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FINANCIAL MARKETS WITH SHORT SALES PROHIBITIONS

By Sergio Pulido
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This paper consists of two parts. In the first part we prove the
fundamental theorem of asset pricing under short sales prohibitions
in continuous-time financial models where asset prices are driven by
nonnegative, locally bounded semimartingales. A key step in this
proof is an extension of a well-known result of Ansel and Stricker.
In the second part we study the hedging problem in these models
and connect it to a properly defined property of “maximality” of
contingent claims.

1. Introduction. The practice of short selling is alleged to magnify the
decline of asset prices. As a result, short sales bans and restrictions have been
commonly used as a regulatory measure to stabilize prices during downturns
in the economy. The most notable recent examples are: (i) in August of
2011, the European Securities and Markets Authority curtailed short sales
in France, Belgium, Italy and Spain in an effort to stop the tailspin in the
markets caused by the European debt crisis (see [15]); (ii) in September of
2008, after the burst of the housing bubble, the U.S. Securities and Exchange
Commission (SEC) prohibited short selling for 797 financial companies in
an effort to stabilize those companies (see [2, 3]); (iii) at the same time, in
September of 2008, the U.K. Financial Services Authority (FSA) prohibited
short selling for 32 financial companies (see [2, 3]).

Short sales prohibitions, however, are seen not only after the burst of a
price bubble or during times of financial stress. In certain cases, the inability
to short sell is inherent to the specific market. There are over 150 stock
markets worldwide, many of which are in the third world. In most of the
third world emerging markets the practice of short selling is not allowed; see
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2 S. PULIDO

[4, 5]. Additionally, in markets such as commodity markets and the housing
market, primary securities such as mortgages cannot be sold short because
they cannot be borrowed.

This paper aims to understand the consequences of short sales prohibi-
tion in semimartingale financial models. The fundamental theorem of asset
pricing establishes the equivalence between the absence of arbitrage, a key
concept in mathematical finance, and the existence of a probability measure
under which the asset prices in the market have a characteristic behavior. In
Section 3, we prove the fundamental theorem of asset pricing in continuous
time financial models with short sales prohibition where prices are driven
by locally bounded semimartingales. This extends related results by Jouini
and Kallal in [23], Schürger in [34], Frittelli in [18], Pham and Touzi in [30],
Napp in [29] and more recently by Karatzas and Kardaras in [26] to the
framework of the seminal work of Delbaen and Schachermayer in [9].

Additionally, the hedging problem of contingent claims in markets with
convex portfolio constraints where prices are driven by diffusions and dis-
crete processes has been extensively studied; see [6], Chapter 5 of [27] and
Chapter 9 of [17]. In Section 4, inspired by the works of Jacka in [19] and
Ansel and Stricker in [1], and using ideas from [16], we extend some of these
classical results to more general semimartingale financial models. We also
reveal an interesting financial connection to the concept of maximal claims,
first introduced by Delbaen and Schachermayer in [9] and [10].

2. The set-up.

2.1. The financial market. We focus our analysis on a finite time trad-
ing horizon [0, T ] and assume that there are N risky assets trading in the
market. We suppose, as in the seminal work of Delbaen and Schachermayer
in [9], that the price processes of the N risky assets are nonnegative lo-
cally bounded P -semimartingales over a stochastic basis (Ω,F ,F, P ), where
F := (Ft)0≤t≤T satisfies the usual hypotheses. We let S := (Si)1≤i≤N be the
R
N -valued stochastic process representing the prices of the risky assets. We

assume without loss of generality that the spot interest rates are constant
and equal to 0, that is, the price processes are already discounted. We also
assume that the risky assets have no cash flows associated to them, and
there are no transaction costs.

The probability measure P denotes our reference probability measure.
We suppose that F0 is P -trivial and FT = F . Hence, all random variables
measurable with respect to F0 are P -almost surely constant and there is
no additional source of randomness on the probability space other than the
one specified by the filtration F. As usual, we identify random variables
that are equal P -almost surely. If X is a semimartingale over this stochastic
basis, we denote by L(X) the space of predictable processes integrable with
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respect to X . Given H ∈ L(X), H ·X denotes the stochastic integral of H
with respect to X ; see page 165 of [32]. If t ∈ [0, T ], we let ∆Xt =Xt −Xt−

be the jump of X at time t, with the convention that X0− = 0. If τ is a
stopping time, Xτ :=X·∧τ denotes the process X stopped at τ . Given two
semimartingales X,Y we denote by [X,Y ] the quadratic covariation of X
and Y ; see page 66 of [32]. Given a probability measure Q equivalent to
P , denoted by Q∼ P , we let L0(Q), L0

+(Q), L∞(Q), L∞
+ (Q) and L1(Q) be

the spaces of equivalent classes of real-valued random variables, nonnegative
random variables, Q-essentially bounded random variables, nonnegative Q-
essentially bounded random variables and Q-integrable random variables,
respectively. For a measure Q∼ P and a random variable f bounded from
below, we let EQ[f ], EQ[f |Ft] be the expectation with respect to Q and the
conditional expectation with respect to Q given Ft, respectively. Finally,

H1(Q) denotes the space of martingales X such that EQ[[X,X]
1/2
T ]<∞.

2.2. The trading strategies. We fix 0≤ d≤N and assume that the first
d risky assets can be sold short in an admissible fashion to be specified
below and that the last N − d risky assets cannot be sold short under any
circumstances. This leads us to define the set of admissible strategies in the
market as follows.

Definition 2.1. A vector valued process H = (H1, . . . ,HN ), where for
1≤ i≤N and t ∈ [0, T ], H i

t denotes the number of shares of asset i held at
time t, is called an admissible trading strategy if:

(i) H ∈L(S);
(ii) H0 = 0;
(iii) (H · S)≥−α for some α> 0;
(iv) H i ≥ 0 for all i > d.

We let A be the set of admissible trading strategies.

