Induction of Ordinal Decision Trees:

An MCDA Approach

Jan C. Bioch Viara Popova

ERIM REPORT SERIES RESEARCH IN MANAGEMENT

ERIM Report Series reference number

ERS-2003-008-LIS

Publication

January 2003

Number of pages

19

Email address corresponding author

popova@few.eur.nl

Address

Erasmus Research Institute of Management (ERIM)
Rotterdam School of Management / Faculteit Bedrijfskunde

Rotterdam School of Economics / Faculteit Economische
Wetenschappen

Erasmus Universiteit Rotterdam

P.0. Box 1738

3000 DR Rotterdam, The Netherlands
Phone: +31 10 408 1182

Fax: +31 10 408 9640

Email: info@erim.eur.nl
Internet; www.erim.eur.nl

Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:

www.erim.eur.nl

http://www.erim.eur.nl/

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

REPORT SERIES
RESEARCH IN MANAGEMENT

BIBLIOGRAPHIC DATA AND CLASSIFICATIONS

Abstract This paper focuses on the problem of monotone decision trees from the point of view of the
multicriteria decision aid methodology (MCDA). By taking into account the preferences of the
decision maker, an attempt is made to bring closer similar research within machine learning and
MCDA.

The paper addresses the question how to label the leaves of a tree in a way that guarantees the
monotonicity of the resulting tree. Two approaches are proposed for that purpose - dynamic and
static labeling which are also compared experimentally.

The paper further considers the problem of splitting criteria in the context of monotone decision
trees. Two criteria from the literature are compared experimentally - the entropy criterion and the
number of conflicts criterion - in an attempt to nd out which one ts better the specifics of

the monotone problems and which one better handles monotonicity noise.

Library of Congress 5001-6182 Business
Classification 5201-5982 Business Science
(LCC) HD 30.23 Decision making
Journal of Economic M Business Administration and Business Economics
Literature M 11 Production Management
(JEL) R4 Transportation Systems
C49 Econometric and Statistical methods: Other
European Business Schools | 85 A Business General
Library Group 260 K Logistics
(EBSLG) 240B Information Systems Management
255 A Decision theory
Gemeenschappelijke Onderwerpsontsluiting (GOO)
Classification GOO 85.00 Bedrijfskunde, Organisatiekunde: algemeen
85.34 Logistiek management
85.20 Bestuurlijke informatie, informatieverzorging
31.80 Toepassingen van de wiskunde
Keywords GOO Bedrijfskunde / Bedrijfseconomie

Bedrijfsprocessen, logistiek, management informatiesystemen

ordinale gegevens, multicriteria analyse, beslissingen

Free keywords ordinal classication, multicriteria decision aid, multicriteria sorting, monotone decision trees,
noise, pruning, labeling, splitting criteria, entropy

Induction of Ordinal Decision Trees: An MCDA
Approach

Jan C. Bioch Viara Popova

Dept. of Computer Science
Erasmus University Rotterdam,

P.O. Box 1738, 3000 DR Rotterdam.
{bioch,popova}@few.eur.nl

Abstract

This paper focuses on the problem of monotone decision trees from the
point of view of the multicriteria decision aid methodology (MCDA). By
taking into account the preferences of the decision maker, an attempt is
made to bring closer similar research within machine learning and MCDA.

The paper addresses the question how to label the leaves of a tree
in a way that guarantees the monotonicity of the resulting tree. Two
approaches are proposed for that purpose - dynamic and static labeling
which are also compared experimentally.

The paper further considers the problem of splitting criteria in the con-
text of monotone decision trees. Two criteria from the literature are com-
pared experimentally - the entropy criterion and the number of conflicts
criterion - in an attempt to find out which one fits better the specifics of
the monotone problems and which one better handles monotonicity noise.

Keywords: ordinal classification, multicriteria decision aid, multicri-
teria sorting, monotone decision trees, noise, pruning, labeling, splitting
criteria, entropy

1 Introduction

Ordinal classification considers problems that are monotone i.e. all attributes
have ordered domains (the attributes are criteria) and if z,y are data points
such that x < y (z; < y; for each attribute i) then their labels should satisfy
Az) < A(y)). Ordinal classification therefore aims at generating classifiers that
satisfy the same constraint. In practice monotone problems appear in different
domain area. An example can be given with credit rating where if one applicant
for credit outperforms another on all criteria then he should be given at least the
same chance for being approved. Other examples can be given from the areas
of financial management (e.g. bankruptcy prediction, bond rating), marketing,
human resources management, etc.

