
Kylix: A Sparse Allreduce for Commodity Clusters

Huasha Zhao
Computer Science Division

University of California
Berkeley, CA 94720

hzhao@cs.berkeley.edu

John Canny
Computer Science Division

University of California
Berkeley, CA 94720
jfc@cs.berkeley.edu

Abstract—Allreduce is a basic building block for parallel com-
puting. Our target here is “Big Data” processing on commodity
clusters (mostly sparse power-law data). Allreduce can be used
to synchronize models, to maintain distributed datasets, and to
perform operations on distributed data such as sparse matrix
multiply. We first review a key constraint on cluster communi-
cation, the minimum efficient packet size, which hampers the
use of direct all-to-all protocols on large networks. Our allreduce
network is a nested, heterogeneous-degree butterfly. We show that
communication volume in lower layers is typically much less than
the top layer, and total communication across all layers a small
constant larger than the top layer, which is close to optimal.
A chart of network communication volume across layers has a
characteristic “Kylix” shape, which gives the method its name.
For optimum performance, the butterfly degrees also decrease
down the layers. Furthermore, to efficiently route sparse updates
to the nodes that need them, the network must be nested.
While the approach is amenable to various kinds of sparse data,
almost all “Big Data” sets show power-law statistics, and from
the properties of these, we derive methods for optimal network
design. Finally, we present experiments showing with Kylix on
Amazon EC2 and demonstrating significant improvements over
existing systems such as PowerGraph and Hadoop.

Keywords—Allreduce; butterfly network; power law; big data;

I. INTRODUCTION

Much of the world’s “Big Data” is sparse: web graphs, so-
cial networks, text, clicks logs etc. Furthermore, these datasets
are well fit by power-law models. By power-law, we mean that
the frequency of elements in one or both (row and column)
dimensions of these matrices follow a function of the form

F ∝ r−α (1)

where r is the rank of that feature in a frequency-sorted list
of features [1]. These datasets are large: 40 billion vertices
for the web graph, terabytes for social media logs and news
archives, and petabytes for large portal logs. Many groups are
developing tools to analyze these datasets on clusters [2]–
[5], [5]–[8]. While cluster approaches have produced useful
speedups, they have generally not leveraged single-machine
performance either through CPU-accelerated libraries (such
as Intel MKL) or using GPUs. Recent work has shown that
very large speedups are possible on single nodes [9]. In fact,
for many common machine learning problems single node
benchmarks now dominate the cluster benchmarks that have
appeared in the literature [9].

It is natural to ask if we can further scale single-node
performance on clusters of fully-accelerated nodes. However,
this requires proportional improvements in network primitives

if the network is not to be a bottleneck. In this work we are
looking to obtain an order of magnitude improvement in the
throughput of the allreduce operation.

Allreduce is a general primitive that is integral to dis-
tributed graph mining and machine learning. In an Allreduce,
data from each node, which can be represented as a vector (or
matrix) vi for node i, is reduced in some fashion (say via a
sum) to produce an aggregate

v =
∑

i=1,...,m

vi

and this aggregate is then shared across all the nodes.

In many applications, and in particular when the shared
data is large, the vectors vi are sparse. And furthermore, each
cluster node may not require all of the sum v but only a sparse
subset of it. We call a primitive which provides this capability
a Sparse Allreduce. By communicating only those values that
are needed by the nodes Sparse Allreduce can achieve orders-
of-magnitude speedups over dense approaches.

Many Big Data analysis toolkits: GraphLab/Powergraph,
Hadoop, Spark etc., all use direct all-to-all communication for
the Allreduce operation. That is, every feature has a home
node and all updates to that features are forwarded to the
home node. The updates are accumulated and then sent to
all the nodes who request the new value of that feature. Home
nodes are distributed in balanced fashion across the network.
Unfortunately this approach is not scalable: as the number of
nodes m increases, the packet size for each message decreases
as 1/m assuming fixed data per node. If instead the total
dataset size is fixed, then message size decreases as 1/m2.
Eventually, the time to send each message hits a floor value
determined by overhead in the TCP stack and switch latencies.
We show later that this limit is easily hit in practice, and is
present in published benchmarks on these systems.

The aim of this paper is to develop a general efficient sparse
allreduce primitive for computing on commodity clusters. The
solution, called “Kylix”, is a nested, heterogeneous-degree
butterfly network. By heterogeneous we mean that the butterfly
degree d differs from one layer of the network to another. By
nested, we mean that values pass “down” through the network
to implement an scatter-reduce, and then back up through
the same nodes to implement an allgather. Nesting allows
the return routes to be collapsed down the network, so that
communication is greatly reduced in the lower layers. Because
reduction happens in stages, the total data and communication
volume in each layer almost always decreases (caused by

collapsing of sparse elements with the same indices). This
network works particularly well with power-law data which
have high collision rates among the high-frequency head terms.
From an analysis of power-law data, we give a method to
design the optimal network (layer degrees and number of
layers) for a given problem.

We next show how sparse allreduce primitives are used in
algorithms such as PageRank, Spectral Clustering, Diameter
Estimation, and machine learning algorithms that train on
blocks (mini-batches) of data, e.g. those that use Stochastic
Gradient Descent(SGD) or Gibbs samplers.