Hence, by condition (ii), we assume that the initial risky assets’ hold-
ings are always equal to 0 and therefore initial endowments are always in
numéraire denomination. Condition (iii) above is usually called the admis-
sibility condition and restricts the agents’ strategies to those whose value
is uniformly bounded from below over time. The only sources of friction in
our market come from conditions (iii) and (iv) above. For every admissible
strategy H ∈A we define the optional process H0 by

H0 := (H · S)−
N
∑

i=1

H iSi.(2.1)

If H0 denotes the balance in the money market account, then the strategy
H = (H0,H) is self-financing with initial value 0.
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2.3. No arbitrage conditions. In [9] and [12], Delbaen and Schachermayer
considered the no arbitrage paradigm known as no free lunch with vanishing
risk (NFLVR) and proved the fundamental theorem of asset pricing (FTAP)
under this framework. Below we will redefine the (NFLVR) condition in our
context.

Define the following cones in L0(P ):

K := {(H · S)T :H ∈A},(2.2)

C := (K−L0
+(P )) ∩L∞(P )

(2.3)
= {g ∈ L∞(P ) :g = f − h for some f ∈K and h ∈ L0

+(P )}.

The cone K corresponds to the cone of random variables that can be obtained
as payoffs of admissible strategies with zero initial endowment. The cone C
is the cone of random variables that are P -almost surely bounded and are
dominated from above by an element of K. These sets of random variables
are cones and not subspaces of L0(P ) due to conditions (iii) and (iv) in
Definition 2.1. We define in our market the following “no arbitrage” type
conditions.

Definition 2.2. We say that the financial market satisfies the condition
of no arbitrage under short sales prohibition (NA-S ) if

C ∩L∞
+ (P ) = {0}.

In order to prove the (FTAP), the condition of (NA-S) has to be modified.

Definition 2.3. We say that the financial market satisfies the condition
of no free lunch with vanishing risk under short sales prohibition (NFLVR-S )
if

C ∩L∞
+ (P ) = {0},

where the closure above is taken with respect to the ‖ · ‖∞ norm on L∞(P ).

Remark 2.4. Observe that (NFLVR-S) does not hold if and only if
there exists a sequence (nH) in A, a sequence of bounded random variables
(fn) and a bounded random variable f measurable with respect to F such
that (nH ·S)T ≥ fn for all n, fn converges to f in L∞(P ), P (f ≥ 0) = 1 and
P (f > 0)> 0.

In the next section we prove the (FTAP) in our context. This theorem
establishes a relationship between the (NFLVR-S) condition defined above
and the existence of a measure, usually known as the risk neutral measure,
under which the price processes behave in a particular way.
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3. The fundamental theorem of asset pricing. The results presented in
this section are a combination of the results obtained by Frittelli in [18] for
simple predictable strategies in markets under convex constraints, and the
extension of the classical theorem of Delbaen and Schachermayer (see [9]) to
markets with convex cone constraints established by Kabanov in [24]. The
characterization of (NFLVR-S) is in accordance with the (FTAP) as proven
in [23] by Jouini and Kallal, who assumed that St is square integrable under
P for all times t and considered simple predictable strategies.

3.1. The set of risk neutral measures. We first define our set of risk
neutral measures.

Definition 3.1. We let Msup(S) be the set of probability measures Q
on (Ω,F) such that:

(i) Q∼ P and
(ii) for 1 ≤ i ≤ d, Si is a Q-local martingale and, for d < i ≤N , Si is a

Q-supermartingale.

We will call the set Msup(S) the set of risk neutral measures or equivalent
supermartingale measures (ESMM ).

The following proposition plays a crucial role in the analysis below.

Proposition 3.2. Let C be as in (2.3). Then

Msup(S) =
{

Q∼ P : sup
f∈C

EQ[f ] = 0
}

.

To prove this proposition we need the following results.

Lemma 3.3. Suppose that Q is a probability measure on (Ω,F). Let V
be an R

N -valued Q-semimartingale such that V i is Q-local supermartingale
for i > d, and V i is a Q-local martingale for i≤ d. Let H be an R

N -valued
bounded predictable process, such that H i ≥ 0 for i > d. Then (H · V ) is a
Q-local supermartingale.

Proof. Without loss of generality we can assume that, under Q, V i

is a supermartingale for i > d. Suppose that for i > d, V i =M i −Ai is the
Doob–Meyer decomposition of the Q-supermartingale V i, with M i a Q-local
martingale and Ai a predictable nondecreasing process such that Ai

0 = 0. Let
M i = V i and Ai = 0 for i≤ d. Then V =M −A, with M = (M1, . . . ,MN )
and A= (A1, . . . ,AN ), is the canonical decomposition of the special vector
valued semimartingale V underQ. SinceH is bounded, (H ·V ) is a Q-special
semimartingale, H ∈ L(M)∩L(A), (H ·V ) = (H ·M)− (H ·A) and (H ·M)
is a Q-local martingale; see Proposition 2 in [20]. Additionally, since H i ≥ 0
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for i > d we have that (H ·A) is a nondecreasing process starting at 0. We
conclude then that (H · V ) is a Q-local supermartingale. �

The following lemma is a known result of stochastic analysis which we
present here for completion.

Lemma 3.4. Suppose that H is a bounded predictable process, and X ∈
H1(Q) is a real-valued martingale. Then H ·X is also in H1(Q). In partic-
ular, H ·X is a Q-martingale.

Proof. The argument to prove this result is analogous to the one used
in the proof of Emery’s inequality (see Theorem V-3 in [32]) and we do not
include its proof in this paper. �

The next proposition is a key step in the extension of the (FTAP) to
markets with short sales prohibition and prices driven by arbitrary locally
bounded semimartingales. It extends a well-known result by Ansel and
Stricker; see Proposition 3.3 in [1].

Proposition 3.5. Let Q ∈Msup(S) and H ∈ L(S) be such that H i ≥
0 for i > d. Then H · S is a Q-local supermartingale if and only if there
exists a sequence of stopping times (Tn)n≥1 that increases Q-almost surely
to ∞ and a sequence of nonpositive random variables Θn in L1(Q) such that
∆(H · S)Tn ≥Θn for all n.

