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Abstract

The joint probabilities of potential outcomes are fundamental components of
causal inference in the sense that (i) if they are identifiable, then the causal
risk is also identifiable, but not vise versa (Pearl, 2009; Tian and Pearl, 2000)
and (ii) they enable us to evaluate the probabilistic aspects of “necessity”,
“sufficiency”, and “necessity and sufficiency”, which are important concepts
of successful explanation (Watson, et al., 2020). However, because they are
not identifiable without any assumptions, various assumptions have been
utilized to evaluate the joint probabilities of potential outcomes, e.g., the
assumption of monotonicity (Pearl, 2009; Tian and Pearl, 2000), the inde-
pendence between potential outcomes (Robins and Richardson, 2011), the
condition of gain equality (Li and Pearl, 2019), and the specific functional
relationships between cause and effect (Pearl, 2009). Unlike existing identi-
fication conditions, in order to evaluate the joint probabilities of potential
outcomes without such assumptions, this paper proposes two types of novel
identification conditions using covariate information. In addition, when
the joint probabilities of potential outcomes are identifiable through the
proposed conditions, the estimation problem of the joint probabilities of
potential outcomes reduces to that of singular models and thus they can
not be evaluated by standard statistical estimation methods. To solve the
problem, this paper proposes a new statistical estimation method based on
the augmented Lagrangian method and shows the asymptotic normality of
the proposed estimators. Given space constraints, the proofs, the details
on the statistical estimation method, some numerical experiments, and the
case study are provided in the supplementary material.

1 Introduction

1.1 Practical Background

In practical science, it is crucial to evaluate the likelihood of one event causing another event.
For example, epidemiologists pay attention to determining the likelihood of a particular
exposure being the cause of a particular disease. In order to assess such likelihood from
statistical data, the probabilities of causation have been developed, which can be divided
into “necessary causation”, “sufficient causation”, and “necessary-and-sufficient causation”.
In addition, recently, in the field of explainable artificial intelligence (XAI), it has been
pointed out that “necessity”, “sufficiency”, and “necessity and suffciency” are the important
concepts of successful explanation and the probabilities of causation play an important role
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in evaluating these concepts from the probabilistic aspects [10, 22, 35]. For the last decades,
the probabilities of causation received increasing attention in the fields of epidemiology, risk
analysis, legal reasoning, artificial intelligence, and policy analysis [e.g., 4–8, 10, 11, 22, 26,
29, 33, 35].

1.2 “Necessity”, “Sufficiency”, and “Necessity and Sufficiency”

Necessary cause is often used in the tort-law liability. When a 60-year-old man who worked
in an asbestos textile plant develops lung cancer, we are interested in the probability that
asbestos had caused it. This quantity to be estimated has been commonly referred to as
“attributable fraction” or “assigned share” [4, 19]. It measures how necessary the exposure
is for the development of the disease. Pearl [24] defined it as “Probability of Necessity
(PN)”, which means “the probability that disease would not have occurred in the absence
of exposure, given that disease and exposure did in fact occur”. The estimation of PN is
important to provide a scientific basis for compensation in tort suits.
Sufficient cause is often used in health risk assessment. In practice, it is important for public
policy makers to predict how a health risk factor would endanger a healthy population
[15, 16, 21]. The measure for it has been referred to as “susceptibility”, which measures
how sufficient a risk factor is to make an individual develop a disease. Pearl [24] defined the
measure of such prediction as “Probability of Sufficiency (PS)”, which means “the probability
that a healthy unexposed individual would have developed the disease had he been exposed”.
The assessment of PS helps public policy makers to make or revise regulations in order to
minimize the occurrence of diseases.
With the definitions of PN and PS, it would be a natural extension to inquire for the
“Probability of Necessity and Sufficiency (PNS)”, which shows how likely an individual is to
be affected by both ways [24]. PNS measures the probability that an exposure is a necessary
and sufficient cause for a disease, that is, an exposure is the actual cause of a disease. Then,
different from previous works where “probability of causation” is only referred to PN [e.g.,
4, 7], Pearl [24] defined three types of “probability of causation”, PN, PS, and PNS.
Pearl [26] and Tian and Pearl [33] developed formal semantics for the probabilities of causation
based on the structural models of counterfactuals. They presented the formal definitions of
the probability of necessity (PN), the probability of sufficiency (PS), and the probability of
necessity and sufficiency (PNS). These probabilities of causation are formulated based on the
joint probabilities of two potential outcomes. Since one cannot simultaneously observe the
results of the same subjects exposed and unexposed in reality, even successful randomized
experiments have failed to identify these quantities [26, pp.284–285]. Tian and Pearl [33]
addressed the problem by showing how to bound these quantities using data obtained from
experimental and observational studies. Their bounds are sharp under minimal assumptions
concerning the data generating process. Kuroki and Cai [17] derived narrower bounds of the
probabilities of causation than Tian-Pearl’s bounds using covariate information. Recently,
Galhotra et al. [10] generalized Tian-Pearl’s bounds from binary to arbitrary variables in the
context of explainable artificial intelligence (XAI). However, it has been often pointed out
that these existing bounds are too wide to evaluate the probabilities of causation. To solve
the problem, Tian and Pearl [33] and Galhotra et al. [10] also stated that the probabilities
of causation are identifiable if the monotonicity can be assumed and the causal risks are
identifiable and Pearl [26] showed that the specific functional relationships between cause
and effect lead to the identification of the probabilities of causation.

