) and the precision of
(ci, eai ), on a scale of 0-4 (0 is a highly impossible
prediction and 4 is a highly possible prediction).

[0-1) [1-2) [2-3) [3-4] Average Average

Ranking Accuracy

Algorithm 0 2 19 29 3.08 77%
Humans 0 3 24 23 2.86 72%

Table 1: The histogram of the rankings of the users for both
human and algorithm predictions.

Human evaluation was conducted using Amazon Me-
chanical Turk, an emerging utility for performing user
study evaluations, which was shown to be very precise
for certain tasks [Kittur et al., 2008]. During the evalu-
ation, tasks are created by routing a question to random
users and obtaining their answers.

5.2 Results
We performed the above mentioned experiments, with
the values n = 1500, k = 50,m = 10. The algorithm
average prediction precision was 3.08/4 (3 is a “possible
prediction”), and the human prediction average preci-
sion was 2.86/4. For each event, we average the results
of the m rankers, producing an averaged score for the al-
gorithm performance on the event, and an averaged score
for the human prediction (see Table 1). We performed
a paired t-test on the k paired scores. The advantage of
the algorithm over the humans was found to be statis-
tically significant with p < 0.05. We can conclude now
that the ability of the algorithm to predict future events
is at least as good as the human ability to predict.

We now present qualitative analysis of the results to
have a better understanding of the algorithm strength
and weaknesses. Given the event “Louisiana flood” the
algorithm predicted that [number] people will flee. The
prediction was based on the following past news arti-
cles: Residents of Florida flee storm and Hiltons; 150000
flee as hurricane nears north Carolina coast; a million
flee as huge storm hits Texas coast; Thousands in Texas
flee hurricane Ike; thousands flee as storm whips coast
of Florida; at least 1000 flee flooding in Florida. The
past events were generalized to the causality pair of
“[Weather hazards] at [States of the Southern United
States]” cause “[number] of people to flee”. During the
prediction, the event “Louisiana flood” (which did not
occur in the training examples) was found most similar
to the above generalized causality pair.

As another example, given the event “6.1 magnitude
aftershock earthquake hits Haiti”, it outputted the fol-
lowing predictions: “[number] people will be dead”,
“[number] people will be missing”, “[number] magnitude
aftershock earthquake will strike island near Haiti” and
“earthquake will turn to United States Virgin Islands”.
While the first 3 predictions seem very reasonable, the
fourth one is problematic. The rule the system learnt in
this case is – natural disasters that hit countries next to
a shore tend to a↵ect near by countries. In our case it
predicted that the earthquake will a↵ect United States
Virgin Islands, which are geographically close to Haiti.
However, the prediction “earthquake will turn to United
States Virgin Islands” is not very realistic as an earth-



Event Human-predicted event Algorithm-
predicted event

Al-Qaida demands
hostage exchange

Al-Qaida exchanges hostage A country will
refuse the de-
mand

Volcano erupts in
Democratic Republic
of Congo

Scientists in Republic of
Congo investigate lava beds

Thousands of
people flee from
Congo

7.0 magnitude earth-
quake strikes Haitian
coast

Tsunami in Haiti a↵ects
coast

Tsunami-warning
is issued

2 Palestinians report-
edly shot dead by Is-
raeli troops

Israeli citizens protest
against Palestinian leaders

War will be
waged

Professor of Tehran
University killed in
bombing

Tehran students remember
slain professor in memorial
service

Professor funeral
will be held

Alleged drug kingpin
arrested in Mexico

Mafia kills people with guns
in town

Kingpin will be
sent to prison

UK bans Islamist
group

Islamist group would adopt
another name in the UK

Group will grow

China overtakes
Germany as world’s
biggest exporter

German o�cials suspend
tari↵s

Wheat price will
fall

Table 2: Human and algorithm predictions for events.

quake cannot change its course. It was created based on
a match with a past example of a tornado hitting a coun-
try on a coast. The reason for that is the sparsity of the
training. Both are natural disasters, and there were no
negative examples or enough positive examples to sup-
port this distinction. However, we still find this example
interesting, as it issues a prediction using spatial locality
(United States Virgin Islands are [near] Haiti). Another
example of the same problem is the prediction: h light-
ning kills 5 people, lightening will be arrestedi, which
was predicted based on training examples in which peo-
ple who killed other people got arrested.

Additional 8 examples out of the 50 in the test and
their predictions can be seen in Table 2.

6 Conclusions

We presented a method for representing events based
on previous philosophical contribution. We introduced
a novel case-based reasoning algorithm for predicting
causality relations between events. Our prediction al-
gorithm uses an extensive knowledge base which was au-
tomatically constructed using information mined from
large amount of text. We presented the data mining and
natural language techniques to transform the raw data of
over 150 years of history archives into a structured rep-
resentation of events, using a mined web-based object
hierarchy and action classes. Our experimental evalua-
tion showed that the predictions of the algorithm are at
least as good as those of humans.

We believe that our work is one of the first to harness
the vast amount of information available on the web to
perform prediction that is general purpose, knowledge
based, and human like.
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