Proof. (⇐) It is enough to show that for all n, (H · S)Tn is a Q-local
supermartingale. Hence, without loss of generality we can assume that

∆(H · S)≥Θ

with Θ ∈ L1(Q) a nonpositive random variable. By Proposition 3 in [20], if
we define

Ut =
∑

s≤t

1{|∆Ss|>1 or |∆(H·S)s|>1}∆Ss,

there exist a Q-local martingale N and a predictable process of finite vari-
ation B such that H ∈ L(N) ∩ L(B + U), Y := S − U is a Q-special semi-
martingale with bounded jumps and canonical decomposition Y = N + B
and H ·N is a Q-local martingale. Let V := B + U and Hα :=H1{|H|≤α}

for α ≥ 0. We have that Q ∈ Msup(S), N is a Q-local martingale and
V = S − N . This implies that V i is a Q-local supermartingale for i > d,
and V i is a Q-local martingale for i≤ d. We can further assume by localiza-
tion that N i ∈H1(Q) for all i≤N and that V has canonical decomposition
V = M − A, where M i in H1(Q) and Ai ≥ 0 is Q-integrable, predictable
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and nondecreasing for all i≤N ; see Theorem IV-51 in [32]. By Lemmas 3.3
and 3.4, these assumptions imply that for all α ≥ 0, Hα ·N and Hα ·M
are Q-martingales and Hα · V is a Q-supermartingale. In particular for all
stopping times τ ≤ T , EQ[(Hα ·N)τ ] = 0 and EQ[(Hα · V )τ ]≤ 0. This im-
plies that for all stopping times τ ≤ T , EQ[|(H · N)τ |] = 2EQ[(H · N)−τ ]
and EQ[|(H · V )τ |] ≤ 2EQ[(H · V )−τ ]. After these observations, by follow-
ing the same argument as the one given in the proof of Proposition 3.3 in
[1], we find a sequence of stopping times (τp)p≥0 increasing to ∞ such that
EQ[|H ·V |τp ]≤ 12p+4EQ[|Θ|] and, for all α≥ 0, |(Hα ·V )τp | ≤ 4p+ |H ·V |τp .
An application of the dominated convergence theorem yields that (H ·V )τp is
a Q-supermartingale for all p≥ 0. Since H ·S =H ·N +H ·V and (H ·N) is
a Q-local martingale, we conclude that (H ·S) is a Q-local supermartingale.

(⇒) The Q-local supermartingale H · S is special. By Proposition 2 in
[20], if S = M − A is the canonical decomposition of S with respect to
Q, where M i is a Q-local martingale, A0 = 0 and Ai is an nondecreasing,
predictable and Q-locally integrable process for all i ≤ N , then H · S =
H ·M −H · A is the canonical decomposition of H · S, where H ·M is a
Q-local martingale and H · A is nondecreasing, predictable and Q-locally
integrable. By Proposition 3.3 in [1] we can find a sequence of stopping
times (Tn)n≥0 that increases to ∞ and a sequence of nonpositive random

variables (Θ̃n) in L1(Q) such that

∆(H ·M)Tn ≥ Θ̃n.

We can further assume without loss of generality that (H ·A)Tn
∈ L1(Q) for

all n. By taking Θn = Θ̃n − (H ·A)Tn
, we conclude that for all n

∆(H · S)Tn =∆(H ·M)Tn −∆(H ·A)Tn ≥ Θ̃n − (H ·A)Tn ≥Θn. �

Lemma 3.6. Let Q ∈Msup(S) and H ∈A; see Definitions 2.1 and 3.1.
Then (H · S) is a Q-supermartingale. In particular (H · S)T ∈ L1(Q) and
EQ[(H · S)T ]≤ 0.

Proof. Assume that (H · S)≥−α, with α≥ 0. Let q ≥ 0 be arbitrary.
If we define Tq = inf{t≥ 0 : (H ·S)t ≥ q−α}, we have that ∆(H ·S)Tq ≥−q.
By Proposition 3.5 we conclude that (H · S) is a Q-local supermartingale
bounded from below. By Fatou’s lemma we obtain that (H · S) is a Q-
supermartingale as we wanted to prove. �

Remark 3.7. The statement of Lemma 3.6 corresponds to Lemma 2.2
and Proposition 3.1 in [25]. Here we have proved this result by methods
similar to the ones appearing in the original proof of Ansel and Stricker in
[1]. Additionally, we have given sufficient and necessary conditions for the
σ-supermartingale property (see Definition 2.1 in [25]) to hold.
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We are now ready to prove the main proposition of this section. The
arguments below essentially correspond to those presented in [9, 24] and
[26]. We include them here for completeness.

Proof of Proposition 3.2. By Lemma 3.6

Msup(S)⊂
{

Q∼ P : sup
f∈C

EQ[f ] = 0
}

.

Now suppose that Q is a probability measure equivalent to P such that
EQ[f ] ≤ 0 for all f ∈ C. Fix 1 ≤ i ≤ N . Since Si is locally bounded, there
exists a sequence of stopping times (σn) increasing to ∞ such that Si

·∧σn
is

bounded. Let 0 ≤ s < t ≤ T , A ∈ Fs and n ≥ 0 be arbitrary. Consider the
process H i(r,ω) = 1A(ω)1(s∧σn,t∧σn](r). Let Hj ≡ 0 for j 6= i. We have that
H = (H1, . . . ,HN) ∈A, (H · S)T ∈ C and

0≥EQ[(H · S)T ] =EQ[1A(S
i
t∧σn

− Si
s∧σn

)].

This implies that Si
·∧σn

is a Q-supermartingale for all n and Si is a Q-local
supermartingale. Since Si is nonnegative, by Fatou’s lemma we conclude that
Si is a Q-supermartingale. For 1≤ i≤ d we can apply the same argument to
the process H i(r,ω) =−1A(ω)1(s∧σn,t∧σn](r) to conclude that Si is a Q-local
martingale. Hence

Msup(S)⊃
{

Q∼ P : sup
f∈C

EQ[f ] = 0
}

,

and the proposition follows. �

We have seen in the proof of this proposition that the following equality
holds.