1.3 Contribution

The aim of this paper is to discuss the identification and estimation problems of the joint
probabilities of potential outcomes, which provides a general class including the probabilities
of causation. The joint probabilities of potential outcomes are the building-blocks of causal
inference, because the causal risk is also identifiable if they are identifiable, but not vise
versa. In the context of the natural direct and indirect effects [25], under the assumption of
no unmeasured confounding, Robins and Richardson [30] stated that the joint probabilities
of potential outcomes are identifiable if (i) two potential outcomes are independent or (ii)
one potential outcome is deterministically formulated as the function of the other potential
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outcome. In addition, in the context of unit selection problems, Li and Pearl [20] showed
that the linear combination of the joint probabilities of potential outcomes is identifiable
under the gain equality. These existing researches show that the evaluation of the joint
probabilities of potential outcomes play an important role in solving various problems of
causal inference. Although considerable efforts have been devoted toward establishing the
identifiability criteria and solving the confounding problem of causal risks, there has been
limited discussion on how to identify the joint probabilities of potential outcomes when the
present assumptions are violated.
To solve the problem, this paper proposes two types of novel identification conditions for
the joint probabilities of potential outcomes without existing assumptions — one uses both
causal risks and one covariate (Theorem 1) and the other uses two covariates without causal
risks (Theorem 2). The results of this paper also provide a counterexample to “sensitivity
to the generative process” [26, pp. 284–285], in the sense that it is not required to specify
the functional relationships that connect a cause and an effect. In addition, unlike the
effect restoration proposed by Kuroki and Pearl [18], the assumption of the given number of
categories of an unmeasured confounder is not required. Furthermore, from Theorem 2, it is
remarkable that there are some situations where the causal risks are identifiable even if the
existing identification conditions do not hold.
When the joint probabilities of potential outcomes are identifiable through the proposed
conditions, the estimation problem of the joint probabilities of potential outcomes reduces to
that of singular models and thus they can not be evaluated by standard statistical estimation
methods. To solve the problem, this paper proposes a new statistical method based on the
augmented Lagrangian method [3] and shows the asymptotic normality of the proposed
estimators. Given space constraints, the proofs, the details on the statistical estimation
method, some numerical experiments, and the case study are provided in the supplementary
material.