A. Applications

1) MiniBatch Machine Learning Algortihms: Recently
there has been considerable progress in sub-gradient algo-
rithms [10], [11] which partition a large dataset into mini-
batches and update the model using sub-gradients. Such
models achieve many model updates in a single pass over
the dataset, and several benchmarks on large datasets show
convergence in a single pass [10]. Most machine learning
models are amenable to subgradient optimization, and in fact
it is often the most efficient method for moderate accuracy.
Finally, MCMC algorithms such as Gibbs samplers involve
updates to a model on every sample. To improve performance,
the sample updates are batched in very similar fashion to sub-
gradient updates [12].

All these algorithms have a common property in terms of
the input mini-batch: if the mini-batch involves a subset of
features , then a gradient update commonly uses input only
from, and only makes updates to, the subset of the model that
is projected onto those features. This is easily seen for factor
and regression models whose loss function has the form

l = f(Xiv)

where Xi is the input mini-batch of the entire data matrix X ,
v is a vector or matrix which partly parametrizes the model,
and f is in general a non-linear function. The derivative of
loss, which defines the SGD update, has the form

dl/dv = f ′(Xiv)X
T
i

from which we can see that the update is a scaled copy of X ,
and therefore involves the same non-zero features.

2) Graph Mining Algorithms: Many graph mining algo-
rithms use repeated matrix/vector multiplication, which can
be implemented using sparse allreduce: Each node i holds
a subgraph whose adjacency matrix is Xi, and the input
and output vectors are distributed using the allreduce. Each
node requests vector elements for non-zero columns of Xi,
and outputs elements corresponding to non-zero rows of Xi.
Connected components, breadth-first search, and eigenvalues
can be computed from such matrix-vector products. Diameter
estimation algorithm in [13], the probabilistic bit-string vector
is updated using matrix-vector multiplications.

To present one of these examples in a bit more detail:
PageRank provides an ideal motivation for Sparse Allreduce.
The PageRank iteration in matrix form is:

v′ =
1

n
+
n− 1

n
Xv (2)

The dominant step is computing the matrix-vector product Xv.
We assume that edges of adjacency matrix X are distributed
across machines with Xi being the share on machine i, and
that vertices v are also distributed (usually redundantly) across
machines as vi on machine i. At each iteration, every machine
first acquires a sparse input subset vi corresponding to non-
zero columns of its share Xi - for a sparse graph such as a web
graph this will be a small fraction of all the columns. It then
computes the product ui = Xivi. This product vector is also
sparse, and its nonzeros correspond to non-zero rows of Xi.
The input vertices vi and the output vertices ui are passed to a
sparse (sum) Allreduce, and the result loaded into the vectors
v′i on the next iteration will be the appropriate share of the
matrix product Xv. Thus a requirement for Sparse Allreduce
is that we be able to specify a vertex subset going in, and
a different vertex set going out (i.e. whose values are to be
computed and returned).

B. Main Contributions

The key contributions of this paper are the following:

• Kylix, a general and scalable sparse allreduce prim-
itive that supports big data analysis on commodity
clusters.

• A design workflow for selecting optimal parameters
for the network for a particular problem.

• A replication scheme that provides a high-degree of
fault-tolerance with modest overhead.

• Several experiments on large datasets. Experimental
results suggest that Kylix (heterogeneous butterfly) is
3-5x faster than direct all-to-all communication (our
implementation) on typical datasets. The gains for
Kylix over other systems for this benchmark
are somewhat higher: 3-7x.

Kylix is modular and can be run self-contained using
shell scripting (it does not require an underlying distributed
middleware like Hadoop or MPI). Our current implementation
is in pure Java, making it easy to integrate with Java-based
cluster systems like Hadoop, HDFS, Spark, etc.

The rest of the paper is organized as follows. Section
II reviews existing allreduce primitives for commodity data
clusters, and highlights their scalability difficulties. Section III
introduces Kylix, its essential features, and an example net-
work. A design workflow for choosing its optimal parameters
is discussed in Section IV. Section V and VI describe fault
tolerance and optimized implementation of Kylix respectively.
Experimental results are presented in Section VII. We sum-
marize related works in Section VIII, and finally Section IX
concludes the paper.

II. BACKGROUND: ALLREDUCE ON CLUSTERS

Cloud computing is a cost-effective, scalable technology
with many applications in business and the sciences. Cloud
computing is built on commodity hardware - inexpensive com-
puter nodes and moderate performance interconnects. Cloud
hardware may be private or third party as typified by Amazone
EC2, Microsoft Azure and Google Cloud Platform. Cloud

Fig. 1: Allreduce Topologies

Fig. 2: Bandwith vs. packets size

computers can be configured as parallel or distributed com-
puting services but systems that use them must deal with
the realities of cloud computing: (i) variable compute node
performance and external loads (ii) networks with modest
bandwidth and high (and variable) latency and (iii) faulty nodes
and sometimes faulty communication and (iv) power-law data
for most applications. Kylix addresses these challenges. Like
many cloud systems, Kylix is “elastic” in the sense that its size
and topology can be adapted to the characteristics of particular
sparse workloads. It is fault-tolerant and highly scalable. We
next discuss the tradeoffs in its design.