Corollary 3.8. Let Msup(S) be as in Definition 3.1. Then

Msup(S) = {Q∼ P : (H · S) is a Q-supermartingale for all H ∈A}.(3.1)

3.2. The main theorem.

Theorem 3.9. (NFLVR-S) ⇔Msup(S) 6=∅.

In order to prove this theorem we need the following lemma.

Lemma 3.10. {(H · S) :H ∈ A, (H · S) ≥ −1} is a closed subset of the
space of vector valued P -semimartingales on [0, T ] with the semimartingale
topology given by the quasinorm

D(X) = sup{EP [1∧ |(H ·X)T |]: H predictable and |H| ≤ 1}.(3.2)
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Proof. Since {−→x ∈R
N :xi ≥ 0 for i > d} is a closed convex polyhedral

cone in R
N , this result follows from the considerations made in [8]. �

Remark 3.11. Notice that for the conclusion of Lemma 3.10 to hold,
it is important to work with short sales constraints as explained in Defini-
tion 2.1. In order to consider general convex cone constraints an alternative
approach is to consider constrained portfolios modulus those strategies with
zero value. This is the approach taken in [26]. In our particular case, and as
it is pointed out in [8], we have the advantage of considering portfolio con-
straints defined pointwise for (ω, t) in Ω× [0, T ]. Given a particular strategy,
it is easier to verify admissibility when pointwise restrictions are considered.

Proof of Theorem 3.9. If K1 and K2 are nonnegative bounded pre-
dictable processes, K1K2 = 0, H1,H2 ∈A are such that (H1 · S), (H2 · S)≥
−1, and X := K1 · (H1 · S) +K2 · (H2 · S) ≥ −1, then associativity of the
stochastic integral implies thatX ∈ {(H ·S) :H ∈A, (H ·S)≥−1}. This fact,
Proposition 3.2, Lemma 3.10 and Theorem 1.2 in [24] imply that (NFLVR-S)
is equivalent to existence of a measure Q ∈Msup(S). �

Remark 3.12. By using the results obtained by Kabanov in [24], Karat-
zas and Kardaras in [26] proved that the condition of (NFLVR), with pre-
dictable convex portfolio restrictions, is equivalent to the existence of a
measure under which the value processes of admissible strategies are su-
permartingales. In their work the set of measures on the right-hand side of
equation (3.1) is also referred to as the set of equivalent supermartingale
measures. As mentioned in Remark 3.11, they considered convex portfolio
constraints modulus strategies with zero value. We have shown that in the
special case of short sales prohibition one can consider pointwise portfolio
restrictions. More importantly, we have shown that in the case of short sales
prohibition, the set of measures under which the values of admissible port-
folios are supermartingales is precisely the set of measures under which the
prices of the assets that cannot be sold short are supermartingales, and the
prices of assets that can be admissibly sold short are local martingales; see
Corollary 3.8. This provides a more precise characterization of the set of risk
neutral measures under short sales prohibition. Given a particular model,
this characterization simplifies the process of verifying that the model is
consistent with the condition of (NFLVR-S).

This section demonstrates that the results obtained by Jouini and Kallal
in [23], Schürger in [34], Frittelli in [18], Pham and Touzi in [30] and Napp
in [29], can be extended to a more general class of models, similar to the
ones used by Delbaen and Schachermayer in [9]. It is also clear from this
characterization that the prices of the risky assets that cannot be sold short
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could be above their risk-neutral expectations at maturity time, because
the condition of (NFLVR-S) only guarantees the existence of an equivalent
supermartingale measure for those prices.

4. The hedging problem and maximal claims. In this section we seek to
understand the scope of the effects of short sales prohibition on the hedg-
ing problem of arbitrary contingent claims. We study, in financial markets
with short sales prohibitions where prices are driven by nonnegative locally
bounded semimartingales, the space of contingent claims that can be super-
replicated and perfectly replicated. The duality type results presented in this
section are robust because they characterize the claims that can be perfectly
replicated or super-replicated in markets with prohibition on short-selling
without relying on particular assumptions on the dynamics of the asset
prices, other than the locally bounded semimartingale property. By using
the results of Föllmer and Kramkov in [16] we extend the classic results of
Ansel and Stricker in [1]. The results presented also extend those in Chapter
5 of [27] and Chapter 9 of [17] to more general semimartingale financial mar-
kets. Additionally, we establish, in our context, a connection to the concept
of maximal claims as it was first introduced by Delbaen and Schachermayer
in [9] and [10]. The (FTAP) (Theorem 3.9) can be generalized to the case of
special convex cone portfolio constraints (see Theorem 4.4 in [26]), and some
of the results presented in this section could be extended to this framework.
In our study, we specialize to short sales prohibition because in this case the
examples are simplified by the fact that the set of risk neutral measures is
characterized by the behavior of the underlying price processes, rather than
the behavior of the value processes of the trading strategies; see Remark
3.12. Additionally, in this case, the portfolio restrictions can be considered
pointwise in Ω× [0, T ]; see Remarks 3.11 and 3.12. A related study on the im-
plications of short sales prohibitions on hedging strategies involving futures
contracts can be found in [22]. We will use the same notation as described
in Section 2. We will denote by Mloc(S) the set of measures equivalent to
P under which the components of S are local martingales.

4.1. The hedging problem. This section shows how the results obtained
by Föllmer and Kramkov in [16] extend the usual characterization of at-
tainable claims and claims that can be super-replicated to markets with
short sales prohibition. These results extend those presented in Chapter 5 of
[27] and Chapter 9 of [17] to more general semimartingale financial models.
We will assume that the condition of (NFLVR-S) (see Theorem 3.9) holds.
Recent works (see, e.g., [31] and [33]) have shown that in order to find suit-
able trading strategies the condition of (NFLVR-S) can be weakened and
the hedging problem can be studied in markets that admit certain types of
arbitrage.
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4.1.1. Super-replication. Regarding the super-replication of contingent
claims in markets with short sales prohibition we have the following theorem.