2 Preliminary

This section introduces the potential outcomes used to discuss our problems. For simplicity,
we consider the case where an exposure variable X ∈ {x1, x0} (x1 is exposed; x0 is unexposed)
and an outcome variable Y ∈ {y1, y0} (y1 is disease; y0 is non-disease) are dichotomous. In
addition, let p(X = x, Y = y) = p(x, y), p(Y = y |X = x) = p(y |x), and p(X = x) = p(x)
be the joint probability of (X,Y ) = (x, y), the conditional probability of Y = y given X = x,
and the marginal probability of X = x for x ∈ {x1, x0} and y ∈ {y1, y0}, respectively. Similar
notation is used for other probabilities. Here, in this paper, we will assume that readers are
familiar with the basic theory of causal inference [13, 26]. Especially, for the graph-theoretic
terminology and the basic theory of structural causal models used in this paper, we refer the
readers to Pearl [26].
In principle, for x ∈ {x1, x0}, the i-th of the N subjects has a potential outcome Yx(i)
that would have resulted if X had been x, denoted as X(i) = x. Here, note that the
subject ensures a deterministic relationship between two variables X and Y in the semantics
of structural causal models [26]. In addition, the present paper assumes the stable unit
treatment value assumption, which can be summarized as follows: (i) the exposure status
of any subject does not affect the outcomes of the other subjects (no interference) and (ii)
the exposures of all subjects are comparable (no variation in exposure). Thus, when the N
subjects in the study are considered as random samples from the population of interest, X(i)
and Yx(i) are referred to as the values of random variables X and Yx respectively, and thus
the causal risk of X = x on Y = y is defined as p(Yx = y). Similar notation is used for other
potential outcomes.
For the i-th subject, the potential outcome Yx is observed only if X is x . This property is
called the consistency [13, 26, 28], which is formulated as X(i) = x=⇒Yx(i) = Y (i). When
a randomized experiment is conducted and compliance is perfect, since X is independent of
(Yx0 , Yx1), the causal risk is identifiable and is given by p(Yx = y) = p(y |x). Here, “identi-
fiable” means that the causal quantities, such as p(Yx = y), can be estimated consistently
from a joint probability of observed variables. In contrast, when it is difficult to conduct
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a randomized experiment and only observational data are available, we can evaluate the
causal risk according to the conditionally-ignorable-treatment-assignment condition [31], or
graphically, the back-door criterion [26]. In other words, for the exposure X, if there exists
such a set S of observed covariates that X is conditionally independent of (Yx0 , Yx1) given
S, we can say that treatment assignment is conditionally ignorable given S. Then, the
causal effects are estimable using S as p(Yx = y) = Es[p(y |x,S)]. Here, Es[p(y |x,S)] is
the expectation of p(y |x,S) regarding S. Although there are other identification conditions
that can be used to solve our problem [e.g., 26, 34], this paper does not cover them due to
space constraints.
Following Pearl [26], we define three probabilities of causation, that is, the probability of
necessity (PN), the probability of sufficiency (PS), and the probability of necessity and
sufficiency (PNS). PN stands for the probability p(Yx0 = y0 |X = x1, Y = y1) that a disease
would not have occurred in the absence of an exposure, given that the exposure and the
disease occurred. PS stands for the probability p(Yx1 = y1 |X = x0, Y = y0) that a healthy
unexposed subject would have contracted the disease upon exposure. PNS stands for the
probability p(Yx1 = y1, Yx0 = y0) that an exposure is a necessary and sufficient cause for a
disease. Since PN, PS, and PNS involve the joint probabilities of potential outcomes, even
under successful randomized experiments, they cannot be estimated from the observed data
without additional assumptions [26].

3 Identification

3.1 Case 1: Identification based on one covariate with causal risks

According to Pearl [26], letting U be the set of all discrete and continuous covariates that
could affect X and Y , both observed and unobserved, we consider the problem of evaluating
the joint probabilities of potential outcomes based on the directed graph shown in Figure 1a.
Here, a covariate Z, in Figure 1a, is measured as a proxy variable of U . Note that Z can
be a set of discrete and/or continuous variables. In Figure 1a, the directed edge from X to
Y indicates that X may affect Y . In addition, the absence of a directed edge from Y to X
indicates that Y cannot be a cause of X, and the directed path from U to Y through X
indicates that some elements of U may effect Y mediated by X. Figure 1a also graphically
represents the data generating process

