
Learning About
Sensorimotor Data

Rich Sutton
Reinforcement Learning and Artificial Intelligence Lab

University of Alberta, Canada

with thanks to
Adam White, Joseph Modayil, Thomas Degris, Patrick Pilarski, Csaba

Szepesvari, Hamid Maei, Mark Ring, Anna Koop, Leah Hackman

Outline

• The sensorimotor approach to knowing

• Robot experiments

• the need for multi-step prediction

• The Horde-of-demons architecture

• Remarks on gradient-TD algorithms

Intelligence

• Knowing a lot

• Being able to use what you know flexibly to
achieve goals (maximize reward)

1. Learnable—from low-level sensorimotor data

2. Expressive—able to express abstract, high-level
facts as well as specific, low-level facts

3. Useful—for action and planning

Knowledge should be

“The problem of knowing”

Intelligence
• Knowing a lot

• Being able to use what you know flexibly to
achieve goals (maximize reward)

Examples of stuff to know

• Twitching this muscle lifts
that finger

• There is a wall behind me

• The toilet is down the hall
on the left

• The shape of a teacup

• Knowing how to ride a bike

• Knowing how to call a taxi

• My keys are in my pocket

• There is an apple in the box

• There is a book on the table

• My car is red

• People usually have two feet

• The Eiffel tower is in Paris

• John has the flu

The Sensorimotor View

• In which an agent’s knowledge is viewed as facts
about the statistics of its sensorimotor data stream

• This point of view is interesting because

• it is reductionist and demystifies world knowledge

• it provides a clear way of thinking about semantics

• it implies that knowledge can be verified and
learned from data – “the knowledge is in the data”

Thus “Learning About Sensorimotor Data”

It’s hard to implement the
Sensorimotor View well
• Where “well” means such that it is

• sound, stable, and efficient with function
approximation

• scalable to large numbers of predictions learned
in parallel from the same experience

• real time (online with many updates/second)

• captures multi-step facts

• Achieving these modest goals is highly constraining

Thus a successful implementation can be informative

Robot experiments

The iRobot Create

“Wall ahead” is a
sensorimotor fact

bump
data

Predicting: Will rolling forward
soon result in a bump?

bump
data

bump
pred

Predicting right and left bumps

left bump

right bump

both bump

datapred

Strategy
• To understand the world is to have many predictions

about your sensorimotor data stream

• The predictions must be multi-step and policy
contingent

• because almost all interesting predictions are
more-than-one-step and policy-contingent

• You must be able to learn from partial executions

• because then you can learn about many policies in
parallel

• this will require TD and off-policy learning, and FA

Temporal-difference
(TD) learning

• The core learning algorithm of online
reinforcement learning

• model-free dynamic programming

• Learning driven by TD errors (changes in
prediction from one time to the next)

• learning a guess from a guess

TD Learning in
Engineering and Biology
• TD algorithms are the standard model of

reward-based learning in both

• engineering (artificial intelligence and
optimal control)

• biology (neuroscience and psychology)

• TD algorithms have been independently
validated in four distinct fields

• This is an unprecedented convergence

TD is in no way specific to
reward

• TD is a real-time prediction-learning method

• suitable for predicting any signal, not just
reward

• it is a candidate for a universal prediction-
learning algorithm

The Horde Architecture

Non-linear
sparse re-coder
(e.g., tile coding)

sensorimotor
data

...

predictions

demons

sparse, mostly-binary,
feature representation

PSR
Each demon is
a full RL agent
estimating a
“value” function

each intersection represents
a modifiable weight

The Critterbot

Infra-red
sensors

Infrared-sensor data
and predictions

0

1

2

3

4

5

6

7

8

9
datapred sens

sensor
positions

Scaling up: IR predictions for
multiple tiles and policies

sensor
positions

sensor readings

16 tiles/features

different
policies

predictions

predictions
x 6000

(demons)

sparse binary
features x 3200

(tile coding)

Scaling Up
continuous observation data x 69

Learning is fast enough

5 hours of training (100ms time steps)

Mean-
square
error

in
prediction

predictions for various
sensors all approach

minimal values

Conclusions from
robot experiments

• Thousands of accurate multi-step predictions
can be made and learned in real time at 10/
second by linear TD algorithms

• This could not have been done in any other
way

• Model-free algorithms can learn fast enough
to be useful

• Real-time learning of sensorimotor knowledge is
practical and scalable

The Horde-of-demons
architecture

The Horde Architecture

Non-linear
sparse re-coder
(e.g., tile coding)

sensorimotor
data

...

predictions

demons

sparse, mostly-binary,
feature representation

PSR
Each demon is
a full RL agent
estimating a
value function

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

Inside a GTD(λ) Demon

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

λ

δ

+
-

ρ � r z

 ! w

prediction
"value"

2n
dar

y w
eig

hts

TD error

tar
get

-po
lic

y I
S ra

tio

ter
mina

tio
n r

ate

bo
ots

tra
pp

ing
 ra

te

rew
ard

ter
mina

l re
ward

pri
mary

 "a
nsw

er"
 un

it

e

and
 el

igi
bil

ity
 tra

ce

General value functions as a language
for multi-step predictive questions

predictions/answers

Time steps, 10 per second

prediction/
answer

General value functions as a language
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