A. AllReduce

Allreduce is commonly implemented with 1) tree structure
[14], 2) direct communications [15] or 3) butterfly topologies
[16].

1) Tree Allreduce: The tree reduce topology is illustrated
in Figure 1(a). The topology uses the lowest overall bandwidth
for atomic messages, although it effectively maximizes latency
since the delay is set by the slowest path in the tree. It is
a reasonable solution for small, dense (fixed-size) messages.
A serious limitation for sparse allreduce applications is that
intermediate reductions grow in size - while some sparse
terms collapse, others do not. The middle (full reduction) node
will have complete (fully dense) data which will often be
intractably large. It also has no fault tolerance and extreme

sensitivity to node latencies anywhere in the network. It is not
practical for the problems of interest to us, and we will not
discuss it further.

2) Direct All-to-All Allreduce: In direct all-to-all allreduce
(from now on we will use the term “direct allreduce” for
this method), each processor communicates with all other
processors. Every feature is first sent to a unique home node
where it is aggregated, and the aggregate is then broadcast to
all the nodes. Random partitioning of the feature set is com-
monly used to balance communication. Messages are typically
scheduled in a circular order, as presented in Figure 1(b).
Direct allreduce achieves asymptotically optimal bandwidth,
and optimal latency when packets are sufficiently large to mask
setup-teardown times. But there is a minimum efficient packet
size that must be used, or network throughput drops (see figure
2). It is easy to miss this target size on a large network, and
there is no way to tune the network to avoid this problem. Also,
the very large (quadratic in m) number of messages make this
network more prone to failures due to packet corruption, and
sensitive to latency outliers.

In our experiment setup of a 64-node (cc2.8xlarge)
Amazon EC2 cluster with 10Gb/s inter-connect, the smallest
efficient packets size is 5M to mask message sending overhead
(Figure 2). For smaller packets, latency dominates and through-
put will drop. Similar observations have also been discussed in
[17], [18]. In fact, scaling the cluster much beyond this limit
actually increases the total communication time because of
the increasing number of messages, reversing the advantages
of parallelism.

3) Butterfly Network: In a butterfly network, every node
computes a reduction of values from its in neighbours (includ-
ing its own) and outputs to its out neighbours. In the binary
case, the neighbours at layer i lie on the edges of hypercube
in dimension i with nodes as vertices. The cardinality of
the neighbor set is called the degree of that layer. Figure 1
demonstrates a 2× 2 butterfly network and Figure 3 shows a
3× 2 network. A binary butterfly gives the lowest latency for
allreduce operations when messages have fixed cost.

In a generalized butterfly, nodes in layer i are partitioned
into groups of size di and allreduce is performed within each
group using direct allreduce. Equivalently, the

∏
di nodes can

be laid out on a unit grid within a hyper-rectangle of length

di along dimension i. Then a reduction in layer i is reduction
along dimension i.

B. Partitions of Power-Law Data

It is known that most big data (power-law or “natural
graph” data [19], [20]) is difficult to partition. Thus distributed
algorithms on these graphs are communication-intensive, and
it is very important to have an efficient allreduce. For matrix
multiply, it was shown in [3], [21], edge partitioning is more
effective for power-law datasets than vertex partitioning (ver-
tices represent row/column indices and edges represent non-
zeros of the matrix) . Paper [3] describes two edge partitioning
schemes, one random and one greedy. Here we will only
use random edge partitioning - the precomputation needed
to partition is quite significant compared to the application
running time (e.g. PowerGraph takes 300s for configuration
and 3.6s for runtime per iteration in [3]).

III. SPARSE ALLREDUCE

A sparse allreduce operation for an n-vector on a network
of m nodes should have the following properties:

1) Each network node i ∈ {1, . . . ,m} specifies a set of
input indices ini ⊆ {1, . . . , n} that it would like to
receive, and a set of output indices outi ⊆ {1, . . . , n}
that it would like to reduce data into.

2) Node i has a vector of values vouti (typically in
R|outi|) that correspond to the indices outi. It pushes
these values into the network and receives reduced
values vini corresponding to the indices ini that it
has asked for.

In general, ini and outi will be different. It must be the
case that ∪iini ⊆ ∪iouti or there will be some input nodes
with no data to draw from. This is typically ensured by the
type of calculation: for pagerank the indices are fixed and the
union of row indices should cover {1, . . . , n}. For distributed
models, every model feature should have a “home machine”
which always sends and receives that feature.

Steps 1 and 2 can be performed separately or together.
We call step 1 configuration and step 2 reduction. For pager-
ank, step 1 is done just once (in and out vertex sets are
fixed throughout the calculation), with step 2 performed on
every iteration. For minibatch updates, the in and out vertices
change on every allreduce. In that case, it is more efficient
to do configuration and reduction concurrently with combined
network messages. For our nested butterfly method, we define
in addition:

• l is the number of layers of the network (layers of
communication), and di the degree of the network
at layer i ∈ {1, . . . , l}. We will also slightly abuse
notation to refer to “node layer” i, which is used to
denote the contents of a node which are the results
of communication layer i. Node layers are numbered
{0, . . . , l} with 0 at the top.

• mi
j ⊆ {1, . . . ,m} is the set of neighbors of machine

j at layer i, then |mi
j | = di.