Theorem 4.1. Suppose Msup(S) 6=∅. A nonnegative random variable
f measurable with respect to FT can be written as

f = x+ (H · S)T −CT(4.1)

with x constant, H ∈ A and C ≥ 0 an adapted and nondecreasing càdlàg
process with C0 = 0 if and only if

sup
Q∈Msup(S)

EQ[f ]<∞.

In this case, x= supQ∈Msup(S)E
Q[f ] is the minimum amount of initial cap-

ital for which there exist H ∈ A and C ≥ 0 an adapted and nondecreasing
càdlàg process with C0 = 0 such that (4.1) holds.

Proof. This follows directly from Corollary 3.8 in this paper and Ex-
amples 2.2, 4.1 and Proposition 4.1 in [16]. �

Before we give an analogous result regarding perfect replication of con-
tingent claims, we present an example of a contingent claim that cannot be
super-replicated under short sales prohibition.

Example 4.2. This example illustrates how, under certain market hy-
potheses, it is possible to explicitly exhibit a payoff that cannot be super-
replicated without short selling. Suppose that S is of the form S = E(R).
Suppose that R is a continuous P -martingale such that R0 = 0 and there
exist ε,C > 0 such that P (ε ≤ [R,R]T ≤ C) = 1. Let f = exp(−RT ). We
have, by Novikov’s criterion (see Theorem III-45 in [32]) and by Girsanov’s

theorem (see Theorem III-40 in [32]), that for every α> 0, dQα

dP = E(−αR)T
defines a measure Qα ∈Msup(S). Additionally,

EQα

[f ] = EP [E(−αR)T f ]

= EP [E(−(1 +α)R)T exp((1/2 + α)[R,R]T )]

≥ EP [E(−(1 +α)R)T ] exp((1/2 +α)ε)

= exp((1/2 +α)ε)→∞

as α goes to infinity. Hence supQ∈Msup(S)E
Q[f ] =∞, and Theorem 4.1 im-

plies that f cannot be super-replicated without selling S short. However, if
we assume that the market where S can be sold short is complete under P ,
that is, Mloc(S) = {P}, then in the market where S can be sold short f can
be replicated because it belongs to L1(P ). Indeed, we have that

0≤ f ≤ exp

(

C

2

)

E(−R)T ∈L1(P ).
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4.1.2. Replication. A question that remains open, however, is whether
there exists a characterization of contingent claims that can be perfectly
replicated. In this regard we have the following result analogous to the one
proven by Ansel and Stricker in [1]; see also Theorems 5.8.1 and 5.8.4 in [27].

Theorem 4.3. Suppose Msup(S) 6=∅. For a nonnegative random vari-
able f measurable with respect to FT the following statements are equiva-
lent:

(i) f = x+ (H · S)T with x constant and H ∈A such that (H · S) is an
R∗-martingale for some R∗ ∈Msup(S).

(ii) There exists R∗ ∈Msup(S) such that

sup
Q∈Msup(S)

EQ[f ] =ER∗

[f ]<∞.(4.2)

Proof. That (i) implies (ii) follows from the fact that (H ·S) is a Q-su-
permartingale starting at 0 for all Q ∈Msup(S); see Corollary 3.8. To prove
that (ii) implies (i) we define for all t in [0, T ]

Vt := ess sup
Q∈Msup(S)

EQ[f |Ft].(4.3)

By Lemma A.1 in [16] the process V is a supermartingale under any Q ∈
Msup(S). In particular V is an R∗-supermartingale. The fact that VT = f
and (4.2) imply that V0 = ER∗

[VT ] and V is a martingale under R∗. On
the other hand by Theorem 3.1 in [16], V = V0 + (H · S) − C for some
H ∈ A and C ≥ 0 nondecreasing. Since (H · S) is an R∗-supermartingale
(see Corollary 3.8) we conclude that

ER∗

[CT ] = V0 +ER∗

[(H · S)T ]−ER∗

[VT ]≤ 0.

Then, C ≡ 0 R∗-almost surely and (H · S) is an R∗-martingale. �

Vt in (4.3) is usually used to define the selling price of the claim f at
time t. It represents the minimum cost of super-replication of the claim f
at time t; see Proposition 4.1 in [16]. We now give an example of a payoff
in markets with continuous price processes which cannot be attained with
“martingale strategies.”

Example 4.4. Suppose that the market consists of a single risky asset
with continuous price process S. Assume further that S is a P -martingale
which is not constant P -almost surely. Then f = 1{ST≤S0} does not belong
to the space

G := {x+ (H · S)T :x ∈R,H ∈A,
(4.4)

(H · S) is a Q-martingale for some Q ∈Msup(S)}.
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Indeed, for each n ∈N, let (Tn,m)m be a localizing sequence for

E(−n(St − S0)).

Define Qn,m ∈Msup(S) by

dQn,m

dP
= E(−n(ST∧Tn,m

− S0)).

We have that

EQn,m [f ] = 1−EQn,m [1− f ]

= 1−EP

[

1{ST>S0} exp

(

−n(ST∧Tn,m
− S0)−

n2

2
[S,S]T∧Tn,m

)]

.

Since the expression under the last expectation is dominated by exp(nS0) ∈
R, the Dominated Convergence theorem implies that for fixed n

lim
m

EQn,m [f ] = 1−EP

[

1{ST>S0} exp

(

−n(ST − S0)−
n2

2
[S,S]T

)]

.

Applying the dominated convergence theorem once again we obtain that

lim
n

lim
m

EQn,m [f ] = 1.

This allows us to conclude that

sup
Q∈Msup(S)

EQ[f ] = 1.

However, since f is not P -almost surely constant, this supremum is never
attained. By Theorem 4.3, f does not belong to the set G defined in (4.4).