The general methods for generating classifiers cannot guarantee that the
monotonicity constraint will be satisfied, therefore different methods are nec-
essary. For example well-known algorithm such as CART and C4.5 are not
guaranteed to construct monotone trees. Ordinal classification has been stud-
ied in the context of logical analysis of data, decision trees, decision lists, rough
sets theory, etc. by a number of authors, e.g. [8], [1], [10], [5], [9], [2], [3], [11],
7], [4].

Multicriteria sorting, an approach within the family of methods of Multicri-
teria Decision Aid (MCDA), considers the same problem as ordinal classification
but from a different point of view. In general classification focuses on the model
and the ways to extract automatically a model from the available data. The
focal point in MCDA is the decision maker (DM) who is responsible for choosing
the best alternative out of a set of solutions to the problem. That shifts the
requirements for the methods in order to fit the decision making process. The
method should be able to produce a model that is sensitive and flexible enough
to incorporate explicitly the knowledge and preferences of the DM. The model
should also be understandable to the DM and provide some explanation of why
the recommended solution is considered the best. That might give the DM the
possibility to trace back and further refine the model. For an overview of the
MCDA methodology see [14].

Multicriteria sorting is one of the directions in MCDA which considers as-
signing the alternatives in predefined groups ordered by preference - starting
from the most preferred alternatives to the least preferred ones. In this way
it tries to solve the same problem as ordinal classification while taking into
account the additional requirements considered by the MCDA approach. This
similarity between the two area is known but little is done to bridge the gap and
bring the methodologies closer. From the ordinal classification point of view one
way to achieve that is to try to satisfy the special requirements of the DM for
more transparent and flexible models that can implement their knowledge and
experience.

One of the classification methods that are usually quoted to generate easier
to understand models is the decision tree generation. This paper discusses
some aspects of the monotone decision trees (MDT) generation which solves
the similar problem within the ordinal classification area. While it inherits the
transparency of the classical decision tree algorithms, a lot can still be done to
increase the flexibility of the methods and the sensitivity to the preferences of
the DM.

This paper focuses on the problem of providing possibility for increasing
the flexibility of the MDT generation process by allowing the DM to choose
from a number of alternative methods for controlling the outcome model. We
consider different methods for controlling the size of the tree and a number of
approaches for labeling the leaves. We also discuss the problem of choosing
a splitting criterion. Experiment were done to compare the different methods
with the goal of determining how they perform and which one fits better the
problem of extracting MDT from noisy data.

Section 2 gives a brief introduction to the MDT algorithm. Section 3 presents

the extension for dealing with monotonicity noise. Section 4 discusses the prob-
lems of pruning and labeling MDT. Two approaches for labeling are presented in
subsections 4.1 and 4.2 and compared in 4.3. Section 5 discusses two splitting
criteria - the entropy criterion and a more ’consistency-oriented’ criterion we
refer to as ‘'number of conflicts’. Section 6 gives the results of the experiments
performed on the comparison of the two labeling approaches(subsection 6.1) and
on the comparison of the two labeling approaches (subsection 6.2). Section 7
gives some conclusions and some possible directions for future research.

2 Monotone decision trees

An extension of the classical decision tree algorithm for dealing with ordinal
data was first proposed in [10] for 2-class problems. A more general approach
applicable to k-class problems is proposed in [5, 11]. In [4] a number of methods
were presented for dealing with noise with respect to monotonicity.

The classical decision tree algorithm can be characterized by three rules: a
splitting rule which defines how to split a node, a stopping rule defining when
to stop growing a branch and turn the current node to a leaf and a labeling
rule defining how to label the new leaf. The algorithm for MDT generation
presented in [5, 11] extends the original algorithm by means of adding one more
rule, the update rule, which takes care of preserving the monotonicity property
of the tree.