Y = gy(X,U , εy), X = gx(U , εx), Z = gz(U , εz), (1)
where εx, εy, and εy are independent random disturbances and they are also independent
of U . When the structural equation models, such as equation (1), are used to represent
the data generating process, the corresponding graph shown in Figure 1a is called a causal
diagram.
The situation such as Figure 1a is also discussed in Kuroki and Pearl [18] and Pearl [27].
However, in this paper, unlike Kuroki and Pearl [18] and Pearl [27], U can include uncertain
number of all discrete and continuous covariates that influence the way a subject responds to
exposures. Thus, in many situations, it is reasonable to assume the existence of a covariate
Z that is independent of {X,Y } given U . Here, note that the independence assumptions
between two observed variables would be affected by partitioning the states of U ∪{εx, εy εz}.
In the situation shown in Figure 1a, irrespective of the complexity of U ∪ {εx, εy, εz}, the
impact of U on Y remains restricted to the modification of the functional relationships
between X and Y . This yields four functions for two dichotomous variables X and Y , and
thus the value taken by U ∪ {εx, εy, εz} selects one of these four functions [26]. Considering
these observations, according to Rothman et al. [32, p. 59], the states of U ∪ {εx, εy, εz} are
divided into the following four potential outcome types:
u1 = (Yx1 = y1, Yx0 = y1) represents a “doomed” situation where exposure is irrelevant
because disease occurs with or without exposure.

u2 = (Yx1 = y1, Yx0 = y0) represents a “causative” situation where disease occurs if and
only if subjects are exposed.

u3 = (Yx1 = y0, Yx0 = y1) represents a “preventive” situation where disease occurs if and
only if subjects are unexposed.
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Figure 1: Graphical representation in Case 1.

u4 = (Yx1 = y0, Yx0 = y0) represents an “immune” situation where exposure is irrelevant
because disease does not occur, with or without exposure.

According to this partition of the states of U ∪ {εx, εy, εz}, it is re-defined as a variable U
taking a value u (u ∈ {u1, u2, u3, u4}). Then, similar to the setting of the non-compliance
problem by Pearl [26, ch.8], throughout the paper, we assume that the recursive factorization
of the positive joint probability of X, Y , and Z, p(x, y, z), is given as

p(x, y, z) =
4∑

i=1
p(y |x, z, ui)p(x |ui)p(z | ui)p(ui)

according to Figure 1b. It is also assumed that other joint probabilities of X, Y , and Z
can be rewritten in a similar way. Then, this factorization implies that X is conditionally
independent of Z, given U , denoted as X á Z | U , which is used in the context of the impact
evaluation problem of the program [23]. In addition, from the consistency property, we have

p(x1, y1, z, ui) = p(x1, z, ui), p(x1, y0, z, ui) = 0, i = 1, 2,
p(x1, y0, z, ui) = p(x1, z, ui), p(x1, y1, z, ui) = 0, i = 3, 4,
p(x0, y1, z, ui) = p(x0, z, ui), p(x0, y0, z, ui) = 0, i = 1, 3,
p(x0, y0, z, ui) = p(x0, z, ui), p(x0, y1, z, ui) = 0, i = 2, 4,

Thus, for example, p(x1, y1, z), p(z) and p(Yx1 = y1, z) can be rewritten as

p(x1, y1, z) =
2∑

i=1
p(x1 |ui)p(z |ui)p(ui), p(z) =

4∑
i=1

p(z |ui)p(ui)

p(Yx1 = y1, z) = p(Yx1 = y1 | z)p(z).