Exponential “spontaneous” termination
(good for time-discounted sums)

imminent
rewards (r) are
more heavily

weighted

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
�
⇢t�t � w>

t �t

�
�t

✓>�(s) ⇡ V ⇡,�,r,z(s) = E[r(S
1

) + · · ·+ r(ST) + z(ST) | S0

= s, T ⇠ �, A
0:T�1

⇠ ⇡]

1

one data
time series

General value functions as a language
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

with reward (r), you can
predict what happens here

with terminal reward (z), you
can predict what happens here

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
�
⇢t�t � w>

t �t

�
�t

✓>�(s) ⇡ V ⇡,�,r,z(s) = E[r(S
1

) + · · ·+ r(ST) + z(ST) | S0

= s, T ⇠ �, A
0:T�1

⇠ ⇡]

1

Something happened
at this time that

setγto 0

General value functions as a language
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

terminal reward
(z) weighting

reward (r) weighting

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
�
⇢t�t � w>

t �t

�
�t

✓>�(s) ⇡ V ⇡,�,r,z(s) = E[r(S
1

) + · · ·+ r(ST) + z(ST) | S0

= s, T ⇠ �, A
0:T�1

⇠ ⇡]

1

General value functions—
Fundamental or idiosyncratic?
• GVFs are a powerful rep’n language for the

semantics of sensorimotor knowledge

• GVFs seem powerful enough to encode
all scientific knowledge (knowledge with
experimentally testable predictions)

• But we don’t yet have extensive experience;
some changes will probably be needed

• Crafted for efficient recursive computations

• Proven utility in control, planning, neuroscience

Remarks on
gradient-TD algorithms

TD with FA
• TD with function approximation (FA) has

historically been problematic:

• for linear FA, there has been no TD
algorithm with linear complexity that is
sound under off-policy training

• Q-learning diverges with linear FA

• for non-linear FA, there has been no sound
algorithm with constant per-step comp.

• The root problem is that there have been no
true gradient-descent TD algorithms

TD and GD: Headlines

• Convention gradient-based TD algorithms are not true
GD (because they ignore the effect on the new guess)

• guaranteed convergent on-policy but not off-policy

• Baird’s Residual Gradient and VAPS methods are GD in
the wrong objective

• converge to the wrong thing even in tabular case

• Precup’s Importance Sampling methods too slow

• too slow to benefit from parallel off-policy learning

• New true-GD methods (Maei, Szepesvari, Sutton et al.)

TD(0) can diverge:
A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!

TD with FA: Non-GD solutions?
• Linear least-squares methods: LSTD, LSPI

• complexity is O(n2)/step

• Gordon’s averagers, Gaussian Processes

• require storing examples—not scalable FA

• Policy-Gradient methods

• RL not TD; don’t learn multi-step facts

• Model-based methods

• non-starter for the sensorimotor approach

The Gradient-TD Family

• GTD(λ) and GQ(λ), for learning GVF V and Q

• Developed by Maei, Szepesvari, Sutton, Precup,
Bhatnagar, Silver, Wiewiora 2008-11

• Solve two open problems:

• convergent linear-complexity off-policy TD
learning

• convergent non-linear TD

• True gradient-descent algorithms

Gradient-TD convergence theorem

The weights of Gradient TD methods follow the
gradient of a projected-Bellman-error objective
function in expected value:

which guarantees convergence to the TD fixpoint
(under step-size conditions)

ED Δθ[] = −α∇θ Vθ − ΠTVθ D

2

vector of estimated values,
one per state

Bellman operator

projection back
into the space of
representable
functions

gradient vector
of partial derivativesexpectation under

data distribution

2-norm under the
data distribution

step size

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
�
⇢t�t � w>

t �t

�
�t

1

• TD error:

• Linear TD(0):

• Importance sampling ratio:

• Off-policy linear GTD(0)

TD vs Gradient-TD

2nd weight vector

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

� �! �0
⇢,�,� r,z

� = r + (1� �)z + �✓>�0 � ✓>�

e ⇢ (�+ �� e)

✓ ✓ + ↵
⇥
�e� � (1� �)

�
w>e

�
�0⇤

w w + �
⇥
�e�

�
w>�

�
�
⇤

�t = rt+1

+ �✓>t �t+1

� ✓>t �t

✓t+1

= ✓t + ↵�t�t

⇢t =
⇡
target

(st, at)

⇡
behavior

(st, at)

✓t+1

= ✓t + ↵⇢t
⇥
�t�t � �

�
w>

t �t

�
�t+1

⇤

wt+1

= wt + �
⇥
⇢t�t � w>

t �t

�
�t

1

My message in one sentence

If it’s important for your AI agent to know a lot,
and you take the sensorimotor approach,
then you are forced to multi-step predictions,

and to policy-contingent predictions,
which require TD (a new reason for TD!),

and, in fact, a new kind of gradient-TD,
if you want to proceed in a practical and scalable
way (linear-complexity function approximation).

Further frontiers
• Learning directing action: Curiosity, intrinsic

motivation

• Discovering features and questions

• Better gradient-TD algorithms

• Parallel learning by policy-gradient (actor-
critic) methods?

• Models and planning

• It will be interesting just to keep scaling

• And thanks again to Adam White, Joseph
Modayil, Thomas Degris, and the RLAI group

Thank you for your attention