Let T be a node of the tree 7 generated thus far on the data set D C X where
X is the input space. T can be represented as T'={z € X' : a(T) <z < b(T)}
where a(T'),b(T) are called the lower/upper corners of T' respectively. In the
following the corners will be denoted by simply a and b when no ambiguity
occurs. The original MDT algorithm is given in figure 1. In order to guarantee
the monotonicity of the tree, an update procedure is performed on the data
set by adding at most 2 new data points with consistent labels. The update
procedure is performed every time a node is considered for splitting and the
added points are the lower and the upper corners of the node (if they are not
already present in the data set). The labels are chosen to be Ajq(a) and
Amin (b) respectively, which are defined in the following, where ¢pin/cmax are
the lowest/highest class in the data set:

le={yeX :y<a)
te={yeX :y>az)

\D=|]J L2
zeD

tD=J 1«
zeD

max{A\(y): yeDnNnlz} ifzetD
Cmin otherwise.

Amin (z) = {

T a1 a» a3 as as ag | A
110 0 1 1 0 110
2 1 1 2 1 3 110
3,10 1 1 0 0 110
412 3 1 3 3 1|1
5 1 0o 2 2 3 1|1
6/ 0 0 O 3 2 2]1
712 2 1 1 1 2|1
812 4 2 2 2 3|2
9 1 1 2 1 3 2|2
013 2 1 0 0 1|2
1113 2 2 1 2 213
1213 3 4 1 2 213
3/4 2 3 3 3 3|3
413 3 3 4 1 3|3
15|14 4 2 3 0 113

Table 1: The example data set

Crnaz otherwise.

Amax(x):{ minfA(y): ye DNntz} ifzelD

Using this way of labeling we guarantee that the lower corner gets the mini-
mal label possible for the node and the upper corner gets the maximal possible
label. At the same time the new points remain consistent with the rest of the
data, therefore the monotonicity constraint is not violated.

split(node T'): update(node T):

update(T); ifa¢ D

if T is homogeneous Aa) = Anaz(a);
label T'; add a to D;

else itb¢ D
split T into disjoint T, and Tg; A(b) = Apmin(D);
split(TL,); add b to D;
split(Tr);

Figure 1: The monotone decision tree algorithm

In order to illustrate how the algorithm works we use the example data
set from table 1. In the first step, the root of the tree (containing the whole
data set) is considered for splitting. The update rule fires and the corners
a = (0,0,0,0,0,0) and b = (4,4,4,4,3,3) are added with labels A\(a) = 0
and A(b) = 3. Further a; > 2 is chosen for a test of the node and the data

Figure 2: The MDT generated for the example data set

set is divided between the two children. Following the left-depth-first strategy
we consider the left child for splitting. The corners are a = (0,0,0,0,0,0)
and b = (2,4,4,4,3,3) where a is already present and b is added with a label
A(b) = 2. The algorithm continues with finding the best split, etc. The full
monotone tree generated from this data set is given in figure 2.

3 Monotone decision trees from noisy data

The MDT algorithm requires a monotone data set. In practical applications,
however, noise can cause inconsistencies of the type: data points z < y with
labels A(z) > A(y). The extension of the algorithm proposed in [4] allows the
generation of monotone trees from non-monotone data.

The extension of the MDT algorithm for handling noisy data alters the
update rule to not only add the corners if they are not present but also to relabel
them with consistent labels if they are present. In this way the algorithm tries
to repair the inconsistencies caused by monotonicity noise. The new update
rule, for a node T with lower/upper corners respectively a and b, is given in
figure 3.

update(node T):
li = Mnaz (a); Iy = Amzn(b)a
ifaeD
relabel a: A(a) = l1;
else
label a: A(a) =Iy; add a to D;
ifbe D
relabel b: A(b) = lo;
else
label b: A\(b) = I»; add b to D;

Figure 3: The extended update rule

Theorem: The MDT algorithm with the extended update rule of figure 3
always generates a monotone tree.

Figure 4: MDT on the non-monotone data set

(See [4] for a proof.)

To illustrate the algorithm we introduce monotone inconsistency in the ex-
ample data set of table 1 - we change the label of data point z3 from 0 to 1.
Thus we introduce an inconsistent pair of data points (z2,z3). The output of
the algorithm on the new data set is given in figure 4.

Note that a simple criterion for checking the monotonicity of a tree [11] can
be defined as follows.

Let £ be the set of leaves of a tree 7 and N be the set of nodes of 7. We
define a relation on N: for T,T' € N'

T<T & aT) < b(T").
Let T,T' € L such that
T={zxeX:a)<z<bT)}

and
T'={reX:a(T) <z <b(T"}.

Then the tree is monotone if for any choice of T and T":

T <T = \T) < \NT").