Additionally, the other joint and marginal probabilities of X, Y , and Z can be rewritten in
a similar way. Then, when Z is a variable with the number of values k ≥ 4, say z1, . . . , z4,
letting

P =

 1 p(z1) p(z2) p(z3)
p(x1, y1) p(x1, y1, z1) p(x1, y1, z2) p(x1, y1, z3)
p(x1, y0) p(x1, y0, z1) p(x1, y0, z2) p(x1, y0, z3)
p(x0, y1) p(x0, y1, z1) p(x0, y1, z2) p(x0, y1, z3)

 , (2)

Q =
( 1 p(z1) p(z2) p(z3)
p(Yx1 = y1) p(Yx1 = y1, z1) p(Yx1 = y1, z2) p(Yx1 = y1, z3)
p(Yx0 = y1) p(Yx0 = y1, z1) p(Yx0 = y1, z2) p(Yx0 = y1, z3)

)
, (3)

we derive the following theorem:

Theorem 1 Letting Z be a variable with the number of values k ≥ 4, say z1, . . . , z4, p(Yx1 =
y, Yx0 = y′) and p(Yx1 = y, Yx0 = y′ |x) are identifiable (y, y′ ∈ {y1, y0};x ∈ {x1, x0}) if the
following conditions are satisfied:

Condition 1 p(Yx1 = y1 | z), p(Yx0 = y1 | z), p(x1, y1, z), p(x0, y1, z), p(x1, y0, z), and
p(x0, y0, z) are available for z ∈ {z1, . . . , z4}.
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Figure 2: Graphical representation in Case 2

Condition 2 {X,Y } á Z | U holds.

Condition 3 P is invertible and QP−1 consists of four distinct non-zero column vectors.

The proof is given in the supplementary material. Theorem 1 shows that PN, PS and PNS
are identifiable. In addition, the causal risk is also identifiable from Theorem 1.
Here, we would like to state some remarks. First, the violation of the assumptions can
be testable: as seen from the supplementary material, if the simultaneous linear equation
(A.12) in the supplementary material has no solutions, then at least one of the conditions
does not hold. Second, although Condition 1 seems to require that some distributions are
available, it is not the case. Theorem 1 is applicable with a single observed distribution, say,
p(x, y, z, w) if both p(Yx1 = y | z) and p(Yx0 = y | z) are identifiable from the distribution.
For example, regarding p(x, y, z, w), when {Z,W} satisfies the back-door criterion relative
to (X,Y ), p(Yx = y | z) is identifiable and is given by

p(Yx = y | z) =
∑

w

p(y |x, z, w)p(w | z). (4)

Second, Condition 3 implies that all potential outcome types exist and thus the monotonicity
assumption (e.g. no-prevention assumption; p(u3) = 0) does not hold. In addition, it
implies that X is not independent of U , and thus X is not randomly assigned. Thus, in
Theorem 1, the causal risks are assumed to be estimable by the identification conditions in
observational studies (such as the back- and front-door criteria [26]) or by external studies
(e.g., pilot studies or scientific judgement). If we have prior knowledge that a certain potential
outcome type does not exist in the situation discussed this section, that is, the monotonicity
assumption, then the PN, PS, and PNS would be identifiable without the covariate Z [33].
Theorem 1 demonstrates that, when we observe one covariate associated with potential
outcomes and the causal risks are available, the joint probabilities of potential outcomes can
be constructed from the covariate and causal risks; this can render the joint probabilities of
potential outcomes identifiable without the monotonicity assumption.

3.2 Case 2: Identification based on two covariates without causal risks

We will tackle the more difficult problem of estimating the joint probabilities of potential
outcomes without a prior knowledge of causal risks. We will show that, under certain
conditions, the joint probabilities of potential outcomes can be evaluated using only covariates.
To see this, consider a causal diagram shown in Figure 2, which is obtained by adding an
observed variable W to Figure 1b. Then, when we consider the positive joint probability of
X, Y , Z, and W , from the consistency property, we have

p(x1, y1, z, w, ui) = p(x1, z, w, ui), p(x1, y0, z, w, ui) = 0, i = 1, 2,
p(x1, y0, z, w, ui) = p(x1, z, w, ui), p(x1, y1, z, w, ui) = 0, i = 3, 4,
p(x0, y1, z, w, ui) = p(x0, z, w, ui), p(x0, y0, z, w, ui) = 0, i = 1, 3,
p(x0, y0, z, w, ui) = p(x0, z, w, ui), p(x0, y1, z, w, ui) = 0, i = 2, 4,