• inik and outik are the set of in (resp. out) indices hosted
by node layer i. We initialize in0k = ink and out0k =
outk.

• inijk and outijk are the set of in (resp. out) indices sent
from node j to node k at layer i during configuration.

A. Configuration

Configuration has a downward pass only (Figure 4 is helful
in this discussion). In this pass, indices are partitioned in node
layer i− 1, transmitted in communication layer i, and merged
(by union) in node layer i. More precisely:

(ini
jmi

j(1)
, . . . , ini

jmi
j(ki)

) = partition(ini−1j) and

(outi
jmi

j(1)
, . . . , outi

jmi
j(ki)

) = partition(outi−1j)

Partitioning is done into equal-size ranges of indices (this
is unbalanced in general but we ensure that the original indices
are hashed to the values used for partitioning). This ensures
that all the indices merged in the node layer below lie in the
same range, to maximize overlap.

Then the inijk and outijk index sets are sent to node k.
Node k receives data from all its neighbors and computes the
unions:

inik =
⋃
j∈mi

k
inijk and outik =

⋃
j∈mi

k
outijk.

For efficiency, these union operations also generate maps
f ijk : N → N from positions in the in-feature index sets inijk
into their union inik, and gijk : N → N from positions in
the out-feature sets into their unions. These are used during
reduction to add and project vectors in constant time per
element.

B. Reduction

Reduction involves both a downward pass and an upward
pass. The downward pass proceeds from layer i = 1, . . . , l.

In the downward pass, values voutijk are sent from node
j to node k in layer i. These values correspond to the indices
outijk.

As values from its layer-i neighbors are received by node
k, they are summed into the total vik for node k using the index
map f ijk.

After l such steps, layer l contains a single copy of fully-
reduced data distributed across all the nodes.

The upward pass proceeds from layer i = l, . . . , 1. We
define vinlk = voutlk for k = 1, . . . ,m to start the upward
pass.

The map gijk is used to extract the vector of values vinijk
to be sent to node j by node k from vinik.

When node j receives these vectors from all of its layer-i
neighbors, it simply concatenates them to form vini−1j .

Finally vin0j is the desired reduced data for node j.

Fig. 3: Nested Sparse Allreduce within a heterogeneous-degree (3×2) butterfly network for 6 machines. Widths of the rectangles
are proportional to the range lengths for that layer; Rijk is the range of vertices sent from machine j to k at layer i. The densities
(proportion of non-zeros) of the ranges are color-coded; darker indicates higher density.

C. Configreduce

Configuration and Reduction can be performed in a single
down-up pass through the network. During the downward pass
from i = 1, . . . , l, configuration is done on layer i, and then
the downward reduction step for layer i. When we reach
the bottom layer, we perform the upward reduction steps as
usual. Combined configure/reduce are used for communication
in algorithms where in and out vertices change on every
allreduce, such as minibatch updates.

D. Heterogeneous Degree Butterfly

The goal of network design is to make the allreduce
operation as efficient as possible. The first goal is to minimize
the number of layers since layers increase latency. The total
network size is the product of the layer degrees, so the larger
the degrees, the fewer layers we will need. We adjust di for
each layer to the largest value that avoids saturation (packet
sizes below the minimum efficient size discussed earlier).
Figure 3 illustrates a 3 × 2 network, where each processor
talks to 3 neighbors in layer 1 and 2 neighbors in layer 2. In
direct allreduce, packet size in each round of communication
is constrained to be Em/m where Em is the data size on each
machine. This may be too small - smaller than the minimum
efficient packet. For example, in the Twitter followers’ graph,
the packet size is around 0.4 MB in a 64 node direct allreduce
network. Figure 3 suggests that the smallest efficient packet is
around 5MB for EC2, and that the B/W for 0.4MB packets is
only about 30% of the efficient packet B/W.

The heterogeneity of layer degrees allows us to tailor
packet size layer-by-layer. For the first layer, we know the
amount of data at each node (total input data divided by
m), and we can chose d1 accordingly. It should be the
largest integer such that (node MB)/d is larger than 5MB.
Later layers involve intervals of merged sparse data. The total
amount of data decreases layer-by-layer because of sparse
index set overlap during merges. But to determine these sizes
analytically, we need to do be able to model the expected
number of merged indices. We do this for power-law data next.

IV. TUNING LAYER DEGREES FOR POWER-LAW DATA

In this section, we describe a systematic method to deter-
mine the degrees of the network for optimal performance on
power-law data.

Assume the frequency of rank-ordered features in the data
vector follows a Poisson distribution with power-law rate. That
is,

fr ∼ Poisson(λr−α), (3)

where r is the feature rank in descending order of frequency, α
is the exponent of the power-law rate and λ is a scaling factor.
Larger λ gives a denser vector. Let λ0 be the scaling factor
for the initial random partition of data across m machines.
The expected message size for communication at each layer
of butterfly network can be determined by the following
proposition.