4 Pruning and labeling rules that guarantee the
monotonicity

The decision maker often prefers to work with rules which are easier to under-
stand, apply and explain the decision. The decision tree can easily be translated

label leaf T':

ANT) = L(T);
Aa(T)) = A(T);
AD(T)) = MT);

Figure 5: The dynamic labeling rule

to rules, however when the tree is big, the rules are long too and that obstructs
the intuitiveness and understandability that appealed to the DM in the first
place. Therefore the DM should also be given tools for controlling the size of
the tree. Pruning is the first choice in this direction.

Pruning can be performed in two ways: pre-pruning which prematurely stops
the growth of the tree when a predefined threshold is reached and post-pruning
which first grows the full tree and then cuts branches from it until a predefined
criterion is fulfilled.

In both situations it is important to apply consistent rules for giving labels
to the new leaves which in the case of MDT should guarantee that the resulting
tree is monotone. Dynamic labeling refers to giving labels while the tree is being
generated, as soon as a node is turned to a leaf. It can be used together with
pre-pruning. Static labeling refers to the process of giving consistent labels
to the tree that is already generated. It can be used on any trees with non-
homogeneous leaves, e.g. trees generated with pre- and post-pruning as well as
trees generated with other methods.

This section discusses the two labeling methods.

4.1 Dynamic labeling

One important difference between the static and the dynamic way of labeling is
how much of the information in the tree is already available. While in the static
case the tree is grown and all the information about the shape of the tree, the
corners of the leaves and the labels of these corners is available, in the dynamic
case we only have a part of the tree built and the new label should be based on
partial information. Therefore, for dynamic labeling, an important factor is the
search strategy used for building the tree, i.e. which part of the tree is expected
to be built already and what kind of information will influence the new labels.
In the following we assume the depth-first strategy for growing the tree. First
we note an observation that holds for this strategy.

Lemma: Let T, T’ € L(T) in the monotone tree T generated with depth-first
strategy. Let T < T'. Then leaf T is generated before leaf T".

(See [4] for a proof.)

The general form of the dynamic labeling rule for a non-homogeneous leaf
T is given in figure 5 where L is the labeling function. Two possible forms are
proposed for the labeling function as follows:

Le {LminaLmaac}

Lyin(T) = maz{\(a(T")|T' < T}
Loz (T) = min{\(b(T")|T < T'}

Note that for 7' # T in the above formulas, a(T") = b(T") = A(T").

Theorem: Let T be a tree generated using the extended MDT update rule
for a threshold of at least m points in a leaf, m > 1. Let the leaves be labeled
using the dynamic labeling rule of figure 5 where one of the following strategies
1s applied:

1. L(T) = Lnin(T),¥T € L,
2. L(T) = Lumao(T),VT € L.

Then T is monotone.

Proof: Let the tree be generated using the left-depth-first strategy. The
newly generated leaf to be labeled is denoted by T. If T is the first leaf then
the current set of labeled leaves is monotone.

Let T be not the first leaf and let the current set of labeled leaves be mono-
tone. We label \(T") = L(T).

Let L = Lyin(T). Then

MNT) = maz{\(a(T")|T' < T}.

Therefore, for each T < T', A(T") < A(T'). Therefore the state of the tree is still
monotone. The proof is analogous for L = L4

In the same way it can be proved for right-depth-first strategy. O

The following observations can help speeding up the computation:

Observation 1: For the left-depth-first strategy the following holds: Lya.(T) =
A(b(T)).

Observation 2: For the right-depth-first strategy the following holds: L, (T) =
Aa(T)).

The experiments suggest that L., (a) tends to favor the lower classes while
Lpnin(b) tends to favor the higher classes. Therefore they provide a choice to
the decision maker for a more pessimistic against a more optimistic prediction.

4.2 Static labeling

As mentioned before, static labeling is performed on the fully generated tree,
where the information about all the leaves is already available.

The earlier defined relation over the nodes/leaves of a tree is not transitive.
We define now a transitive closure relation, denoted by <, in the following way.
ForT'.T" e N: T'<T" & 3T, Ts,....,Trn € N such that T < T <Tp < ... <
Ty <T".

In our implementations we used the algorithm of Warshall [13] for computing
the transitive closure.