Remark 4.5. Example 4.4 illustrates that in nontrivial markets with
continuous price processes, the minimum super-replicating cost of a digital
option of the form 1{ST≤S0} is 1; See Theorem 4.1. We will give other exam-
ples of claims that cannot be perfectly replicated with martingale strategies
at the end of this section.

We now proceed to give an alternative characterization of the random
variables in G, with G as in (4.4), by extending the concept of maximal
claims introduced by Delbaen and Schachermayer in [9] and [10].

4.2. Maximal claims. By using the extension of the (FTAP) proved in
Section 3, this section generalizes the ideas presented in [10] to markets with
short sales prohibition. For simplicity, we assume below that S, the price
process of the underlying asset, is one-dimensional. The results can be easily
extended to the multi-dimensional case. Recall the definitions of no arbitrage
under short sales prohibition (NA-S) and no free lunch with vanishing risk
under short sales prohibition (NFLVR-S) given in Section 2.
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4.2.1. The main theorem.

Definition 4.6. Let J ⊂L0(P ). We say that an element f is maximal
in J if:

(i) f ∈ J and
(ii) f ≤ g P -almost surely and g ∈ J imply that f = g P -almost surely.

Definition 4.7. Given H ∈ A, we define B(H) as the set of random
variables of the form

((H1,H2) · (S1, S2))T ,

where S1 = (H · S), S2 = S; (H1,H2) ∈ L(S1, S2); H2 ≥ 0, H1
0 ≡ 1, H2

0 ≡ 0
and

(H1 − 1,H2) · (S1, S2)≥−β − αS1(4.5)

for some α,β > 0.

The following is the main theorem of this section.

Theorem 4.8. Let f ∈L0(P ) be a random variable bounded from below.
The following statements are equivalent:

(i) f = (H · S)T for some H ∈A such that:
(a) the market where S1 = (H · S) and S2 = S trade with short selling

prohibition on S2 satisfies (NFLVR-S) and
(b) f is maximal in B(H) (see Definition 4.7).

(ii) There exists R∗ ∈Msup(S) such that

sup
Q∈Msup(S)

EQ[f ] =ER∗

[f ] = 0.

(iii) There exists H ∈ A such that f = (H · S)T and (H · S) is an R∗-
martingale for some R∗ in Msup(S).

If we further assume that f is bounded and Mloc(S) 6= ∅, the above state-
ments are equivalent to:

(iv) There exists H ∈A such that f = (H ·S)T for some H ∈A and (H ·S)
is an R-martingale for all R in Mloc(S).

Remark 4.9. It is important to point out that we can take the same
measure R∗ in (ii) and (iii), and the same strategy H in (i), (iii) and (iv).

Before establishing some lemmas necessary to prove this theorem we make
some additional remarks.
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Remark 4.10. A related result for diffusion price processes can be found
in Theorem 5.8.4 in [27]. This theorem uses the alternative assumption that

{(H · S)ρ: ρ is a stopping time in [0, T ]}

is Q-uniformly integrable for all Q ∈Msup(S). This hypothesis also implies
that (H · S) is a Q-martingale for all Q ∈Mloc(S).

Remark 4.11. Condition (4.5) resembles the definition of workable con-
tingent claims studied in [11].

Remark 4.12. If f = (H ·S)T , (H ·S) is an R∗-martingale for some R∗ ∈
Msup(S) and 1{H=0} ·S is indistinguishable from 0, then R∗ ∈Mloc(S) 6=∅.
Indeed, observe that if we call M = (H · S), then, by Corollary 3.5 in [1],
( 1
H 1{H 6=0}) ·M = 1{H 6=0} · S = S − S0 is an R∗-local martingale. Theorem
11.4.4 in [14] implies that the claim f is also maximal in

K̃= {(H · S)T :H ∈ Ã},(4.6)

where Ã is the set of strategies that satisfy (i), (ii) and (iii) in Definition 2.1.
Additionally, also by Theorem 11.4.4 in [14], Theorem 4.8 shows that when
Mloc(S) 6= ∅, all bounded maximal claims in B(H) (see Definition 4.7) of
the form (H · S)T for some H ∈A are maximal in K̃ as defined in (4.6).

The proof of Theorem 4.8 that we present below mimics the argument
presented in [10]. In this generalization, the (FTAP) under short sales pro-
hibition (Theorem 3.9) and the results presented by Kabanov in [24] are
fundamental.

4.2.2. Some lemmas. We first recall the following definition.

Definition 4.13. A subset N of L0(P ) is bounded in L0(P ) if for all
ε > 0 there exists M > 0 such that P (|Y |>M)< ε for all Y ∈N .

The following lemmas will be used.

Lemma 4.14. The condition of (NFLVR-S) holds if and only if (NA-S)
holds, and the set

K1 = {(H · S)T : H ∈K and (H · S)≥−1}

is bounded in L0(P ).

Proof. This corresponds to Lemma 2.2 in [24]. As already noticed be-
fore in the proof of Theorem 3.9, the results in [24] can be applied to our
case because the convex portfolio constraints satisfy the desired hypotheses.
�
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Lemma 4.15. The condition of (NFLVR-S) holds if and only if (NA-S)
holds and there exists a strictly positive P -local martingale L = (Lt)0≤t≤T

such that L0 = 1 and P ∈Msup(LS).

Proof. The same proof of Theorem 11.2.9 in [14] can be applied to our
context. �

We now state from our framework a result that is analogous to Theo-
rem 11.4.2 in [14]. This theorem gives necessary and sufficient conditions
under which the condition of (NA-S) holds after a change of numéraire. We
will need the following lemma, that proves that the self-financing condition
[see (2.1)] is independent of the choice of numéraire; see also [21].

Lemma 4.16. Let V be a positive P -semimartingale, M = ( SV , 1
V ,1) and

N = (S,1, V ). For a (three-dimensional) predictable process H the following
statements are equivalent:

(i) H ∈ L(M) and

H ·M =HM −H0M0 =H1 S

V
+H2 1

V
+H3 −H1

0

S0

V0
−H2

0

1

V0
−H3

0 ;

(ii) H ∈ L(N) and

H ·N =HN −H0N0 =H1S +H2 +H3V −H1
0S0 −H2

0 −H3
0V0.