for z and w taken by Z andW , respectively. Thus, for example, p(y1, z, w |x1) and p(z, w |x1)
can be rewritten as

p(y1, z, w|x1) =
2∑

i=1
p(w|x1, ui)p(z|ui)p(ui|x1), p(z, w|x1) =

4∑
i=1

p(w|x1, ui)p(z|ui)p(ui|x1).
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Additionally, the other joint and marginal probabilities of X, Y , Z, and W can be rewritten
in a similar way. Then, when Z and W are variables with the number of values k ≥ 4, such
as z1, . . . , z4, for Z, and w1, . . . , w4 for W , letting

Px1 =

 1 p(z1 |x1) p(z2 |x1) p(z3 |x1)
p(w1 |x1) p(z1, w1 |x1) p(z2, w1 |x1) p(z3, w1 |x1)
p(w2 |x1) p(z1, w2 |x1) p(z2, w2 |x1) p(z3, w2 |x1)
p(w3 |x1) p(z1, w3 |x1) p(z2, w3 |x1) p(z3, w3 |x1)

 , (5)

Px0 =

 1 p(z1 |x0) p(z2 |x0) p(z3 |x0)
p(w1 |x0) p(z1, w1 |x0) p(z2, w1 |x0) p(z3, w1 |x0)
p(w2 |x0) p(z1, w2 |x0) p(z2, w2 |x0) p(z3, w2 |x0)
p(w3 |x0) p(z1, w3 |x0) p(z2, w3 |x0) p(z3, w3 |x0)

 , (6)

we derive the following theorem:

Theorem 2 Letting Z and W be variables by taking k (≥ 4) values, say z1, . . . , z4, for Z,
and w1, . . . , w4 for W , p(Yx1 = y, Yx0 = y′) and p(Yx1 = y, Yx0 = y′ |x) are identifiable
(y, y′ ∈ {y1, y0};x ∈ {x1, x0}) if the following conditions are satisfied:

Condition 4 p(x1, y1, z, w), p(x1, y0, z, w), p(x0, y1, z, w), and p(x0, y0, z, w), are available
for z ∈ {z1, . . . , z4} and w ∈ {w1, . . . , w4}.

Condition 5 Both W á Z | {X,U} and X á Z | U hold.

Condition 6 Both Px1 and Px0 are invertible.

The proof is given in the supplementary material. Although the probabilities comprising the
unobserved variables are not fully identified in Kuroki and Pearl [18], Theorem 2 shows that
the joint probabilities of potential outcomes p(u1), . . . , p(u4) are identifiable and the causal
risks are also identifiable and are given by, for example,

p(Yx1 = y1) = p(u1) + p(u2), p(Yx0 = y1) = p(u1) + p(u3). (7)

Clearly, Theorem 2 shows that PN, PS and PNS are also identifiable.

4 Estimation

When the joint probabilities of potential outcomes are identifiable through the proposed
conditions, as seen from the proofs of Theorems (refer to the supplementary material A), the
estimation problem of the joint probabilities of potential outcomes reduces to that of singular
models and thus they can not be evaluated by standard statistical estimation methods. To
solve the problem, we proposes a new statistical method based on the augmented Lagrangian
method [3]. In this section, we focus on Case 2 in Section 3.2. For estimation in Case 1, see
the supplementary material B.1.

Consider the matrices P̂x and Q̂x that are derived by replacing p(z |x), p(w |x), p(z, w |x),
p(y |x), p(y, z |x), p(y, w |x), and p(y, z, w |x) of Px and Qx with sample probabilities p̂(z |x),
p̂(w |x), p̂(z, w |x), p̂(y |x), p̂(y, z |x), p̂(y, w |x), and p̂(y, z, w |x), respectively (x ∈ {x1, x0};
y ∈ {y1, y0}; z ∈ {z1, . . . , z4}; w ∈ {w1, . . . , w4}). Then, for constant matrices Mx1 and Mx0
(see equation (A.23) of the supplementary material A.2), since we have