We define A,,.;n and A,,q. over the set of leaves £ as follows:

Apmin(T) = maz{\(a(T1))|Ty € L, Ty T}

Aoz (T) = min{\(b(T))|T> € L, T AT}

Then A is defined as: A € {Anin, Amaz }-

It can be shown that A, < Ajes and they are monotone labelings, i.e. for
leaves 11 < T, Amin(Tl) < Amin(TQ) and Apqz (Tl) < Amam(T2)-

Theorem: Let T be a tree generated without labeling. Let the leaves be
visited following either left-depth-first or right-depth-first order. The leaves are
labeled using one of the following strategies:

1. XT) = Apin(T),¥T € L,
2. N(T) = Amao(T),VT € L.

Then the resulting tree is monotone.

Proof: Let A = A,,;, and the order of visiting the leaves is left-depth-first.
Let the last leaf labeled is T'. If T is the first labeled leaf then the current set
of labeled leaves is monotone.

Let T be not the first labeled leaf and let the current set of labeled leaves
be monotone.

MT) = Apin(T) = maz{\(a(T'))|T' < T}

Let us assume that the resulting set of labeled leaves is no longer monotone.
Using left-depth-first means that there are no labeled leaves T” such that T'<1T".
Therefore 37" IT, A(T") > A(T'). Since A(T") > A(a(T")), then A(T") > A(a(T"))

= 37" T QT NT") = Ma(T"))

= T" 4T = AT) > Ma(T")) = \(T")

which is a contradiction with the assumption.
The proof is analogous for A,,,, and for right-depth-first order. O

4.3 Comparison

In order to get more insight in the performance of the two presented approaches
for labeling, experiments were conducted. The main goal was to compare the
results from the four possible combinations of settings: dynamic labeling with
Lynin, dynamic labeling with L., static labeling with A,,;, and static labeling
with Apaz.

The trees were generated using left-depth-first search strategy with pre-
pruning at predefined thresholds for the minimal number of points in a node.
Therefore the size of the trees was almost always the same.

The results showed that:

e In general the dynamic labeling produces trees with lower misclassification
rate on unseen data. The reason for that is most probably in the fact that
the tree changes dynamically and it is possible to generate trees that have
different shape while in the static case the shape of the tree is already
fixed and the only feature that changes is the labels of the leaves.

e The difference between the two labeling functions for both approaches
was not so clear-cut and no conclusion can be made yet on which one is
preferable.

Details on the experimental setting and the results are given in section 6.

5 Splitting criteria for MDTs

One of the important rules in building a decision tree is the splitting rule which
defines how to split the current node in two branches. For a binary tree a split
is a tuple of the type (a;,v;) where a; is the attribute to split on and v; is
the cut-off value. There is a lot of research done on finding good criteria for
choosing good splits for the classical DT algorithms. One of the most successful
approaches is to choose the split which produces the highest decrease in the
entropy or the highest information gain. These two notions are usually defined
as follows. The entropy of a node T is:

n
Ent(T) = — Zpilogwi
i=1

where p; is the proportion of data points with class 7 in T for an n-class problem.
Then the information gain of an attribute a; and cut-off value v; is:
Gain(T, a;,v;) = Ent(T) — Z @Ent(Tk)
ot 0
ke{L,R}

where T, /T are respectively the left and the right child of 7" when split on
(a;, vj>'

However for the specific case of MDT it is not clear which splitting criteria are
good. Intuitively they should not only attempt to produce smaller trees but also
provide fast decrease in the inconsistencies in the tree. One such criterion within
the MCDA methodology was suggested in [7] although no experimental results
were presented on its performance compared to other criteria. The criterion
aims at reducing the number of non-monotone pairs of points in the resulting
branches. It chooses the split with the least number of inconsistencies/conflicts.

Let the current node T be split into the following non-overlapping subsets:

T' = {a(T") <z < H(T")}
and
T" ={a(T") <z < b(T")}.

Let T" be the left branch. Therefore T < T". If for all points z € T',y € T"
it is true that A(z) < A(y) then the split is monotone. There might be however
points such that A(z) > A(y). The number of those inconsistent pairs is counted
for all possible splits of the current node and the one with the lowest count is
chosen.

10

The experiments that were performed for this paper aim at giving more
insight in the performance of the two mentioned criteria in the context of MDT.
The two main aspects for comparison are the size and the accuracy of the
generated trees. The experimental results point at the following observations.

e On monotone data sets no criterion is systematically better than the other.

e With the increase of monotonicity noise in the data, the entropy criterion
tends to generate smaller trees.

e With the increase of monotonicity noise in the data the conflicts criterion
generates more accurate trees with lower misclassification rate on unseen
data.