Proposition 4.1: Given a dataset of n features, and a sparse
allreduce butterfly network of degrees d1× d2 · · · × dl. Define
d0 = 1 and Ki =

∏i
j=0 di. The vector density, i.e. the

proportion of non-zero features in the vector to be reduced
for each machine at layer i is

Di =
1

n

n∑
r=1

(
1− exp (−Kiλ0r

−α)
)
. (4)

And the message size is

Pi =
1

Ki

n∑
r=1

(
1− exp (−Kiλ0r

−α)
)
. (5)

Proof: Denote Xr the indicator function of the event the
rth feature occurs at least once in the vector at the initial
partition, then

Pr(Xr = 1) = 1− exp (−λ0r−α) (6)

according to the Poisson distribution. Then the scaling factor
λ0 is implicitly determined by the density of the initial partition
at each node which is measurable:

D0 =
1

n
E

(
n∑
r=1

Xr

)
(7)

=
1

n

n∑
r=1

1 · Pr(Xr = 1) + 0 · Pr(Xr = 0)

=
1

n

n∑
r=1

(
1− exp (−λ0r−α)

)
:= f(λ0).

Notice that the density D is a function of only the scaling
factor λ given the number of features n. So we could define
D := f(λ) according to Equation 7.

At the ith layer of the network, the Poisson rate of each
feature becomes Kiλ0r

−α and the scaling factor becomes
Kiλ0 since data there is a sum of data from Ki nodes. The
density at layer i is Di = f(Kiλ0).

At layer i the range of the vector to be reduced is n
Ki

according to our index partition. Then Pi = Di
n
Ki

, which
gives Equation 5.

Figure 4 plots the density function f with regards to
normalized scaling factor λ̂, for different α. The scaling factor
in the figure is normalized by λ0.9, where f(λ0.9) = 0.9 for
the purpose of better presentation. We also zoom in the figure
to show the relationship between density and λ for very low
densities. Notice that the shape of the curve has only a modest
dependence on α (α concentrates from 0.5 to 2 for most real
word datasets).

To use Figure 4:

• Measure the density of the input data (could be either
in our out features), i.e. the fraction of non-zeros
over the number of features n. Draw a horizontal line
through this density on the y-axis of the curve.

• Read off the λ value from the x-axis for this density.

• Multiply this x-value by the layer degree, to give a
new x-value.

• Read off the new density from the y-axis.

This gives the density of the next layer. To compute the
optimal degree for that layer, we need to know the amount of
data per node. That will be the length of the partition range
at that node times the density. The partition range at each
layer is the total data vector length divided by all the layer
degrees above that layer. i.e. the expected data size at layer
i is P = nD/

∏
j=1,...,i−1 dj where D is the density we just

computed (Proposition 4.1). Given this data size, we find the
largest d such that P/d is at least 5 MB. Given this new d we
can repeat the process one layer below etc.

The same method can be used for other sparse datasets
without power-law structure. It will be necessary to construct
an approximate density curve similar to figure 4. This involves
drawing p samples from the sparse set for various p, and
measuring the density. A scaled version of p should be plotted
on the x-axis, with the density on y.

V. FAULT TOLERANCE

Machine failure is a reality of large clusters. We next
describe a simple but relatively efficient fault tolerance mecha-
nism using replication to deal with multiple node failures [22].

A. Data Replication

Our approach is to replicate by a replication factor s, the
data on each node, and all messages. Thus data on machine i
also appears on the replicas m + i through i + (s − 1) ∗m.
Similarly every config and reduce message targeted at node j

Fig. 4: Density curve for different α

is also sent to replicas m+ j through j + (s− 1) ∗m. When
receiving a message expected from node j, the other replicas
are also listened to. The first message received is used, and the
other listeners are canceled. This protocol completes unless all
the replicas in a group are dead. The expected number of node
failures before this occurs is about

√
m by the birthday paradox

[23] for a system of replication factor 2.

B. Packets Racing

Replication by s increases per-node communication by s in
the worst case (cancellations will reduce it somewhat). There
is some performance loss because of this, as shown in the next
section. On the other hand, replication offers potential gains
on networks with high latency or throughput variance, because
they create a race for the fastest response (in contrast to the
non-replicate network which is instead driven by the slowest
path in the network.

VI. IMPLEMENTATION

On 10 Gbit networks, the overhead of computing and
memory access can dominate communication. It is important
for all operations to be as fast as possible. We describe below
some techniques to remove potential bottlenecks.

A. Tree Merging

The dominant step in Kylix is merging (union of) the index
sets during configuration. This is a linear time operation using
hash tables, but in reality the constants involved in random
memory access are too high. Instead we maintain each index
set in sorted order and use merging to combine them. The
merged sets must be approximately equal in length or this
will not be efficient (cost of a merge is the length of the
longer sequence). So we use a tree-merge. Each sequence is
assigned to a leaf of a full binary tree. Nodes are recursively
merged with their siblings. This was 5x faster than a hash
implementation.

B. Multi-Threading and Latency Hiding

Scientific computing systems typically maintain a high
degree of synchrony between nodes running a calculation. In
cluster environments, we have to allow for many sources of
variability in node timing, latency and throughput. While our
network conceptually uses synchronized messages to different
destinations to avoid congestion, in practice this does not
give the best performance. Instead we use multi-threading and
communicate opportunistically. i.e. we start threads to send all
messages concurrently, and spawn a thread to process each
message that is received. In the case of replicated messages,
once the first message of a replicate group is received, the
other threads listening for duplicates are terminated and those
copies discarded. Still, the network interface itself is a shared
resource, so we have to be careful that excessive threading does
not hurt performance through switching of the active message
thread. The effects of thread count is shown in Figure 7.