Proof. (⇒) Let W =H ·M . By (i), ∆W =H∆M =HM −HM− and
W− =W −∆W =HM− −H0M0. The integration by parts formula implies
that

d(V W ) =W− dV + V− dW + d[W,V ]

= (HM− −H0M0)dV + V−H dM + d[W,V ].

Since d[W,V ] =H d[M,V ] regrouping terms and using integration by parts
once more we obtain that

d(V W ) =H(M− dV + V− dM + d[M,V ])−H0M0 dV

=H d(VM)−H0M0 dV.

We have that VM = N , and hence d(VW ) = H dN − H0M0 dV . By (i),
V W =HN − V H0M0 and

H dN = d(V W ) +H0M0 dV

= (d(HN)−H0M0 dV ) +H0M0 dV

= d(HN)

as we wanted to show.
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(⇐) The proof of this direction is analogous to the one just presented since
M is obtained after multiplying N by the nonnegative semimartingale 1

V .
�

Lemma 4.17. Suppose that V is a strictly positive P -semimartingale.
The market with multi-dimensional price process ( 1

V , S
V ), where short selling

prohibition is imposed on S
V , satisfies the condition of (NA-S) if and only

if VT − V0 is maximal in D, where D is the set of random variables of the
form (H · (S,V ))T where H1 ≥ 0, H1

0 ≡ 0, H2
0 ≡ 1 and

(H1,H2 − 1) · (S,V )≥−αV for some α> 0.

Proof. (⇐) LetM = ( 1
V , S

V ) andN = (S,V ). Suppose thatH = (H1,H2)

is an arbitrage in the market with multi-dimensional price process ( 1
V , S

V ). In
other words, assume that H2 ≥ 0,H0 ≡ 0, (H ·M)T ≥ 0, P ((H ·M)T > 0)> 0
and H ·M ≥−α for some α > 0. If we define

H3 = 1+H ·M −HM,

M̃ =

(

1

V
,
S

V
,1

)

,

Ñ = (1, S,V )

and

H̃ = (H1,H2,H3),

we have that H̃ · M̃ = H̃M̃ − 1. By Lemma 4.16 we have that

H̃ · Ñ = H̃Ñ − V0.

But observe that

H̃Ñ = V HM + (1 +H ·M −HM)V = (1+H ·M)V

and

H̃ · Ñ =K ·N,

whereK = (H2,H3). Hence (K ·N)T is an element of D such that (K ·N)T ≥
VT − V0 P -almost surely and P ((K ·N)T >VT − V0)> 0, whence VT −V0 is
not maximal in D.

(⇒) Conversely, suppose that VT − V0 is not maximal in D. With the
notation used above, let K = (K1,K2) be a strategy such that (K ·N)T ≥
VT −V0 P -almost surely and P ((K ·N)T >VT −V0)> 0, with K1 ≥ 0, K1

0 ≡
0, K2

0 ≡ 1 and (K1,K2 − 1) ·N ≥ −αV for some α > 0. Define H2 = K1,
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H3 =K2 − 1, H1 = (H2,H3) ·N − (H2,H3)N and H = (H1,H2,H3). We
have that H · Ñ =HÑ −H0Ñ0. By Lemma 4.16 we have that

H · M̃ =HM̃ −H0M̃0 =HM̃.

Hence,

(H1,H2) ·M =HM̃.

We have that

HM̃ =
1

V
HÑ =

1

V
((H2,H3) ·N) =

1

V
(K ·N − (V − V0))≥−α.

Therefore,

((H1,H2) ·M)T =
1

VT
((K ·N)T − (VT − V0)),

((H1,H2) ·M)T ∈L0
+(P ) and P (((H1,H2) ·M)T > 0)> 0. SinceH1

0 =H2
0 = 0,

(H1,H2) is an arbitrage strategy in the market with multi-dimensional price
process ( 1

V , S
V ). �

Remark 4.18. It is important to observe that the no arbitrage condition
(NA-S) over ( 1

V , S
V ) holds for strategies that are nonnegative on the second

component, but can be negative in an admissible way [see condition (iii) in
Definition 2.1] over the first component. Lemma 4.17 gives a necessary and
sufficient condition under which the introduction of V as a numéraire does
not introduce arbitrage in a market with short sales prohibition. A related
discussion on numéraires over convex sets of random variables can be found
in [28].

These lemmas allow us to prove Theorem 4.8.

4.2.3. Proof of the main theorem.

Proof of Theorem 4.8. Since f is bounded from below there exists
a constant x such that f̃ := f + x is nonnegative. Theorem 4.3, applied to
f̃ , proves the equivalence between (ii) and (iii). We will prove now that (iii)
implies (i). The (FTAP) (Theorem 3.9) shows that (NFLVR-S) holds for the
market consisting of S and (H ·S) with short selling prohibition on S. Now
assume that f ≤ ((H1,H2) · (S1, S2))T with ((H1,H2) · (S1, S2))T ∈ B(H).
Then

(H1 − 1,H2) · (S1, S2)≥−β − αS1

for some α,β > 0 and ((H1 − 1,H2) · (S1, S2))T ≥ 0. Since

(H1 − 1 + α,H2) · (S1, S2)≥−β



FTAP AND HEDGING WITHOUT SHORT-SELLING 19

by Lemma 3.6 (extended to the case when the integrand is not identically 0
at time 0) we conclude that

(H1 − 1 +α,H2) · (S1, S2)

is an R∗-supermartingale, which in turn implies that ((H1−1,H2) · (S1, S2))
is an R∗-supermartingale starting at 0. Since ((H1 − 1,H2) · (S1, S2))T ≥ 0,
we conclude that ((H1 − 1,H2) · (S1, S2))T = 0 P -almost surely. This shows
that f is maximal in B(H).