SP−1
x Qx = MxS, x ∈ {x1, x0} (8)

from equation (A.26) of the supplementary material A.2, we estimate the matrix S (see
equation (A.24) of the supplementary material A.2) as the solution Θ = (θij)1≤i,j≤4 of the
optimization problem

minimize
Θ

1
2‖ΘP̂

−1
x1
Q̂x1 −Mx1Θ‖2F + 1

2‖ΘP̂
−1
x0
Q̂x0 −Mx0Θ‖2F (9)

subject to 0 ≤ e>j (P̂xΘ−1)>e1 ≤ 1, j = 1, . . . , 4; 1>(P̂xΘ−1)>e1 = 1, x ∈ {x1, x0}, (10)
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Table 1: Conditional probability tables in simulation.

(a) p(Z |U) (b) p(W |U) (c) p(Y = 1 |X,U)
Z = 1 Z = 2 Z = 3 Z = 4 W = 1 W = 2 W = 3 W = 4 X = 1 X = 0

U = 1 7/10 1/10 1/10 1/10 7/10 1/10 1/10 1/10 1 1
U = 2 1/10 7/10 1/10 1/10 1/10 7/10 1/10 1/10 1 0
U = 3 1/10 1/10 7/10 1/10 1/10 1/10 7/10 1/10 0 1
U = 4 1/10 1/10 1/10 7/10 1/10 1/10 1/10 7/10 0 0

(d) p(X = 1 |W,U) (e) p(U)
W = 1 W = 2 W = 3 W = 4

U = 1 21/46 18/43 18/43 18/43 1/4
U = 2 9/34 21/71 9/34 9/34 1/4
U = 3 9/34 9/34 21/71 9/34 1/4
U = 4 9/34 9/34 9/34 21/71 1/4

θi1 = 1, 0 ≤ θij ≤ 1,
4∑

k=2
θik ≤ 1, i = 1, . . . , 4; j = 2, 3, 4, (11)

where e1 = (1, 0, 0, 0)>, e2 = (0, 1, 0, 0)>, e3 = (0, 0, 1, 0)>, e4 = (0, 0, 0, 1)>, and
1 = (1, 1, 1, 1)>. In addition, ‖ · ‖F denotes the Frobenius norm of a matrix. Equa-
tion (10) is the constraint such that the first row of P̂xΘ−1 comes to the valid estimators of
(p(u1|x), . . . , p(u4|x)).
To solve the optimization problem, we use the augmented Lagrangian method [3]. When
we obtain the estimator Ŝ as the solution of the optimization problem, the estimator of
u = (p(u1), . . . , p(u4))> is given by the formula

û = p̂(x1)(P̂x1 Ŝ
−1)>e1 + p̂(x0)(P̂x0 Ŝ

−1)>e1.

where p̂(x) is the sample probability for p(x). For details on the asymptotic normality of the
estimators and algorithms, see the supplementary material.

5 Numerical Experiment

In this section, we present a numerical experiment to examine properties of the proposed
estimation method through the PNS p(u2) and the causal risk difference p(u2)− p(u3). For
simplicity, letting X, Y , Z, W , and U be discrete variables, we consider the causal diagrams
shown in Figure 2, where the joint probabilities of (X,Y, Z,W,U) are given according to
Table 1. Under the situation where (X,Y, Z,W ) can be observed but U can not, the
properties of the proposed estimators p̂(u2) and p̂(u2)− p̂(u3) of p(u2) and p(u2)− p(u3),
respectively, are verified in a numerical experiment using the setting with sample sizes
n = 100, 200, 1000, and 5000. In this situation, since the p(u2) and p(u2)−p(u3) are 1/4 and
zero, respectively, the sample means of p̂(u2) and p̂(u2)− p̂(u3) are expected to be close to
1/4 and zero, respectively. Table 2 and Figure 3 show the basic statistics and the box plots
of p̂(u2) and p̂(u2)− p̂(u3) for 1000 replications with the given sample size n, respectively.
The horizontal lines in Figure 3 show the true values of p(u2) and p(u2)− p(u3).
From Table 2, the sample means of p̂(u2) and p̂(u2)− p̂(u3) are close to the true values and
the sample standard deviations are smaller as the sample size is larger. Thus, it seems that
the proposed estimation method provides the consistent estimators of p(u2) and p(u2)−p(u3).
In addition, from Figure 3, the interquantile ranges for p̂(u2) and p̂(u2)− p̂(u3) are narrower
and still include the true values even if the sample size is large. In contrast, it seems that
p̂(u2) − p̂(u3) is symmetrically distributed and thus the asymptotic normality holds, but
p̂(u2) may not. This is because the true value of p(u2) is relatively close to zero and Figure 3
is given as the zero truncated distribution of p̂(u2) for the finite sample size. Here, note that
there are many outliers in each sample size. The outliers would occur when it is difficult to
judge that Condition 6 holds from observed data. For further discussion on the simulation
experiments, see the supplementary material.
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Table 2: Basic statistics of estimates based on the proposed method.
(a) p̂(u2) (b) p̂(u2)− p̂(u3)