C. Language and Networking Libraries

Kylix is currently implemented using standard Java sockets.
We explored several other options including OpenMPI-Java,
MPJexpress, and Java NIO. Unfortunately the MPI implemen-
tations lacked key features that we needed to support multi-
threading, asynchronous messaging, cancellation etc., or these
features did not work through the Java interface. Java NIO was
simply more complex to use without a performance advantage.
All of the features we needed were easily implemented with
sockets, and ultimately they were a better match for the level
of abstraction and configurability that we needed.

We acknowledge that the network interface could be con-
siderably improved. The ideal choice would be RDMA over
Ethernet (RoCE), and even better RoCE directly from GPUs
when they are available. This feature in fact already exists (as
GPUdirect for NVIDIA CUDA GPUs), but is currently only
available for infiniband networks.

VII. EXPERIMENTS

In this section, we evaluate Kylix and compare its perfor-
mance with two other systems: Hadoop and PowerGraph. Two
datasets are used:

1) Twitter Followers Graph. The graph consists of 60
million vertices and 1.5 billion edges.

2) Yahoo! Altavista web graph. This is one of the largest
publicly available web graphs with 1.4 billion vertices
and 6 billion edges.

The densities of the 64-way partitioned datasets are 0.21
and 0.035 respectively. All the experiments with Kylix are
performed on the Amazon EC2 commodity cluster which
comprises 64 cc2.8xlarge nodes. Each node has an
eight-core Intel Xeon E5-2670 processor and all nodes are
interconnected by 10Gb/s Ethernet.

A. Optimal Degrees

The optimal degrees are 8 × 4 × 2, and 16 × 4 for the
Twitter followers’ graph and Yahoo web graph respectively.
They are determined using the method discussed in Section
IV. Figure 5 shows the total communication volume across the

Fig. 5: Data volumes (GB) at each layer of the protocol,
resembling a Kylix. These are also the total communication
volumes for all but the last layer.

network (including packets to its own) for different layers.
The last layer in the figure is the total volume of fully
reduced values at the bottom layer of scatter-reduce (it is
the communication volume if there were an additional layer
for reduce). The total communication volume is decreasing
from layer to layer. The Twitter graph shrinks very fast at
lower layers, because vectors communicated are dense and the
collision rate is close to a hundred percent. For the Yahoo’s
graph, the collision rate is much lower because it is more
sparse, and the volume shrinking is less significant. The shape
of the total communication volume by layer looks like a Kylix,
which coins the name of our system.

Figure 6 plots the average config time and reduce time
per iteration for different network configurations, including,
direct all-to-all communication, optimal butterfly and binary
butterfly, for both graphs. From the figure, we can see that
optimal butterfly is 3-5x faster than the other configurations.
Optimal butterfly fully utilized the network bandwidth with
tuned packet sizes, whereas, the direct allreduce topology
sends 0.4MB of packets each round (for the Twitter graph)
which is below the optimal packet size; this packet size utilizes
about 30% of the full bandwidth as we can tell from Figure 2.
Optimal butterfly is also faster than binary butterfly since it has
fewer layers and both latency and size of replicated messages
to be routed are reduced.

B. Effect of Multi-Threading

We compare the Allreduce runtime for different thread
levels in Figure 7. All the results are run under the 8× 4× 2
configuration. Significant performance improvement can be
observed by increasing from single thread up to 4 threads,
and it is also clear from the figure that the benefit of adding
thread level is marginal beyond 16 threads (each machine has
16 CPU threads).

C. Performance with Fault Tolerance

Table I demonstrates the performance with data replication.
As shown in the table, the impact of data replication on
runtime is moderate. The first colum shows the performance
of the optimal, unreplicated network on 64 nodes. The last
four columns show the optimal replicated network on 64 nodes
(which has data partition into 32 parts) with 0,1,2,3 failures.
The second column shows an unreplicated 32-nnode network
for reference purposes. Notice first that the runtime with

(a) Twitter followers’ graph (b) Yahoo web graph

Fig. 6: Allreduce time per iteration

Fig. 7: Runtime comparison between different thread levels.

failures is apparently independent of the number of failures.
Notice second that replication increases the configuration time
by only about 25%, and reduction time by about 60%. While
the replicated network potentially does twice the work of
the unreplicated network, it benefits from packet racing and
early termination. For the network to fail completely, it would
require about

√
m = 8 failures by our earlier analysis. This is

very unlikely to happen for a 64-node cluster in real production
settings.

We also compare the runtime for different number of
machine failures in Table I. Runtimes with replication are the
same regardless of the number of dead nodes up to 3 tested.

D. Performance and Scalability

We next compared Kylix with two other systems on the
PageRank algorithm. PageRank is a widely benchmarked
problem for Power-law graphs. Our version of PageRank is
implemented using BIDMat+Kylix. BIDMat [9] is an inter-
active matrix library written in Scala that includes hardware
acceleration (Intel MKL).