Intuitively the reason for the difference is probably in the orientation of
the two criteria. The entropy criterion strives at generating smaller trees by
reducing the diversity of classes in the leaves as fast as possible. The conflicts
criterion, on the other hand, only cares about the consistency/monotonicity of
the tree and therefore produces trees that are larger but better fit the ’character’
of the data. In this way it handles more successfully monotonicity noise but at
the cost of generating bigger trees.

Details about the data used, the performed experiments and the experimen-
tal results are given in section 6.

6 Experiments

As it was mentioned in sections 4 and 5, experiments were performed in two
directions. The first direction aims at comparing the dynamic and the static
approach for labeling with their variations. The results are presented in sec-
tion 6.1. The other direction of experiments aims at comparing the entropy
and the conflicts splitting criteria in the context of monotone decision trees.
The experimental setting and the results are presented in section 6.2. In all
experiments left-depth-first search strategy was used.

For all experiments, the starting data sets were taken from UCI Machine
Learning Repository [6]. The Nursery data set is a real-world monotone data
set which represents applications for a nursery school, contains 12960 instances
described by 8 attributes and covers the whole input space. The Cars data
set is an artificial set describing cars by their properties and classifying them
according to their acceptability for a buyer. The original data was not strictly
monotone and for that reason one of the values of one attribute was removed.
The resulting set was monotone. It contains 1153 instances described by 6
attributes. Since both data sets cover the whole input space, they were also
used as test sets in the experiments.

For the experiments random samples of size 200 points were drawn from both
data sets. Monotone inconsistencies were introduces in the data in the following
way: a pair of comparable data points (such that either z <y or z > y) from
different classes was chosen at random and the labels were switched. That

11

results in one or more inconsistent pairs. The procedure can be repeated to
introduce more noise.

Since both data sets cover the whole input space it was possible to test the
misclassification rate on the whole data instead of using separate test samples.

6.1 Comparison of the dynamic and the static labeling

For the comparison of the two labeling approaches, four samples were used - one
from the cars data set and three from the nursery data. For each the algorithms
were applied for the thresholds of minimum 5, 10, 15 and 20 points in a node.
For the static case the leaves were left unlabeled and the labeling was performed
at the end. Eight different combinations of settings were tested: entropy versus
conflicts splitting criteria, L,in versus Lyqq. and A, versus Aj,q.- The results
about the splitting criteria are discussed in section 6.2 and for the purpose of
the current discussion the results will the averaged over the two criteria.

As a test set, the full data sets were used as they cover the whole input
space (1153 points for the cars data set and 12960 points for the nursery data
set). The number of misclassified points per sample is given in table 2. The first
column contains the value of the threshold. Columns 2 and 3 give the results for
the tree labeled with static labeling for A,,;;, and A4, respectively Columns
4 and 5 give the analogous results for dynamic labeling and L,,;, and Ly,q.
respectively.

As it was mentioned before, the size of the trees was the same for the static
and the dynamic case (per sample and threshold). Having this in mind, it can
be seen that the number of points misclassified by the trees which was labeled
dynamically is systematically lower than (often more than twice as low as) that
of the trees labeled statically.

On the other hand no definite answer can be given to the question which
labeling function to use: L,y versus Liyqe and Ay, versus Ap,q.- In the static
case the choice of labeling function made hardly any difference in the results
while in the dynamic case for some samples L,,;, is better and for the other
Lo gives better results.

These results are also confirmed by the experiments performed by a master’s
student [12] working under the guidance of the authors of this paper.

6.2 Comparison of the entropy and the conflicts splitting
criteria

The experiments were designed to answer two main questions in the comparison
of the two splitting criteria:

e Which criterion performs better on monotone data by means of generating
smaller and/or more accurate monotone trees?

e Which criterion handles better monotonicity noise/inconsistencies by means
of generating smaller and/or more accurate monotone trees?