n = 100 n = 200 n = 1000 n = 5000 n = 100 n = 200 n = 1000 n = 5000
Minimum 0.003 0.001 0.008 0.002 −0.906 −0.936 −0.957 −0.864

1st Quantile 0.176 0.210 0.234 0.241 −0.107 −0.076 −0.043 −0.033
Median 0.242 0.253 0.258 0.254 −0.015 −0.006 −0.005 −0.005
Mean 0.251 0.259 0.264 0.255 −0.026 −0.017 −0.013 −0.025
3rd 0.305 0.294 0.281 0.271 0.083 0.061 0.034 0.016

Maximum 0.890 0.915 0.874 0.726 0.833 0.893 0.867 0.527
s.e. 0.126 0.103 0.082 0.072 0.228 0.189 0.139 0.129

(a) Boxplots for PNS (b) Boxplots for causal risk difference

Figure 3: Boxplots of estimates based on the proposed method

6 Discussion

Joint probabilities of potential outcomes often appears in unit selection problems [20], the
impact evaluation problem of social programs [12], the non-compliance problem of treatment
effects [1, 2], the principal stratification [9], the identification problems of natural direct and
indirect effects [25] and the prevented and preventable proportions [36], and the explainability
problem of artificial intelligence [10, 22, 35]. In addition, if the joint probabilities of potential
outcomes are identifiable, then the causal risks are also identifiable, but not vise versa.
Therefore, the identification and estimation problems of these probabilities have been an
important topic in causal inference. To solve the problems, the paper proposed (i) two
types of novel identification conditions using covariate information and (ii) a new statistical
estimation method based on the augmented Lagrangian method [3]. To the best of our
knowledge, there has been previously much less discussion how useful covariate information
is to identify these probabilities in nonparametric systems when existing identification
conditions do not hold. In addition, the estimation problem of singular models often appears
in the context of causal inference, but it seems that the solution has not been given in the
literature. Thus, the results of this paper extend the range of solvable identification and
estimation problems of causal inference under the nonparametric causal models.
Finally, we assumed that both an exposure variable and an outcome variable is dichotomous.
However, it is straightforward to extend our results from the case of dichotomous observed
variables to the case of multivalued observed variables under certain assumptions. For
example, multivalued or continuous outcome can be accommodated in the model using the
event Y < y as an outcome variable. Then, for given y, the problem of the paper can be
the identification and estimation of p(Yx > y, Yx′ ≤ y), . . . , p(Yx > y, Yx′ > y) and thus
the result of this paper are applicable to the problems. For the related discussion, refer
to Galhotra et al. [10] and Kada et al. [14]. In addition, when the exposure variable is
continuous, according to Balke and Pearl [2], it is reasonable to assume that there exists an
exposure interval around each x, within which a subject’s outcome is homogeneous. Under
this assumption, it is possible to apply our results. However, in such cases, it may be difficult
to obtain reliable statistics of the recovered probabilities due to data sparseness. It is left for
future work.
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