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Intelligence

® Knowing a lot

® Being able to use what you know flexibly to
achieve goals (maximize reward)
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Knowledge should be

|. Learnable—from low-level sensorimotor data

2. Expressive—able to express abstract, high-level
facts as well as specific, low-level facts

3. Useful—for action and planning

“The problem of knowing”



Examples of stuff to know

Twitching this muscle lifts
that finger

There is a wall behind me

The toilet is down the hall
on the left

The shape of a teacup
Knowing how to ride a bike

Knowing how to call a taxi

My keys are in my pocket
There is an apple in the box
There is a book on the table
My car is red

People usually have two feet

The Eiffel tower is in Paris

John has the flu



The Sensorimotor View

® |n which an agent’s knowledge is viewed as facts
about the statistics of its sensorimotor data stream

® This point of view is interesting because
® it is reductionist and demystifies world knowledge
® it provides a clear way of thinking about semantics
® it implies that knowledge can be verified and

learned from data —“the knowledge is in the data”

Thus “Learning About Sensorimotor Data”



It's hard to implement the
Sensorimotor View well

® Where “well” means such that it is

® sound, stable, and efficient with function
approximation

® scalable to large numbers of predictions learned
in parallel from the same experience

® real time (online with many updates/second)
® captures multi-step facts

® Achieving these modest goals is highly constraining

Thus a successful implementation can be informative



Robot experiments



The iRobot Create




“Wall ahead’ is a
sensorimotor fact




Predicting: Will rolling forward
soon result in a bump!?




Predicting right and left bumps
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Strategy

® TJo understand the world is to have many predictions
about your sensorimotor data stream

® The predictions must be multi-step and policy
contingent

® because almost all interesting predictions are
more-than-one-step and policy-contingent

® You must be able to learn from partial executions

® because then you can learn about many policies in
parallel

® this will require TD and off-policy learning, and FA



Temporal-difference
(TD) learning

® The core learning algorithm of online
reinforcement learning

® model-free dynamic programming

® | earning driven by TD errors (changes in
prediction from one time to the next)

® |earning a guess from a guess



1D Learning in
Engineering and Biology

® D algorithms are the standard model of
reward-based learning in both

® engineering (artificial intelligence and
optimal control)

® biology (neuroscience and psychology)

® [D algorithms have been independently
validated in four distinct fields

® This is an unprecedented convergence



TD is in no way specific to
reward

® [D is a real-time prediction-learning method

® suitable for predicting any signal, not just
reward

® it is a candidate for a universal prediction-
learning algorithm



The Horde Architecture
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The Critterbot

Infra-red
Sensors




Infrared-sensor data
and predictions




Scaling up: IR predictions for
multiple tiles and policies
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Scaling Up
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Learning is fast enough
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Conclusions from
robot experiments

® Thousands of accurate multi-step predictions
can be made and learned in real time at 10/
second by linear TD algorithms

® This could not have been done in any other
way

® Model-free algorithms can learn fast enough
to be useful

® Real-time learning of sensorimotor knowledge is
practical and scalable



The Horde-of-demons
architecture



The Horde Architecture
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Inside a GTD(A) Demon
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General value functions as a language
for multi-step predictive questions
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General value functions as a language
for multi-step predictive questions

Exponential “spontaneous’ termination
(good for time-discounted sums)
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General value functions as a language
for multi-step predictive questions

with reward (r), you can
predict what happens here
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General value functions as a language
for multi-step predictive questions

reward (r) weighting
terminal reward
(z) weighting
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General value functions—
Fundamental or idiosyncratic!?

® GVFs are a powerful rep’n language for the
semantics of sensorimotor knowledge

® GVFs seem powerful enough to encode
all scientific knowledge (knowledge with
experimentally testable predictions)

® But we don’t yet have extensive experience;
some changes will probably be needed

® Crafted for efficient recursive computations

® Proven utility in control, planning, neuroscience



Remarks on
gradient- I D algorithms



1D with FA

® TD with function approximation (FA) has
historically been problematic:

® for linear FA, there has been no TD
algorithm with linear complexity that is
sound under off-policy training

® Q-learning diverges with linear FA

® for non-linear FA, there has been no sound
algorithm with constant per-step comp.

® T[he root problem is that there have been no
true gradient-descent TD algorithms



TD and GD: Headlines

® Convention gradient-based TD algorithms are not true
GD (because they ignore the effect on the new guess)

® guaranteed convergent on-policy but not off-policy

® Baird’s Residual Gradient and VAPS methods are GD in
the wrong objective

® converge to the wrong thing even in tabular case
® Precup’s Importance Sampling methods too slow
® too slow to benefit from parallel off-policy learning

® New true-GD methods (Maei, Szepesvari, Sutton et al.)



TD(0) can diverge:
A simple example

§ = r+90 ¢ -0 ¢

= 0+20—-10
= 0
TD update: A0 = «adop
= af Diverges!

TD fixpoint: 0 = 0



TD with FA: Non-GD solutions?

® |inear least-squares methods: LSTD, LSPI
® complexity is O(n?)/step
® Gordon’s averagers, Gaussian Processes
® require storing examples—not scalable FA
® Policy-Gradient methods
® RL not TD; don’t learn multi-step facts
® Model-based methods

® non-starter for the sensorimotor approach



The Gradient-TD Family

® GTD(A) and GQ(A), for learning GVF V and Q

® Developed by Maei, Szepesvari, Sutton, Precup,
Bhatnagar, Silver, Wiewiora 2008-1 |

® Solve two open problems:

® convergent linear-complexity off-policy TD
learning

® convergent non-linear TD

® T[rue gradient-descent algorithms



Gradient-TD convergence theorem

The weights of Gradient TD methods follow the

gradient of a projected-Bellman-error objective
function in expected value:

Bellman operator .t of estimated values,

step size / , ©One per state
E [A8] = —uV,| Vv, -TITV |
D [ 9] p 6 0 0 lp *—— 2-norm under the
/ gradient vector 2 data distribution

expectation under

SR of partial derivatives
data distribution

projection back
into the space of
representable
functions

which guarantees convergence to the TD fixpoint
(under step-size conditions)



TD vs Gradient-TD

TD error:
0 = ey + ’7(92_¢t—|—1 — ngﬁbt
Linear TD(0):
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My message in one sentence

If it’s important for your Al agent to know a lot,
and you take the sensorimotor approach,
then you are forced to multi-step predictions,
and to policy-contingent predictions,
which require TD (a new reason for TD!),
and, in fact,a new kind of gradient-TD,

if you want to proceed in a practical and scalable
way (linear-complexity function approximation).



Further frontiers

Learning directing action: Curiosity, intrinsic
motivation

Discovering features and questions
Better gradient-TD algorithms

Parallel learning by policy-gradient (actor-
critic) methods?

Models and planning

It will be interesting just to keep scaling



Thank you for your attention

® And thanks again to Adam White, Joseph
Modayil, Thomas Degris, and the RLAI group
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