12

static dynamic
thr Amzn Ama:t Lmzn Lmaz
) 205 205 93 285
10 | 350 350 156 407
15 | 408 408 217 425
20 | 408 408 219 434
5 | 2495 | 2495 | 1708 | 1915
10 | 4012 | 4012 | 2172 | 2154
15 | 4530 | 3524 | 2395 | 2292
20 | 4950 | 4950 | 2512 | 2424
5 | 2436 | 2436 | 1821 | 1694
10 | 3380 | 3380 | 2486 | 1892
15 | 4653 | 4653 | 2587 | 2404
20 | 5055 | 5055 | 2967 | 2404
5 | 4152 | 4152 | 2097 | 3351
10 | 5402 | 5402 | 2489 | 3509
15 | 6892 | 6892 | 2983 | 4219
20 | 7398 | 7403 | 3130 | 4555

Table 2: Experimental data on the labeling approaches

In order to give some insight on these questions the experiments were con-
ducted in two different settings. In the first part 10 monotone samples were
drawn from the nursery data set. MDTs were generated from each of them
using the two criteria. The results - the number of misclassified points over the
full data sets and the number of tree nodes - are given in table 3. It can be seen
that the performance of the two criteria is different on the different samples and
no definite conclusion can be made on which one fits better monotone problems.

For the second part of the experiments, 4 samples were chosen - 1 from the
cars data set and 3 from the nursery data set (rows 2, 3 and 7 from table 3). For
each data set 6 noisy versions (5 for the cars data) were generated by switching
the labels of 1 to 7 pairs of points. For each such series, MDTs were generated
using the entropy and the conflicts criteria.

The results per series are presented in table 4. The first column contains the
number of non-monotone pairs of points in the set. Columns 2 and 3 give the
number of misclassified points on the full data set and the number of nodes for
the tree generated with the entropy criterion, while columns 4 and 5 give the
respective information for the number of conflicts criterion.

It can be seen that with the increase of inconsistencies the number of conflicts
criterion gives systematically better misclassification rate while producing bigger
trees than the entropy criterion.

13

entropy num conflicts
miscl | nodes | miscl | nodes
1612 321 1512 233
1516 95 1522 211
1520 87 1752 131
1645 85 1458 247
1478 143 1330 159
1354 151 1429 783
1277 163 1718 195
1266 107 1232 149
1087 401 1672 241
1504 343 1622 327

Table 3: Experimental data on the splitting criteria for monotone samples

incons entropy num conflicts
pairs | miscl | nodes | miscl | nodes
0 52 53 47 83

19 90 293 74 171
35 196 311 103 373
86 218 421 172 501
111 225 469 176 921
118 224 473 186 609
0 1516 95 1522 211
2 1500 115 1520 | 303
21 2326 | 561 1789 | 397
28 2496 | 593 1773 | 583
31 2366 | 605 1737 | 589
40 2432 | 963 1763 | 639
42 2586 | 1787 | 1831 | 1069
0 1520 87 1752 131
2 1512 157 | 1812 125
7 1673 | 747 | 1850 | 317
39 3052 | 3655 | 2692 | 3497
64 3607 | 3719 | 3003 | 3829
66 3685 | 3353 | 3327 | 4339
69 3798 | 3751 | 3322 | 4437
0 1277 | 163 1718 195
39 3035 | 2093 | 3607 | 3945
99 3518 | 3755 | 4283 | 5645
74 4577 | 2969 | 4369 | 5737
78 4603 | 3137 | 4553 | 5863
81 4547 | 3125 | 4504 | 5887
83 4547 | 3135 | 4466 | 5861

Table 4: Experimental data on the splitting criteria on non-monotone samples

14

7 Conclusions and further research

This paper presents two approaches for labeling decision trees in a way that guar-
antees the monotonicity of the resulting trees. For each approach two possible
labeling functions are proposed and their performance was compared experi-
mentally. The results indicate that dynamic labeling approach produces more
accurate trees than the static labeling for trees of the same size.

The experiments used the left-depth-first search strategy for generating the
trees. The obvious next step in this direction of research is to investigate whether
the results also apply for the right-depth-first strategy.

The paper further investigates the performance of two splitting criteria from
the literature - the classical entropy criterion and the more ’monotonicity-
oriented” number of conflicts criterion. Although for monotone samples the
performance of none of the criteria is systematically better, the experimental
results confirm the intuition that with the increase of monotonicity noise the
entropy criterion produces smaller trees while the conflicts criterion generates
more accurate trees.

These results point at one potential direction for further research - is it
possible to combine the good properties of the two criteria in a new criterion
that both strives at generating smaller trees and reducing the inconsistencies in
the nodes in order to produce trees that fit better monotone data and better
handle monotonicity noise.

References

[1] A.Ben-David. Monotonicity maintenance in information-theoretic machine
learning algorithms. Machine Learning, 19:29-43, 1995.