Let us prove now that (i) implies (iii). By the (FTAP) we know that
there exists P̃ ∈Msup(S) such that (H · S) is a P̃ -local martingale. Let a
be such that V := a+ (H · S) is positive and bounded away from 0. Since
f is maximal in B(H), VT − V0 is maximal in D, where D is as in Lemma
4.17. By Lemma 4.17 (NA-S) holds in the market where S

V and 1
V trade with

short selling prohibition on S
V . By Lemma 4.15 we conclude that (NFLVR-S)

holds in this market with respect to the measure P̃ . Hence, by the (FTAP)
there exists Q̃∼ P̃ (and hence Q̃∼ P ) such that S

V is a Q̃-supermartingale,

and 1
V is a bounded Q̃-local martingale and therefore a Q̃-martingale. By

defining R∗ by VT dR∗ = (EQ̃[ 1
VT

])−1 dQ̃, we observe that R∗ ∈Msup(S) and

V is an R∗-martingale. This implies that (H ·S) is an R∗-martingale as well.
Finally to prove that (iii) implies (iv) we observe that if R ∈Mloc(S) and

(τn) is an R-localizing sequence for (H ·S) then (H ·S)τn∧T =ER∗
[f |Fτn∧T ]

is a dominated sequence of random variables with zero R-expectation. By
the dominated convergence theorem we conclude that ER[f ] = 0, and (H ·S)
is an R-martingale (it is an R-supermartingale with constant expectation).
�

4.3. Final remarks.

Remark 4.19. Condition (i) in Theorem 4.8 can be interpreted as fol-
lows. The market where S1 and S2 trade with short sales prohibition on
S2 satisfies the no arbitrage paradigm of (NFLVR-S). In this market the
strategy of buying and holding S1 cannot be dominated by any strategy
with initial holdings of one share of S1 and none of S2 that does not sell S2

short.

The following observation is important. It shows that the elements f ∈
L0(P ) that satisfy any of the conditions of Theorem 4.8 are maximal in K.
A related result was discussed in Remark 4.12, where it was shown that,
under stronger assumptions on the replicating strategy for f , a stronger
form of maximality holds, namely maximality in K̃; see (4.6).

Proposition 4.20. If (i), (ii) or (iii) in Theorem 4.8 holds, then f is
maximal in K.
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Proof. Assume that ER∗
[f ] = 0 for some R∗ ∈Msup(S). If f ≤ (K ·S)T

with K ∈A, by Lemma 3.6, we conclude that ER∗
[(K ·S)T ] = 0. This implies

that f = (K · S)T P -almost surely and f is maximal in K. �

As shown in [13], without the assumption that f is bounded, (iv) of
Theorem 4.8 is not a necessary condition. Theorem 4.8 is useful to argue
why certain types of contingent claims in certain financial models cannot be
replicated by using a strategy that is maximal in the sense of (i) of Theorem
4.8 above.

Example 4.21. Let K ∈ (0,∞) be fixed. Assume that S is a continuous
P -martingale, [S,S]T is deterministic and P (ST <K,τ < T )> 0 where

τ = inf{t≤ T :St ≥K + 1
2 ([S,S]T − [S,S]t)} ∧ T.

By Novikov’s criterion (Theorem III-45 in [32]) and by Girsanov’s theorem
(Theorem III-40 in [32]) we know that

dQ

dP
= E

(

−

∫ T

0
1[τ,T ](s)dSs

)

defines a probability measure Q ∈Msup(S). If g : [0,∞)→ [0,∞) is a func-
tion that vanishes on [K,∞) and is strictly positive on [0,K), then

EQ[g(ST )] = EQ[g(ST )1{ST<K}]

≥ EP [1{τ=T}g(ST )1{ST<K}]
(4.7)

+EP [1{ST<K,τ<T}g(ST ) exp(−(ST −K))]

>EP [g(ST )].

If we further assume that g is bounded, then by Theorem 4.8 [condition
(iv)] we conclude that g(ST ) does not belong to G as in (4.4). Indeed, if
g(ST ) = x+ (H · S)T , with x ∈R, H ∈A and (H · S) an R∗-martingale for
some R∗ ∈Msup(S), then by Theorem 4.8, (H ·S) would be an R-martingale
for all R ∈ Mloc(S). In particular, we would have that EP [g(ST )] = x =
EQ[g(ST )], which contradicts (4.7). The function g(x) = (K − x)+ satisfies
the above mentioned conditions. Hence under these assumptions, the put
option’s payoff does not belong to G. This example is similar to Example
7.2 of [6].

Remark 4.22. In Example 5.7.4 in [27] and Section 8.1 in [7], it is
proven that for diffusion models with constant coefficients and stochas-
tic volatility models with additional properties, respectively, the minimum
super-replication price of an European put option, supQ∈Msup(S)E

Q[(K −
ST )+], is equal to K. In particular if P (ST 6= 0)> 0, then this supremum is
never attained and (K − ST )+ is not in G as defined by (4.4).
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In this section we have studied the space of contingent claims that can
be super-replicated and perfectly replicated with martingale strategies in a
market with short sales prohibition. We extended results found in [1, 27]
and [17] to the short sales prohibition case. We additionally have extended
the results in [10] to our framework and modified the concept of maximality
accordingly (see Theorem 4.8). Additionally, we presented explicit payoffs
in general markets that cannot be replicated without selling the spot price
process short.

5. Open questions. It is still unclear whether (NFLVR) for a market
without short sales prohibition, implies that all claims that are maximal in
the sense of (i) in Theorem 4.8 are maximal in K̃; see (4.6). Equivalently, it
is unclear whether for a claim f that is bounded from below, the conditions
Mloc(S) 6=∅ and

sup
Q∈Msup(S)

EQ[f ] =ER∗

[f ]

for some R∗ ∈ Msup(S), imply that there exists P ∗ ∈ Mloc(S) such that
EP ∗

[f ] = ER∗
[f ]. Also, it would be interesting to obtain a characterization

of the set of claims that are maximal in K [as in (2.2)] and explore whether
maximality in K implies maximality in K̃; see (4.6).
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