The scalability of Kylix is illustrated in Figure 9. The
figure plots the runtimes (broken down into computation and
communication time per iteration) against cluster sizes. It also
plots the speed up over runtime of 4 nodes (4 is the minimal

Fig. 8: PageRank runtime comparison (log scale).

cluster size such that number of edges in each partition of
Yahoo graph fits into the range of int), which is defined as
speedup = T4/Tx for cluster of size x. The butterfly degrees
are optimally tuned individually for different cluster sizes.

As shown in the figure, the speed up ratio is 7-11 on 64
nodes. The optimal speedup is 16, since we are comparing
with runtime on 4 nodes as baseline. The system achieves
roughly linear scaling with the number of machines in the
cluster. Scaling beyond this should be possible, but from the
graph it can be seen that communication starts to dominate
the runtime for both datasets after 32 nodes. Particularly,
for our 64-node experiments, communication takes up to 75-
90% of overall runtime. However, there is no computational
explanation for this and we believe it is actually due to lack of
synchronization (which is absorbed in the communication time
measurements) of the protocol across larger networks. We are
currently exploring improvements on larger networks.

Finally, we compare our system with Hadoop/Pegasus and
Powergraph. We chose Hadoop because it is a widely-known
system, and Powergraph because it has demonstrated the high-
est performance to date for the Pagerank problem [3]. Figure 8
plots runtime per iteration for different systems. PowerGraph
was run on a 64-node EC2 cluster with 10Gb/s interconnect -
the same as this paper. Each Powergraph node has a two quad
core Intel Xeon X5570 for the Twitter benchmark [3] and dual

TABLE I: Cost of Fault Tolerance

System
Configuration

8× 4× 2 network
replication=1
(64 nodes)

8× 4 network
replication=1
(32 nodes)

8× 4 network
replication=2
(64 nodes)

8× 4 network
replication=2
(64 nodes)

8× 4 network
replication=2
(64 nodes)

8× 4 network
replication=2
(64 nodes)

Number of dead nodes 0 0 0 1 2 3
Config time (s) 1.2 1.3 1.51 1.49 1.52 1.51
Reduce time (s) 0.44 0.60 0.75 0.73 0.76 0.74

(a) Twitter followers’ graph (b) Yahoo web graph

Fig. 9: Compute/Comm time break-down and speedup on a 64-node EC2 commodity cluster (512 cores in total)

8-core CPUs for the Yahoo benchmark [24]. Pegasus runs on a
90-node Yahoo M45 cluster. We estimate Pegasus runtime for
Twitter and Yahoo graph by using their runtime result [6] on
a power-law graph with 0.3 billion edges and assuming linear
scaling in number of edges. We believe that the estimate is
sufficient since we are only interested in the runtime in terms of
order of magnitude for Hadoop-based system. The y-axis of the
plot is log-scale. Kylix spends 0.55 second for on PageRank
iterations on the Twitter followers’ graph and 2.5 seconds for
the Yahoo graph. From the graph it can be seen that Kylix runs
3-7x faster than PowerGraph, and about 500x times faster than
Hadoop. We point out that the benchmark quoted for Pagerank
on PowerGraph uses greedy partitioning which its authors note
saves 50% runtime compared to the random partition we used
[24]. Thus one would expect the performance ratio between
Kylix and Powergraph to be closer to 6-14x when run on the
same partioned dataset. The gap for Twitter (7x) is larger than
for the Yahoo graph (3x). We expect this is because Twitter
is a smaller dataset and direct messaging in Powergraph falls
significantly below the efficient message minimum size. This
suggests that the gap is likely to widen if calculations are run
on larger clusters where message sizes will once again be small
in direct allreduce.

It is worth pointing out that the overall achieved band-
width for these experiments is around 3 Gb/s per node on
EC2 which is somewhat lower than the rated 10Gb/s of the
network. It is known that standard TCP/IP socket software has
many memory-to-memory copy operations, whose overhead is
significant at 10Gb/s. There are several technologies available
which would better this figure, however at this time there are
barriers to their use on commodity clusters. RDMA over Con-
verged Ethernet would be an ideal technology. This technology
bypasses copies in several layers of the TCP/IP stack and uses

direct memory-to-memeory copies to deliver throughputs much
closer to the limits of the network itself. It is available currently
for GPU as GPUdirect (which communicates directly from on
GPU’s memory to another over a network), and in Java as
Sockets Direct. However, at this time both these technologies
are only available for Infiniband networks. We will monitor
these technologies, and we also plan to experiment with some
open source projects like RoCE (RDMA over Converged
Ethernet) which offer more modest gains.

VIII. RELATED WORK

Many other distributed learning and graph mining sys-
tems are under active development at this time [2]–[6], [8].
Our work is closest to the GraphLab [2] project. GraphLab
improves upon the Hadoop MapReduce infrastructure by ex-
pressing asynchronous iterative algorithms with sparse compu-
tational dependencies. PowerGraph is a improved version of
GraphLab, which particularly tackles the problem of power-
law data in the context of graph mining and machine learning.
We focus on optimizing the communication layer of the
distributed learning systems, isolating the Sparse Allreduce
primitive from other matrix and machine learning modules.
There are a variety of other similar distributed data mining
systems [13], [25], [26] built on top of Hadoop. However,
the disk-caching and disk-buffering philosophy of Hadoop,
along with heavy reliance on reflection and serialization, cause
such approaches to fall orders of magnitude behind the other
approaches discussed here. Finally, we also distinguish our
work with other dense Allreduce systems such as [27].

Our work is also related with research in distributed SpMV
[28], [29], distributed graph mining [21], [29] and optimized
all-to-all communications [27], [30] in the scientific computing
community. However, they usually deal with matrices with

regular shapes (tri-diagonal), matrices desirable partition prop-
erties such as small surface-to-volume ratio, or dense matrices.
We are more focused on communicating intensive algorithms
posed by sparse power law data which is hard to partition.
We also distinguish our work by concentrating on studying
the performance trade-off on commodity hardwares, such as
on Amazon EC2, as opposed to scientific clusters featuring
extremely fast network connections, high synchronization and
exclusive (non-virtual) machine use.

IX. CONCLUSION

In this paper, we described Kylix, a Sparse Allreduce primi-
tive for efficient and scalable distributed machine learning. The
primitive is particularly well-adapted to the power-law data
common in machine learning and graph analysis. We showed
that the best approach is a hybrid between butterfly and direct
all-to-all topologies, using a nested communication pattern and
non-homogeneous layer degrees. We added a replication layer
to the network which provides a high degree of fault tolerance
with modest overhead. Finally, we presented a number of
experiments exploring the performance of Kylix. We showed
that it is significantly faster than other primitives. In the future
we hope to achieve further gains by using more advanced
network layers that use RDMA over Converged Ethernet
(RoCE), and more attention to potential clock skew across the
network. Our code is open-source and freely-available, and is
currently in pure Java. It is distributed as part of the BIDMat
suite, but can be run standalone without other BIDMat features.

REFERENCES

[1] L. A. Adamic, “Zipf, power-laws, and pareto-a ranking tutorial,” Xerox
Palo Alto Research Center, Palo Alto, CA, http://ginger. hpl. hp.
com/shl/papers/ranking/ranking. html, 2000.

[2] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learn-
ing,” arXiv preprint arXiv:1006.4990, 2010.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proc. of the 10th USENIX conference on Operating systems design and
implementation, OSDI, vol. 12.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 international conference on Management of
data. ACM, 2010, pp. 135–146.

[5] H. Zhao and J. Canny, “Butterfly mixing: Accelerating incremental-
update algorithms on clusters,” in SIAM International Conference on
Data Mining, 2013.

[6] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-
scale graph mining system implementation and observations,” in Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on.
IEEE, 2009, pp. 229–238.

[7] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 810–818.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 59–72,
2007.

[9] J. Canny and H. Zhao, “Big data analytics with small footprint: Squaring
the cloud,” in ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), 2013.

[10] L. B. Y. Le Cun and L. Bottou, “Large scale online learning,” Advances
in neural information processing systems, vol. 16, p. 217, 2004.

[11] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[12] A. Smola and S. Narayanamurthy, “An architecture for parallel topic
models,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
703–710, 2010.

[13] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec,
Hadi: Fast diameter estimation and mining in massive graphs with
hadoop. Carnegie Mellon University, School of Computer Science,
Machine Learning Department, 2008.

[14] J. Langford, L. Li, and A. Strehl, “Vowpal wabbit online learning
project,” 2007.

[15] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks: An
engineering approach. Morgan Kaufmann, 2003.

[16] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms
for clusters of workstations,” Journal of Parallel and Distributed
Computing, vol. 69, no. 2, pp. 117–124, 2009.

[17] Z. Hill and M. Humphrey, “A quantitative analysis of high performance
computing with amazon’s ec2 infrastructure: The death of the local
cluster?” in IEEE Grid Computing, 2009, pp. 26–33.

[18] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, 2008.

[19] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for partitioning
power-law graphs,” in Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International. IEEE, 2006, pp. 10–pp.

[20] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Commu-
nity structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp.
29–123, 2009.

[21] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on bluegene/l,” in Supercomputing, 2005. Proceedings of the
ACM/IEEE SC 2005 Conference. IEEE, 2005, pp. 25–25.

[22] R. Guerraoui and A. Schiper, “Fault-tolerance by replication in dis-
tributed systems,” in Reliable Software TechnologiesAda-Europe’96.
Springer, 1996, pp. 38–57.

[23] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207–229, 1992.

[24] J. Gonzalez, “Thesis defense presentation,” 2012. [Online]. Available:
http://www.cs.berkeley.edu/∼jegonzal/talks/jegonzal thesis defense.pptx

[25] “Mahout,” http://mahout.apache.org/.
[26] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient

iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[27] A. R. Mamidala, J. Liu, and D. K. Panda, “Efficient barrier and allreduce
on infiniband clusters using multicast and adaptive algorithms,” in
Cluster Computing, 2004 IEEE International Conference on. IEEE,
2004, pp. 135–144.

[28] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, “Avoiding
communication in sparse matrix computations,” in Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium
on. IEEE, 2008, pp. 1–12.

[29] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[30] S. Kumar, Y. Sabharwal, R. Garg, and P. Heidelberger, “Optimization of
all-to-all communication on the blue gene/l supercomputer,” in Parallel
Processing, 2008. ICPP’08. 37th International Conference on. IEEE,
2008, pp. 320–329.