[2] J. C. Bioch. Dualization, decision lists and identification of monotone dis-
crete functions. Annals of Mathematics and Artificial Intelligence, 24:69—
91, 1998.

[3] J. C. Bioch and V. Popova. Rough sets and ordinal classification.
LNAI, Proceedings of the 11th Int. Conf. on Algorithmic Learning The-
ory (ALT’2000), Sydney, Springer-Verlag, pages 291-305, 2000.

[4] J. C. Bioch and V. Popova. Monotone classification and noisy data. Tech-
nical Report ERS-2002-53-LIS, Dept. of Computer Science, Erasmus Uni-
versity Rotterdam, http://www.erim.nl, 2002.

[5] J. C. Bioch and R. Potharst. Decision trees for monotone classification.
K. van Marcke and W. Daelmans (eds), Proceedings of the Dutch Artificial
Conference on Artificial Intelligence (NAIC’97), Antwerp, pages 361-369,
1997.

[6] C. L. Blake and C. J. Mertz. Uci repository of machine learning databases.
Irvine, CA: University of California, Department of Information and Com-
puter Science [http://www.ics.uci.edu/ mlearn/ MLRepository.html], 1998.

15

[7]

[8]

[9]

K. Cao-Van and B. De Baets. Growing decision trees in an ordinal setting.
submitted to International Journal of Intelligent Systems, 2002.

Y. Crama, P. L. Hammer, and T. Ibaraki. Cause-effect relationships and
partially defined boolean functions. Annals of Operations Research, 16:299—
326, 1988.

S. Greco, B. Matarazzo, and R. Slowinski. A new rough set approach to
evaluation of bankruptcy risk. C. Zopounidis (ed.), Operational Tools in the
Management of Financial Risks, Kluwer, Dordrecht, pages 121-136, 1998.

K. Makino, T. Suda, K. Yano, and T. Ibaraki. Data analysis by posi-
tive decision trees. Proceedings of International Symposium on Cooperative
Database Systems for Advanced Applications (CODAS), Kyoto, pages 282—
289, 1996.

R. Potharst and J. C. Bioch. Decision trees for ordinal classification. In-
telligent Data Analysis, 4:1-15, 2000.

W. van Eikeren. Monotone decision trees and stacked generalization. Mas-
ter’s thesis, Erasmus University Rorrerdam, 2002.

S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11-
12, 1962.

C. Zopounidis and M. Doumpos. Multicriteria classification and sorting
methods: A literature review. FEuropean Journal of Operational Research,
138:229-246, 2002.

16

Publications in the Report Series Research® in Management
ERIM Research Program: “Business Processes, Logistics and Information Systems”
2003

Project Selection Directed By Intellectual Capital Scorecards
Hennie Daniels and Bram de Jonge
ERS-2003-001-LIS

Combining expert knowledge and databases for risk management
Hennie Daniels and Han van Dissel
ERS-2003-002-LIS

Recursive Approximation of the High Dimensional max Function
S. 11 Birbil, S.-C. Fang, J.B.G. Frenk and S. Zhang
ERS-2003-003-LIS

Auctioning Bulk Mobile Messages
S.Meij, L-F.Pau, E.van Heck
ERS-2003-006-LIS

Induction of Ordinal Decision Trees: An MCDA Approach
Jan C. Bioch, Viara Popova
ERS-2003-008-LIS

A New Dantzig-Wolfe Reformulation And Branch-And-Price Algorithm For The Capacitated Lot Sizing Problem
With Set Up Times

Zeger Degraeve, Raf Jans

ERS-2003-010-LIS

International Portfolio Choice: A Spanning Approach
Ben Tims, Ronald Mahieu
ERS-2003-011-LIS

Reverse Logistics — a review of case studies
Marisa P. de Brito, Rommert Dekker, Simme D.P. Flapper
ERS-2003-012-LIS

Product Return Handling: decision-making and quantitative support
Marisa P. de Brito, M. (René) B. M. de Koster
ERS-2003-013-LIS

A complete overview of the ERIM Report Series Research in Management:
http://www.ers.erim.eur.nl

ERIM Research Programs:

LIS Business Processes, Logistics and Information Systems
ORG Organizing for Performance

MKT Marketing

F&A Finance and Accounting

STR Strategy and Entrepreneurship

http://www.erim.eur.nl/publications:

